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Abstract— Gait analysis is an important tool for diagnosis,
monitoring and treatment of neurological diseases. Among
these are hereditary spastic paraplegias (HSPs) whose main
characteristic is heterogeneous gait disturbance. So far HSP
gait has been analysed in a limited number of studies, and
within a laboratory set up only. Although the rarity of orphan
diseases often limits larger scale studies, the investigation of
these diseases is still important, not only to the affect population,
but also for other diseases which share gait characteristics.

In this paper we use foot-mounted inertial measurement units
(IMU) as a mobile solution to measure the gait of 21 HSP
patients while performing a 4 by 10 m walk at self-selected
pace. Two algorithms common to other gait analysis solutions,
the hidden Markov model (HMM) and dynamic time warping
(DTW), were applied to these signals in order to investigate
their effectiveness when faced with the heterogeneous nature
and range of foot strike techniques of HSP gait, sometimes
even lacking a heel strike. Using a nested cross validation for
parameter choice and validation, the HMM was found to be
superior for segmentation purposes with a mean segmentation
error of 0.10 & 0.05 s.

Stride segmentation of such a diverse dataset is the first
step towards creating a clinically relevant system which could
assist physicians working with HSP patients by providing ob-
jective, automated gait parameters. To the best of the authors’
knowledge, this is the first paper to investigate solutions for
mobile gait analysis of patients affected by HSPs. Ultimately,
automated, mobile gait analysis of HSP patients would allow
ongoing and long term monitoring, providing useful insights
into this orphan disease.

I. INTRODUCTION

Hereditary spastic paraplegias (HSPs) are a group of
genetic disorders whose predominant feature is gait distur-
bance [1], [2]. They represent a group of orphan diseases
with a prevalence of 2 to 10 per 100000 people [2],
whose severity negatively affects quality of life [3]. Validated
measures for orphan diseases are often missing or lacking
sufficient clinical trials [2]. In the case of HSP, a thirteen
point rating scale has been developed by Schiile et al., the
Spastic Paraplegia Rating Scale (SPRS) [4], and employed
for the analysis of the clinical severity of HSP in a cohort of
608 patients [2], although it has not been validated in other,
independent studies.
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Patients suffering from HSP differ in age, with the age-
of-symptom onset ranging from early childhood to senes-
cence [1], as well as in variability of gait alternations and
progression of disease, even within a family [5]. There is
currently no cure, only symptom reduction options such as
spasticity reducing drugs, physiotherapy, gait phase depen-
dent nerve stimulation and assistive orthopedic devices [1],
[6]. Robotic training and hydrotherapy have also been used
to increase the quality of life of the patients [7]-[9].

For the analysis of the effectiveness of these symptom
reducing solutions, as well as to provide more objective
measures of disease severity and progression, 3D gait anal-
ysis has been investigated on cohorts ranging from 9 to 50
patients [5], [10]-[12]. Klebe et al. calculated gait parameters
from roughly 20 consecutive gait cycles of 22 patients
while walking on a treadmill and found significantly reduced
gait velocity, stride length, step length and knee-angle as
compared to an age-gender matched control group [5]. They
followed this up with a longitudinal study investigating the
effect of the drug methylphenidate on HSP gait, finding
that while gait velocity improved in the short term there
seemed to be no long term effect [13]. In contrast, Serrao
et al. investigated possible subgroups of HSP patients based
on spatiotemporal parameters, range of angular motion and
muscle co-activation values [10]. The proposed subgroups
also nominally corresponded to the SPRS of the patients.
The differences between HSP gait and cerebral palsy gait
[14] or spastic diplegia gait [11] have also been investigated
using 3D gait analysis, although using only small cohorts of
10 or less HSP patients.

An alternative to 3D gait analysis is mobile gait analysis
based on IMU systems, such as those successfully applied
to the study of other neurological diseases such as Parkin-
sons [15]. This paper aims to explore the possibility of
using an IMU based, mobile method for gait analysis of
HSP patients. One of the main challenges when applying
these techniques to HSP gait is the sheer variety of gait
disturbances as well as the range of foot strike techniques:
striking the floor with the mid-lateral plantar surface, the
balls of the feet or only the toes (toe walking), as opposed
to the more usual heel strike in most Parkinson’s patients
or healthy persons [1], [15], [16]. The current methods for
automatic gait analysis using foot mounted IMU sensors
rely on heel strike and midstance detection in order to
calculate spatiotemporal parameters [1], [17]. The necessary
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Fig. 1. Shimmer sensor placement on lateral side of left shoe, showing
axes directions for 3D accelerometer (AX,AY,AZ) and gyroscope (GX, GY,
GZ).

assumption of zero velocity at midstance may be violated by
these HSP specific gait forms.

