Digital Health – Gait Analytics

Our group focuses on the development and application of novel hardware and software tools for movement and gait assessment. To optimally assess functional limitations in real-world conditions, we develop unobtrusive wearable sensor systems that can acquire movement and other physiological data in the clinic as well as in the patients’ home environment.

The obtained clinical data in general and home monitoring data in particular are sensitive with regard to privacy and require new storage, handling, and access concepts. As a basis for safe and efficient data processing, we investigate appropriate data management concepts and contribute to novel medical data infrastructures.

From an analytical perspective, the efficient data processing of those large data sets requires sophisticated signal processing and machine learning tools to efficiently derive clinically relevant parameters, such as interpretable spatio-temporal parameters. This allows us to gain insight into disease-related symptoms and mechanisms in order to provide feedback to patients, researchers, and physicians regarding clinical interventions, treatment efficacy, or disease progression. Artificial intelligence tools are used to create decision support systems that may support clinicians to optimize and individualize treatments. By developing novel movement analysis algorithms based on signal processing and machine learning and by improving existing state-of-the-art methods we aim to shape a healthy digital future.

 

Group Members

Current Students

     

    If you are interested in writing a Bachelor’s or Master’s thesis in our group, please check the lab’s Student Theses and Jobs.

     

    Publications

    2022

    2021

    2020

    2019

    2018

    2017

    2016

    2015

    2014

    2013

    2012

    2011

    2010

    2009

     

    Running Projects