Gait analysis in geriatrics using mobile sensor systems and machine learning

Project leader: ,

Project members:

Start date: 15. January 2018

End date: 15. January 2021

Funding source: Industrie

Project Partner Website: AGAPLESION

AGAPLESION Logo - Gait anaylsis in geriatrics



Walking is a key element of human mobility and independence. For persons aged 70 or above, the number of falls per year increases drastically. Physiological consequences are bone fractures, traumas or death. In conjunction with psychological consequences, such as post-fall anxiety, falls lead to a decreased quality of life. Most falls could be prevented if an early detection of fall risk was available, thus maintaining a high quality of life.

This project will focus on assessing gait in geriatric patients using sensor-based gait analysis. Inertial sensors will be used to measure risk-of-fall related gait parameters for geriatric patients at hospitals of AGAPLESION gAG (AGAPLESION DIAKONIEKLINIKUM HAMBURG and AGAPLESION MARKUS KRANKENHAUS in Frankfurt am Main). The acquired data will be processed at the Machine Learning and Data Analytics Lab of FAU. The machine-learning algorithms that will be developed, will help to improve diagnostics and to measure therapeutic success.




Urheberrecht des Videos: AGAPLESION


AGAPLESION unterstützt Forschungsprojekt zur Ganganalyse bei geriatrischen Patienten

Studienstart Frankfurt: Bewegungsanalyse mit Hilfe von Sensoren

Studienstart Hamburg: Bewegungsanalyse mit Hilfe von Sensoren

AGAPLESION forscht: Ganganalyse 2019