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Abstract— The correct treatment of diabetes is vital to a
patient’s health: Staying within defined blood glucose levels
prevents dangerous short- and long-term effects on the body.
Mobile devices informing patients about their future blood
glucose levels could enable them to take counter-measures to
prevent hypo or hyper periods. Previous work addressed this
challenge by predicting the blood glucose levels using regression
models. However, these approaches required a physiological
model, representing the human body’s response to insulin
and glucose intake, or are not directly applicable to mobile
platforms (smart phones, tablets). In this paper, we propose
an algorithm for mobile platforms to predict blood glucose
levels without the need for a physiological model. Using an
online software simulator program, we trained a Support Vector
Regression (SVR) model and exported the parameter settings
to our mobile platform. The prediction accuracy of our mobile
platform was evaluated with pre-recorded data of a type 1
diabetes patient. The blood glucose level was predicted with
an error of 19 % compared to the true value. Considering
the permitted error of commercially used devices of 15 %,
our algorithm is the basis for further development of mobile
prediction algorithms.

I. INTRODUCTION

Diabetes is one of the most prevalent diseases worldwide.
The estimated number of people suffering from diabetes is
currently 415 million people, but it is assumed to increase to
642 million by 2040 [1]. Patients try to avoid hypoglycemia
(low blood sugar) and hyperglycemia (high blood sugar),
both of which have dangerous short- and long-term effects
on the body. The short-term effects can include nausea, fever
and coma, whereas long-term effects include heart attack,
and stroke [2]–[4]. It is vital that patients monitor their
blood sugar levels closely to avoid these risks. Traditionally,
patients measured their blood glucose level (BGL) with a
finger stick 3-8 times a day to adjust their insulin levels
according to their carbohydrate intake. In recent years,
the development of Continuous Glucose Monitoring (CGM)
systems has been pushed forward resulting in a variety of
devices on the consumer market2. A CGM system usually
consists of a sensor attached to the skin and an accompanying
reader displaying the curve of the BGL. Because reaction
times of the BGLs are delayed to the glucose intake, knowing
how the BGL of the human body will develop is a key factor
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for preventing hypo or hyper events for diabetes patients. We
define hypo and hyper events as periods in which the BGL
crosses the thresholds as issued by the American Diabetes
Association. Hypoglycemia in hospitalized patients has been
defined as blood glucose < 70

mg

dL
, and hyperglycemia as

blood glucose > 140
mg

dL
[5]. If the BGLs were known be-

forehand, patients could take the required counter-measures
to prevent these events. Consequently, they could achieve
staying in a BGL area, which is not harmful to the body
and thus reduce the immediate and long-term effects of
diabetes. Bunescu et al. [6] described a method to predict
the blood sugar for individual patients using physiological
models. These models required up to seven specific input
features to make reliable predicitions. Additionally, in their
paper they did not describe the suitability of their algorithm
for mobile platforms. Further research in this field led to the
conclusion, that Support Vector Regression is suitable for
the prediction of BGLs [6]–[9]. Chemlal et al. [8] already
implemented a BGL prediction for mobile platforms, in this
case as an iPhone application. However, data about glucose
intake information had to be entered by the user manually
for every meal the patient consumed.

Those approaches are missing an unobtrusive mobile ap-
plication which does not require any active input by the user
and provide a warning in case certain thresholds for BGLs
are exceeded. Another approach was proposed by Breton et
al. [10]. They developed a closed-loop system, where the
user is not required to inject oneself with insulin anymore.
Consisting of a CGM device and an insulin pump, this
system is expected to regulate the glucose balance in the
body autonomously over night. However, this system was
aimed at type 1 patients, that require a constant injection
of insulin, and is thus not usable for patients with type 2
diabetes not requiring an insulin pump. Hence, all afore-
mentioned publications aimed for an accurate prediction of
BGL but were limited to requiring a physiological model
and in addition, they did not contain an unobtrusive mobile
implementation.

