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Arne Küderle1, Nicolas Rohleder2, and Bjoern M. Eskofier1

Abstract—Stress is related to short- and long-term alterations
in stress systems, including the hypothalamic-pituitary-adrenal
(HPA) axis and the sympathetic nervous system (SNS). While it
is well established that stress experienced during the day can
affect sleep quality, less is known about how it affects stress
systems during the night. We assume that stress coping strategies
can have an impact on how stress carries over into the night
and that individuals with bad coping mechanisms show elevated
activation of stress systems during sleep. For that reason, we
recorded the heart rate (HR) and heart rate variability (HRV)
of 21 healthy participants on two consecutive nights during sleep
and the first hour after awakening and extracted cortisol and
alpha-amylase from saliva samples collected in the first hour after
awakening. Stress coping capabilities were assessed using self-
reports. We performed backward stepwise multiple regression
models to analyze the relationship between HR(V) and stress
coping and trained different machine learning-based regression
algorithms to predict positive (SVFPos) and negative (SVFNeg)
stress coping capabilities, respectively. Our results show that
individuals with higher SVFNeg scores showed higher SNS activity
during the night, whereas higher SVFPos scores indicated lower
SNS activity. SVFPos was predicted with a mean absolute error
(MAE) of 1.51 ± 0.73 and SVFNeg with an MAE of 2.79 ± 1.53.
Our findings indicate an association between nightly HR(V) and
the individual’s capability of coping with stress. This provides
further information about how stress influences sleep and might
be used for tailored intervention and feedback on successful stress
coping.

Index Terms—stress coping, sleep, cortisol awakening response,
heart rate variability, machine learning

I. INTRODUCTION

Stress can be defined as an emotional experience associated
with nervousness, tension, and strain [1]. We experience stress
in our daily life and face it with individual coping strategies.
The higher the perceived stress levels the more likely it is that
the body responds to it by activating the stress system which
consists of two major axes: The sympathetic nervous system
(SNS) and the hypothalamus-pituitary-adrenal (HPA) axis [2].
The SNS is activated rapidly in the case of stress by increasing
heart rate (HR) and blood pressure to prepare the body for a
fight-or-flight response [3]. On the other hand, the HPA axis,
as a slow operator, regulates the activation of the endocrine
glands and leads to the secretion of cortisol.

Generally, cortisol follows a circadian rhythm: After reach-
ing the lowest levels during the first half of the night, the
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cortisol concentration starts to rise slowly and reaches its
maximum peak in the cortisol awakening response (CAR), a
strong increase in cortisol levels in the first 30–45 min after
awakening in the morning [4]. According to current research,
the CAR, as well as heart rate variability (HRV), are reported
to be associated with stress-related variables. For example,
Stalder et al. examined the CAR’s relationship to HR(V) in
the context of awakening [5]. In their study, individuals with
an elevated CAR exhibited higher levels of HR and lower
levels of HRV post-awakening. Associations between HRV
and sleep quality were investigated by da Estrela et al. [6],
which reported that lower HRV can be linked to a greater risk
for stress-related sleep disturbances which can even increase
the likelihood of developing depressive symptoms. Similar
findings were by Michels et al., where low sleep quality was
found to lead to unhealthier HRV patterns measured over five
minutes, with stress enhancing this relationship [7].

The effect of stress coping on sleep was investigated by
Sadeh et al. [8], indicating that the coping style used to
manage a stressor is a key factor in the relationship between
stress and sleep. Otsuka et al. showed that negative coping
strategies like “giving up on problem-solving” or smoking and
drinking are positively correlated with sleeping disorders, such
as symptoms of insomnia or nightmares [9]. In contrast, pos-
itive coping, like exercising or sharing worries, was inversely
correlated with these disorders.

In the context of coping mechanisms, several studies have
been conducted concerning HR(V). Positive coping strategies,
like tension reduction and positive reappraisal, were correlated
with lower levels of HR in a resting state [10]. Moreover,
higher low frequency (LF) power of HRV is related to stronger
expression of negative emotions, which suggests a relationship
between coping style and autonomic cardiac function [11].

