NewsNew Preprint: “FastAMI – a Monte Carlo Approach to the Adjustment for Chance in Clustering Comparison Metrics”
Abstract: Clustering is at the very core of machine learning, and its applications proliferate with the increasing availability of data. However, as datasets grow, comparing clusterings with an adjustment for chance becomes computationally difficult, preventing unbiased ground-truth comparisons and solution selection. We propose FastAMI, a Monte Carlo-based method to efficiently approximate the Adjusted Mutual Information […]Abstract: Clustering is at the very core of machine learning, and its applications proliferate with the increasing availability of data. However, as datasets grow, comparing clusterings with an adjustment for chance becomes computationally difficult, preventing unbiased ground-truth comparisons and solution selection. We propose FastAMI, a Monte Carlo-based method to efficiently approximate the Adjusted Mutual Information […]