In this work, we present an algorithm for mobile platforms
to predict the BGL of a patient with a CGM device. It is
based on the fact that patients already using a CGM system
have all the data necessary to make a prediction accessible
on their device. The algorithm can easily be integrated into
existing CGM readers or process the data transmitted by a
CGM sensor. Consequently, the predicted BGL is analyzed
and the patient is warned if he is about to enter a hypo or
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Fig. 1. Example BGL data for one subject over 25 days, simulated with
the online simulation tool 2aida. Every black line represents one day.

hyper period. The algorithm was designed with data of an
online simulation tool, followed by an evaluation with real
patient data on a mobile platform. We compared the results
to the outcomes of other papers and discuss them regarding
their reliability.

II. METHODS

A. Data acquisition

Data were acquired from different sources: an online free-
ware diabetes software simulator program (www.2aida.net)
and a CGM system incorporated in this study. For developing
the prediction algorithm, the online simulation program was
used. Data of five different subjects were employed to eval-
uate the algorithm. For each patient, 25 days of BGLs were
simulated (Fig. 1). The simulation produced BGL curves
according to carbohydrate intakes and insulin shots defined
over the day. Here, values for typical glucose intake (45 to
60 grams per meal [11]) have been entered to obtain 25
different curves, representing different days. The sampling
rate was given by one reading every 15 minutes.

The second source used for the mobile evaluation was
anonymized readings from a FreeStyle Libre R© CGM system
of a diabetes type 1 patient which were handed over in
retrospect and on a voluntary basis. Hereby, all experimental
procedures followed the principles outlined in the Declara-
tion of Helsinki. The blood glucose sensor was attached to
the disinfected skin on the upper arm of the patient, being
able to store up to eight hours data of the subcutaneous
glucose level. When placing the reader near the sensor, the
data from the past 8 hours were transmitted to the reader.
The sensor did not require any further calibration and could
stay on the patient up to 14 days. In total, the CGM data
amounted to 4635 readings over a period of roughly 35 days.

B. Blood glucose level prediction

The algortihm was designed with the simulated patient
data in Matlab R© R2013a. The open source implementation
of Support Vector Machines libSVM was used [12]. Data
from each patient were split into testing and training data
sets. The BGL on day d at the time t was given by yd (t).
The window size was chosen to as ω, and τ represented
the prediction time. Training data were all the BGLs in

SVR model
[εt, Ct, γt]

[yd (1) , . . . , yd (t)] ŷd(t+ τ)

{[yd−ω (1) , . . . , yd−ω (t+ τ)] , . . . , [yd−1 (1) , . . . , yd−1 (t+ τ)]}

train model

Fig. 2. Structure of the training and testing set. For every estimation,
the SVR model uses trainings data yd−ω , . . . , yd−1, testing data yd and
a specific set of regression parameters εt, Ct, γt to generate a individual
model and predict the BGL ŷd.

the training window ω up to the day d of the prediction.
Subsequently, testing data were the BGLs on day d until the
time t. For a given window size, the testing and training set
was structured as depicted in Fig. 2. The feature vector for
the training and testing sets consisted of data of one day up to
the time t [yd (1) , . . . , yd (t)] and the label vector was given
by yd(t + τ). Respectively, we trained one SVR-model for
every prediction time t+τ during one day. We considered the
prediction times τ : 30 min and 60 min for later evaluation.

The data sets were scaled to a range from zero to one to
avoid attributes in greater numeric ranges dominating those
in smaller ranges [13]. The parameter selection resulted in
the following parameters:

• Regression type epsilon SVR
• Radial basis function (RBF) as kernel
• ε set to default value of 0.001
• (Kernel coefficient) γ set to a range from

[2−15, 2−14, . . . , 23]
• (Penalty parameter) C set to a range from

[2−5, 2−4, . . . , 215]

Following a five-fold cross validation on the training data set,
we performed a grid search using the parameters C and γ to
find the smallest error. Those parameters were then applied
for training the model used for the prediction of ŷd based on
the testing set.