As coping mechanisms are proven to play a vital role in the
relationship between stress and night-time sleep, we focus on
the investigation of positive and negative stress coping. In most
of the studies, assessing HR(V) and linking them to coping
strategies, the physiological measures mostly took place during
the day or during task completion. While it is known that stress
enhances sleep disturbances, less is known about how it affects
stress systems, especially the SNS, during the night, verified by
physiological measures. Therefore, this work aims to predict
an individual’s stress coping capabilities based on HR(V)
measures during the night and in the morning. Furthermore,
the role of the CAR and salivary alpha-amylase (sAA) is
investigated in the context of HPA axis and SNS activity,
respectively. Since previous work has shown the promising



potential of applying machine learning techniques to discover
complex psychological patterns [12], we examined the use
of machine learning-based regression models besides multiple
linear regression models commonly used in literature.

II. METHODS

A. Data Acquisition

We acquired data from n = 30 healthy participants aged
18–27 years on two consecutive nights. The exclusion criteria
for study participation were smoking, acute or chronic mental
illness, or the use of medication (except hormonal contra-
ceptives). All participants provided written informed consent
before participating in our study. The study protocol was
approved by the Ethics Committee of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (number 106 13B).

1) Biomarker: We measured cortisol and sAA levels using
Salivettes (Sarstedt AG & Co. KG, Numbrecht, Germany)
at six different time points: before going into bed (SA),
immediately after awakening (S0), and four other samples in
15 min intervals during the first hour after awakening (S1-S4).
Participants were instructed to chew on a polystyrol roll for
one minute and to not to consume anything orally except water.

2) ECG: HR(V) parameters were measured by recording an
ECG during sleep and the first hour after awakening using a
wearable sensor node (Portabiles GmbH, Erlangen, Germany)
attached to a chest strap. The sensor node records a 1-channel
ECG according to Lead I of Einthoven’s Triangle and logs
data onto the internal storage with a sampling frequency of
256 Hz for subsequent data processing on a computer.

3) Self-report: Subjective stress coping and processing
strategies were assessed using the “Stressverarbeitungsfrage-
bogen (SVF)” (Stress Processing Questionnaire) [13] with 120
items before the first night.

Due to incomplete or corrupted sensor data, a total of
n = 21 participants (55 % female) with 36 nights remained
for further analysis. The mean age of the study population
was 22.9 ± 1.8 years with a BMI of 22.1 ± 2.1 kg m−2.

B. Data Processing

1) Biomarker: From the raw cortisol samples assessed in
the morning we computed the area under the curve with
respect to ground (AUCG) and with respect to increase (AUCI)
for both biomarkers. The AUCG represents the total cortisol
output during the first hour after waking [14]. The AUCI
reflects the changes over time, as the baseline of cortisol or
sAA concentration is subtracted. In addition, we computed
the slopes of cortisol and sAA between samples S0 and S2
(denoted as aS0S2). We objectively assessed sampling times
using the CARWatch application [15].

2) ECG: The ECG data were used to calculate HR and
HRV based on the RR intervals extracted after filtering and
QRS complex detection provided by the Neurokit2 library [16].
Artifacts in RR intervals were reduced according to previous
work (e.g., [17]).

ECG data were divided into two phases: The sleep phase,
the time between saliva samples SA and S0, and the wake

TABLE I
PARAMETERS AND CORRESPONDING VALUES FOR HYPERPARAMETER

OPTIMIZATION (GRID SEARCH AND RANDOMIZED SEARCH). THE
PARAMETER NAMES ARE GIVEN AS SPECIFIED BY SCIKIT-LEARN [19]

Classifier Parameter Values
SVR C {0.1, 1, 10, 100}

kernel
{linear, radial basis function,
polynomial}

gamma {auto, scale, 0.1, 0.01, 1e-4}
k (n_features) {2, 3, 4, 5}

RF max_depth {10, 30, 50, 100, none}
max_features {auto, sqrt, 0.3}
min_samples_leaf {1, 2, 3}
n_estimators {100, 200, 400, 1000, 2000}

AB base_estimator
{SVR, DecisionTreeRegressor,
KNeighborsRegressor}

learning_rate {0.001, 0.01, 0.05, 0.1, 0.5, 1,1.5}
loss {linear, square, exponential}
n_estimators {10, 30, 50, ..., 300}

phase, the time between S0 to S4. If less than 30 min of
data during the wake phase was remaining, these data were
excluded from further analysis to reduce the risk of bias
of HR(V) features. From the extracted HR data, mean and
standard deviation were recorded for sleep and wake phases,
respectively (denoted, e.g., σ(HRwake)). Furthermore, HRV
features like Low Frequency (HRVLF), Very Low Frequency
(HRVVLF), High Frequency (HRVHF), Very High Frequency
(HRVVHF), Root mean square of successive RR interval dif-
ferences (HRVRMSSD), and the percentage of successive RR
intervals that differ by ≥ 50 ms (HRVpNN50), were calculated
using NeuroKit library for both sleep and wake phase (denoted,
e.g., as HRVwake

LF ).
3) Self-report: From the SVF items we computed the

subscales SVFPos, which is a measure for positive coping
strategies to reduce stress, like distraction or stressor deval-
uation, and SVFNeg, which is associated with strategies that
enhance stress, like escape or social distancing. Both SVF
subscores range from 6 to 30 with higher scores indicating
stronger expression of the respective coping strategy.