Due to the variety of gait patterns, segmentation of the
gait data into individual strides is a non-trivial task which
will be tackled by this paper with the aim to calculate
spatiotemporal gait parameters. Ultimately, an automatic,
mobile gait analysis tool would assist in the diagnosis,
analysis and symptom management without being restricted
to an expensive, laboratory-based 3D gait analysis system.
This can be achieved by tackling the segmentation task and
zero velocity assumption, the latter will not be addressed in
this paper.

II. DATASET

The study population consisted of 21 subjects fulfilling
the clinical diagnostic criteria for HSP [4], 8 males and 13
females with an average age of 47.2 4+ 13.3 years. All
subjects gave written informed consent, prior to the data
collection. (This study was approved by the local ethics com-
mittee Nr. 4208, 21.4.2010, IRB, Medical Faculty, Friedrich-
Alexander-University Erlangen-Nuremberg, Germany). The
severity of the disease was evaluated using the SPRS [4],
with this cohort having an average score of 17.8 + 6.9.
Each subject performed a 4 by 10 m walk at a self-selected
speed while being recorded with a camera (30 fps). Two
Shimmer 2R (Shimmer Sensing, Dublin, Ireland) inertial
measurement units (IMU), recording acceleration (+6 g)
and rate of change of angle (+ 500 dps) at 102.4 Hz, were
attached to the lateral side of the shoe (Fig. 1).

The strides were labelled using simultaneous analysis of
video and sensor data with a stride being labelled from initial
ground contact (GC;) to the subsequent ground contact of the
same foot (GC;41). The stride definitions from [15], [17],
[18] were used as a guide (Fig. 2). The video and sensor
data were synchronised using reference movements, such as
lifting one foot three times, or rest periods. The labelling was
performed by one person familiar with the gait data. The data
was classified into three classes: rest, stride and transition,
where rest refers to the subject standing still and transition
to anything that is neither a stride from GC; to GC; 1 nor
rest (Fig. 2).
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Fig. 2. Labelling example with all three classes: rest, stride and transition.
The upper graph represents the the gyroscope sagittal plane and the
lower, accelerometer anterior-posterior plane. The vertical lines indicate the
labelling points for GC;. The represented time point is a pause and turn
during the 4 by 10 m walk.

III. METHODS

The sensor data was segmented using two different algo-
rithms; multi-dimensional subsequence dynamic time warp-
ing (msDTW) and a hierarchical hidden Markov model
(hHMM). DTW and HMM algorithms, or variants thereof,
were chosen for this segmentation task due to their successful
use in IMU-based gait analysis of other neurological diseases
such as Parkinson’s and Huntington’s disease [15], [19].

A. Dynamic Time Warping

Multi-dimensional subsequence DTW [15] was used due
to its ability to handle multidimensional features, as well
as its ability to compare a template, in this case a stride,
to a longer sequence, in this case the complete 40 m test
sequence. The SensorDataToolbox implementation (Digital
Sports Group, Pattern Recognition Lab, FAU Erlangen-
Nuremberg) was used. All strides from the training group
were used to generate a stride template by interpolating or fil-
tering each stride to the average stride length. The Euclidean
norm was used as a distance measure in the cost matrix. The
threshold was found in the parameter optimisation step. The
raw data was filtered using a 10 point moving average filter
and normalised to [—1, 1] using the maximum sensor range.

B. Hidden Markov Model

A hierarchical HMM [20] was chosen due to its ability
to model strides, rest and transitions by exploiting their
repetitive nature. The number of states per HMM was chosen
during the parameter optimisation step, with the exception
of the rest HMM which was fixed to 3 states. The models
were trained in a supervised manner using the stride bor-
ders (GC), while learning the internal phases was done in
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TABLE I
ROUGH GRID SEARCH FOR PARAMETER OPTIMISATION

hHMM Parameters

Number of states per HMM 4,8, 10
Sliding window length (s) 0.30, 0.50, 0.70
Number of GMM components 4,8, 10

Axes combinations AXGZ, GYGZ, AXAYAZGYGZ
msDTW Parameters
40-80, 40-80, 150-180

AXGZ, GYGZ, AXAYAZGYGZ

Threshold (steps of 5)
Axes combination

TABLE I
EVALUATION METRICS OF DTW AND HMM

hHMM msDTW
Mean absolute GC' error 0.10 £ 0.05 s 0.09 £ 0.04 s
Mean absolute stride time error 0.14 £ 0.08 s 033 £0.07 s
Fl-score 92.09 + 0.01 % | 90.35 £ 0.02 %

an unsupervised manner. The observations (features) were
modelled with Gaussian Mixture Models (GMM) initialised
with a diagonal covariance matrix, where the number of
required centres was found within the parameter optimisation
step. The GMM densities were calculated using estimation
maximisation (EM) within 10 iterations. Viterbi training was
used and the stride boundaries were found using Viterbi
decoding. The implementation used was the Java Speech
Toolkit (JSTK) [21].