C. Mobile implementation

To demonstrate the feasibility of the mobile application,
the Support Vector Regression was evaluated as real time
application on a mobile platform. To account for the irregular
distributed patient data of the CGM reader, cubic spline
interpolation, resulting in a constant sample rate of 1 reading
every 5 minutes, was applied [14]. The computation of the
prediction was equal to the implementation described above.
We implemented the app with Android Studio for Android
4.4.. Patient data were available as a time series with one
BGL value for each specific point in time. Reducing the
amount of computation was achieved by using the pres-
elected parameters of the simulated study. Each point of
a day had a constant parameter set [εt, Ct, γt], which was
exported to the app and used for the SVR model. A graphical
output was used to display the last 12 hours of BGL data
and the predicted value ŷd(t + τ). The model was updated
in 15 minute intervals, corresponding to the sampling rate
produced by the reader. A notification was displayed, when
the predicted value exceeded a certain threshold. For hypo
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Fig. 3. Screen shot of the mobile application ”Diabety”.

events, the user received a notification ”Your blood sugar is
getting low (< 90

mg

dL
) in the next 30 minutes. Please eat

or drink something now!”. Values for this notification have
to be set individually in coordination with a physician. For
the purpose of demonstration we used the recommedation
for adolescents and young adults of the American Diabetes
Association [3]. In addition to the notification function, we
incorporated an alarm, which was planned to be activated if
the patient had a hypo event during the night.

D. Evaluation

We visually checked the blood glucose data from the
online simulation tool for a realistic trend. Unrealistic out-
comes, for instance values under < 30

mg

dL
and over >

400
mg

dL
of the online simulation tool were not used and

different days were simulated. The accuracy of our algorithm
was evaluated for the online data base and data of the
diabetes patient. The prediction of the BGL for ŷ resulted in
a difference to the actual value at y. As evaluation measure,
we used the arithmetic mean of the relative error over all
samples of one day T :

δ(d) =
1

T

T∑
t=1

|ŷd(t+ τ)− yd(t+ τ)|
yd(t+ τ)

. (1)

We evaluated different window sizes to find a reasonable
training data size for our mobile implementation. The accu-
racy of the algorithm on the mobile platform was tested on a
OnePlus One smart phone running Android 5.1.1. Here, we
simulated different points over one day and considered the
mean of the computation time as result.

III. RESULTS

Simulation results showed, that the error for the prediction
decreased when increasing the window size ω (see Fig. 4).
Window sizes were gradually increased from the minimum
required input data of 5 days to all 21 available training days.
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Fig. 4. Results of the support vector regression for a 30 minute ahead
prediction. Different colors represent the different patients. The different
curves share the property of converging to a relative error δ of 0.2-4 %.
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Fig. 5. Results of the support vector regression for a 60 minute ahead
prediction. Different colors represent the different patients. The different
curves share the property of converging to a relative error δ of 0.3-7 %.
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Fig. 6. Results of the support vector regression for a 30 minute ahead
prediction using real patient data of a TD1 patient. After a windowsize ω of
about 21, it is visible, that the relative error ω stays at about 19 %.

The error decreased for all considered prediction times τ ,
whereby greater values for τ showed a higher relative error
δ (compare Fig. 4 and 5). For a 30 min ahead prediction, we
were able to show that the error converges to 0.2-4 % after
increasing the window size gradually up to 21 days. Relative
errors δ were distinct for every patient, however shared the
same converging properties. The relative error on the diabetes
patient data for a 30 min prediction converged after 21 days
to a δ of 19.8 %. Computation of the prediction on the
mobile platform took between 0.3 seconds and 8 seconds
for a training window size of 5 and 21 days, respectively.

IV. DISCUSSION

Comparing the results of our algorithm performance on
the simulated data to the real patient data, a difference is
noticeable. This is due to the small variance of the simulated
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data in contrast to the real patient data set. The authors of the
2aida tool mention, that it is meant for education / teaching
/ demonstration use only, because it cannot account for the
complexity of the human glucoregulatory system. For the
purpose of this paper the data can be seen as adequate, since
the algorithm was only trained on these data. The evaluation
led to an error of 19.8 %. However, it has to be considered
that the permitted error of finger stick glucose sensors is
15 %, as issued by the FDA [15]. Hence, our prediction can
be used to further optimize mobile prediction algorithms.
Even more accurate results could be achieved by improving
the accuracy on larger sets of patient data, i.e. all past data
measured by a CGM device of a patient. Moreover, the algo-
rithm can be improved by optimizing it regarding regression
models for prediction on time series [16]. According to the
research of Chemlal et al. [8], integrating activity data of the
user can improve accuracy and detect changes in the BGL.
Additionally, for future applications we suggest integrating
an automated method for BGL verification.