All processing steps were performed using BioPsyKit, an
open-source Python library for the analysis of biopsychologi-
cal data [18].

C. Statistical Analysis

To find the best combination of explanatory or causal vari-
ables, we performed a stepwise backward multiple regression
(SBMLR) on our dataset. This regression builds a prediction
model in which the prediction variables are selected using an
automatic process. In the beginning, all HR(V) features were
z-normalized and then entered into the backward elimination.
Step by step, the least significant regressor is removed from the
model until all variables have a p-value below the significance
level α = 0.05. We used different HR and HRV features
as regressors and predicted the dependent variables of the
SVF questionnaire and the cortisol and sAA features. We
use the following notation to indicate statistical significance:
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.



TABLE II
BACKWARD STEPWISE REGRESSION RESULTS BASED ON HR(V)

FEATURES. REGRESSION MODELS WITH MORE THAN ONE PREDICTOR ARE
SHOWN TOGETHER IN ONE TABLE CELL.

Independent

variable

Dependent

variable
β p r2

σ(HRwake) AUCG(sAA) -405.915 0.034* 0.110

HRVwake
LF AUCG(sAA)

-1210.215 0.016* 0.113

HRVwake
VLF 1174.014 0.016* 0.113

HRVwake
LF AUCI(sAA)

1383.476 0.025* 0.159

HRVwake
VHF -1464.262 0.018* 0.159

HRVwake
LF aS0S2(sAA)

0.818 0.026* 0.165

HRVwake
VHF -0.902 0.015* 0.165

µ(HRwake) AUCG(cort) 75.708 0.038* 0.103

µ(HRsleep) AUCG(cort) 84.618 0.022* 0.128

HRVsleep
HF AUCG(cort)

93.040 0.040* 0.152

HRVsleep
RMSSD -107.959 0.018* 0.152

HRVsleep
LF AUCI(cort) -90.211 0.017* 0.137

D. Machine Learning-based Regression Models

To predict subjective stress coping capabilities from HR(V)
data, we trained three different machine learning-based re-
gression models on the feature set: Support Vector Regres-
sion (SVR), Random Forest (RF), and AdaBoost (AB). We
evaluated the different regression models using an outer five-
fold cross-validation (CV). Within each fold of the cross-
validation, we optimized hyperparameters using an inner five-
fold CV with the coefficient of determination r2 as the target
metric. A grid search was performed for SVR and AB, and
randomized search for RF. All parameters and value ranges
for optimization are presented in Table I.

For both SVR and AB, we normalized features using z-score
normalization. For each regressor and each outer CV fold, we
selected the hyperparameter combination yielding the highest
r2 value. We then retrained the model on the entire training
data of the respective fold before evaluating it on the test data
to compute the metrics r2 and mean absolute error (MAE). All
classifiers were implemented using scikit-learn [19].

III. RESULTS

A. Statistical Analysis

Overall, the regression analysis based on the normalized HR
and HRV data shows a relationship between the HR(V) and
both psychological variables and biomarkers.

SBMLR analyses show a significant relationship between
µ(HRsleep) and SVFNeg (β = 1.403, p = 0.006, r2 = 0.198),
as well as between µ(HRwake) and SVFNeg (β = 1.626, p =
0.001, r2 = 0.267). In addition, µ(HRwake) significantly pre-
dicted SVFPos, (β = −1.002, p = 0.005, r2 = 0.236). These
relationships show that higher HR during sleep is related to
higher negative coping strategies and higher HR during the
first hour after awakening is associated with higher negative
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Fig. 1. Mean absolute error of SVFPos and SVFNeg score prediction with RF,
SVR and AB, averaged over all folds of the CV.

and lower positive stress coping strategies. Furthermore, re-
gression analysis revealed significant relationships between
HR(V) parameters and biomarkers (Table II). While HR(V)
parameters during sleep significantly predicted the cortisol
reaction in the following morning, parameters during the first
hour after awakening predicted the amylase reaction.