Features were calculated using a sliding window approach.
The size of the sliding window was determined in the
parameter optimisation step. The mean, variance, first three
coefficients of the second order polynomial fit and the raw
data itself were used as features, after normalisation. The
choice of axes used for feature calculation was part of the
parameter optimisation step. This simple feature set was
chosen to minimise processing time while still describing
the data.

C. Training and Parameter Optimisation

Nested cross validation was used for evaluation. A 3-
fold outer cross validation was used for the model creation
and test set. The model creation set was further split with
an inner 5-fold cross validation for parameter choice. The
best parameters per fold were chosen via a rough grid
search, the parameter optimisation step Tab. I. The grid
search values were chosen based partially on literature and
partially empirically [15], [19], [22]. This cross validation
was performed such that no subject used for training the
model or parameter selection appeared in the test set.

For the evaluation of the segmentation accuracy of the two
algorithms, three main evaluation metrics were chosen: the
absolute average error in stride time, the absolute average
error of each GC' point and the Fl-score for stride detec-
tion. The Fl-score was also used for determining the best
parameters. The evaluation metrics, of the outer fold, were
averaged. Sections labelled as transition in the ground truth
were ignored for these calculations.
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Fig. 3. Misclassification of rest within a walking sequence of one subject
with severely impaired gait. The image illustrates the inserted rest sections
created by the hHMM, however a similar result can be seen using DTW.
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Fig. 4. All strides from a subject (thin, grey) compared to the template
(thick, red), showing subject specific F1-score using DTW. The strides from
the subject where DTW achieved a lower Fl-score, right, do not match the
template as well as those from the subject with the higher Fl-score (left).

IV. RESULTS AND DISCUSSION

The results of the best models used in the outer cross
validation are shown in Tab. II. Given the variety of gaits
and size of this dataset, a classification of over 90 % is
a reasonable outcome. It is important to note that some
subjects lacked a heel strike. The HMM outperformed DTW,
achieving an F1-score of 92.09 % for strides. With an average
stride time of 1.56 s, the absolute error in stride time for both
algorithms was roughly 10 % to 20 % of a stride. The error
in the GC point is under 0.09 s.

A larger cohort should naturally improve these results,
however this may be difficult to achieve given that HSP
is an orphan disease. The most common problem for both
algorithms was the relatively long midstance phase which
was often misclassified as rest or standing as illustrated in
Fig. 3. This explains why the stride time error was almost
10% of an average stride for the HMM. The error in the
calculation of the GC point is therefore a good indicator
of the effectiveness of the algorithms, should the falsely
detected rest phases be solved. These falsely detected rest
phases might be improved by forcing the algorithms to detect
only steps during walking phases which would require a
separate rest detection phase in the pipeline.

The gait variability between subjects was not addressed
here due to the general training of the models. The effect
of this can be illustrated by comparing the template used
for DTW to all the strides of individual subjects (Fig. 4).
This effect might be mitigated by a personalised approach

Preprint submitted to 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. Received February 17, 2017.



CONFIDENTIAL. Limited circulation. For review only.

to training the models, which may also compensate for the
smaller size of the dataset. Finding solutions for gait analysis
which can handle small datasets is an important factor when
dealing with rare or more person specific gait disturbances or
treatments. It would also be informative to group the subjects
by disease severity and analyse the effect of this on the
error and classification accuracy of the algorithms. HMMs
performed better in this case and have the added advantage
of implicitly modelling the gait phases which could yield
useful information about the gait phases.

V. SUMMARY AND OUTLOOK

Despite the wide variety of gait disturbances and the
different types of first ground contact typical of HSP gait
data, a segmentation error of 0.10 s or less was achieved
demonstrating that it is possible to segment HSP gait data,
collected from a mobile system, into strides. The hierarchical
hidden Markov model seems superior to multidimensional
subsequence dynamic time warping achieving a 92.09 % F1-
score and stride time was calculated with an error of 0.14 s.
Stride segmentation of such a diverse dataset is the first step
towards creating a clinically relevant system which could
assist physicians working with HSP patients by providing
objective, automated gait parameters. Such parameters are
useful for diagnosis, progression and treatment analysis.

The limitations of the current processing pipeline were
highlighted; the most influential of which was the classifi-
cation of rest periods within each stride. This effect may be
mitigated by employing a model per subject or by separating
the individual stride detection from the rest/motion class
detection. Further improvements may be found with a more
fine grained grid search or a more specific feature selection.

To the best of the authors’ knowledge, this is the first
paper to investigate solutions for mobile gait analysis of
patients affected by HSPs. Ultimately, automated, mobile
gait analysis of HSP patients would allow ongoing and
long term monitoring, providing useful insights into this
orphan disease. The rarity of orphan diseases often limits
larger cohorts, and, despite their rarity, the study of them
is important not only to the affected patients but also due
to the developed algorithms’ use in diseases with similar
symptoms. In this case the methods developed for HSP may
be relevant for other heterogeneous gait disorders.
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