The mobile computation was time efficient, on average
taking 95 ms for computation. In the real application, the
algorithm is effectively running as a background activity
and has to be updated every 5-10 minutes [14]. Besides
contributing to the physiological effects of diabetes, a mobile
application can also contribute to the quality of life for
patients. The use of CGM systems allows patients to keep
track of their BGL without picking their finger. Checking
their BGL, can now be done by looking at their phone.
Additionally the implementation on a smart phone enables
the further implementation of various functions such as:

1) Notification function
2) Alarm during the night
3) Sharing their BGLs with their parents (for children)
4) Exporting the data and sending it to their physician

An application like the one presented in this paper will be
very valuable, for patients using a CGM device. Further
development will make these systems cheaper and thus
accessible to more patients.

V. CONCLUSION

Previous attempts at predicting the blood sugar required
the use of a physiological model or were not designed
for mobile platforms. We demonstrated, that it is possible
to perform a prediction using SVR on a mobile platform.
Based on simulations on the real patient data, we concluded
that a window size of 21 days is a sufficient training data
size to obtain a prediction value capable of describing BGL
development.

This work can be the basis for further development. After
living with diabetes for a long time, patients become dull
to the effects their body displays under low blood sugar.
This can lead to unforeseen change of consciousness. Our
app can help to prevent hypo and hyper periods, because it
could detect such situations even before the drop or increase
in BGL has fully started. Due to the fact that reaction
times of the BGLs are delayed to the intake of glucose,
our application is useful to sustain a stable BGL. The next

step is evaluating our app with live CGM patient data and
making the algorithm more robust. Additionally, the ideal use
case would be one app supporting all sensors on the market.
Moreover, the results of this paper can also be the basis for
optimizing closed-loop systems and providing information to
the insulin pump.

ACKNOWLEDGMENT

The authors would like to thank the diabetes patient
for providing his BGL data, and we thank the Innovation
Research Lab team at FAU for their contribution to this paper.
Furthermore, we would like to thank Dexcom for supplying
us with a sensor to record data for this project.

REFERENCES

[1] International Diabetes Federation, IDF Diabetes Atlas, vol. 7 ed.
Brussels, Belgium: International Diabetes Federation, 2015.

[2] N. W. Salomon, U. S. Page, J. E. Okies, J. Stephens, A. H. Krause,
and J. C. Bigelow, “Diabetes mellitus and coronary artery bypass.
Short-term risk and long-term prognosis.,” The Journal of thoracic
and cardiovascular surgery, vol. 85, pp. 264–71, Feb 1983.

[3] American Diabetes Association, “Standards of Medical Care in Di-
abetes - 2016,” The Journal of Clinical and Applied Research and
Education, vol. 39, pp. 14–80, Jan 2016.

[4] Diabetes Digital Media Ltd, “Short Term Complications - Hypo-
glycemia, Ketoacidosis & HHS,” 2016.

[5] E. R. Seaquist, J. Anderson, B. Childs, P. Cryer, S. Dagogo-Jack,
L. Fish, S. R. Heller, H. Rodriguez, J. Rosenzweig, and R. Vigersky,
“Hypoglycemia and diabetes: a report of a workgroup of the American
Diabetes Association and the Endocrine Society,” Diabetes care,
vol. 36, pp. 1384–95, May 2013.

[6] R. Bunescu, N. Struble, C. Marling, J. Shubrook, and F. Schwartz,
“Blood Glucose Level Prediction Using Physiological Models and
Support Vector Regression,” in 12th International Conference on
Machine Learning and Applications, vol. 1, pp. 135–140, 2013.

[7] E. I. Georga, V. C. Protopappas, D. Ardigò, M. Marina, I. Zavaroni,
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