B. Machine Learning Approach

Figure 1 shows the mean absolute error for all machine-
learning based regression models, averaged over all folds of
the CV. All three models reached similar MAE values for
predicting positive and negative stress coping strategies. The
lowest error was reached by AB with a MAE of 1.51 ± 0.73 for
SVFPos and 2.79 ± 1.53 for SVFNeg. The range of the scores
in the examined population was 11.10–22.70 for SVFPos and
10.30–24.80 for SVFNeg. For SVR and RF we additionally
examined the most important features selected by the re-
gression model. SVFPos was mainly predicted by µ(HRsleep)
and σ(HRsleep) as well as µ(HRwake) for both SVR and RF.
µ(HRsleep) and µ(HRwake) were the most important features
when predicting SVFNeg with SVR, whereas the prediction
with RF was dominated by HRVRMSSD and HRVpNN50 besides
µ(HRsleep), µ(HRwake) and σ(HRsleep).

IV. DISCUSSION

This study aimed to investigate the potential prediction of
stress coping strategies from physiological data, especially
from HR and HRV as two electrophysiological markers de-
scribing the activity of the SNS. Furthermore, we examined
the relation between HR(V) and the CAR as part of the HPA
axis. As shown in the results, we were able to establish a
link between HR and the magnitude of the CAR. In line
with Stalder et al., we can show that individuals with a
higher CAR exhibit a higher HR in the post-awakening period.
Additionally, our study can even show this relation for HR



during sleep. Similar to the findings of Stalder et al., LF-
HRV is inversely related to the magnitude of the CAR [5].
This indicates that there is a link between SNS activity and
activation of the HPA axis in the morning. Contrary to cortisol,
which mainly correlates with HR and HRV during sleep, sAA
shows a significant relationship with HR and HRV in the
morning during the wake phase.

Our results show that our main goal, the prediction of coping
strategies with HR(V) parameters, is possible. Positive coping
strategies can be predicted by assessing µ(HRwake). Individuals
with a higher HR in the morning cope less with stress in a
positive manner. This goes in line with the findings of Fontana
et al., who report that lower baseline HR levels are associated
with positive coping strategies [10]. Our results add up to the
literature by proving this link in a domestic setting with longer
periods of HR monitoring. Negative coping strategies were
predicted by the mean HR in both the sleep and wake phases.
Individuals with higher HR exhibit more negative behavior
in response to stress. This is contrary to the findings of
Ramaekers et al., who reported lower HR in association with
negative emotions and anger [11]. The discrepancy between
these results could be explained by different study designs, as
Ramaekers et al. recorded HR for 24 hours and also assessed
negative coping differently.

Using machine learning-based regression algorithms, we
were also able to reliably predict SVFPos and SVFNeg. All
three algorithms performed equally well which emphasizes
the stability of the results. Negative coping strategies could
be predicted with a relative error of 19.2 % compared to the
range in the examined population. Predicting positive coping
strategies performed better with a relative error of 13.6 %. Re-
garding the most important features for regression, µ(HRsleep),
µ(HRwake), and σ(HRsleep) had the biggest impact on the
prediction of SVFPos. In comparison to SBMLR, machine
learning models involved more variables for predicting positive
coping strategies, which hints at their complexity. For negative
coping strategies, however, SVR utilized the same variables,
µ(HRsleep) and µ(HRwake), as SBMLR. Compared to SBMLR,
the prediction with RF involved more variables, including the
HRV features RMSSD and pNN50. Overall, the results from
machine learning regression models support the findings from
SBMLR and extend the relationship between SNS activity and
stress coping as a personality trait.

Due to the limited amount of study participants, future work
needs to include more subjects from a more heterogeneous
group and should control for the overall level of chronic stress,
to generalize these preliminary findings.

V. CONCLUSION AND OUTLOOK

Our findings showed that positive and negative stress coping
capabilities can be predicted with HR and HRV parameters
recorded during the night and the first hour after awakening.
Both linear regression and machine learning regressors can
forecast the expression of different coping strategies. Machine
learning models could establish more complex relationships,
but overall it was found that the manifestation of positive

stress coping correlates with lower SNS activity, especially
lower HR. This hints at a strong influence of stress coping on
stress systems during sleep. With this insight, the importance
of positive stress coping strategies to foster better sleep quality
and cardiovascular health becomes clear once more.
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