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Abstract—The monitoring of patients within a natural, home
environment is important in order to close knowledge gaps
in the treatment and care of neurodegenerative diseases, such
as quantifying the daily fluctuation of Parkinson’s patients’
symptoms. The combination of machine learning algorithms
and wearable sensors for gait analysis is becoming capable of
achieving this. However, these algorithms require large, labelled,
realistic datasets for training. Most systems used as a ground
truth for labelling are restricted to the laboratory environment,
as well as being large and expensive. We propose a study
design for a realistic activity monitoring dataset, collected with
inertial measurement units, pressure insoles and cameras. It
is not restricted by a fixed location or capture volume and
still enables the labelling of gait phases or, where non-gait
movement such as jumping occur: on-the-ground, off-the-ground
phases. Additionally, this paper proposes a smart annotation
tool which reduces annotation cost by more than 80%. This
smart annotation is based on edge detection within the pressure
sensor signal. The tool also enables annotators to perform assisted
correction of these labels in a post-processing step. This system
enables the collection and labelling of large, fairly realistic
datasets where 93% of the automatically generated labels are
correct and only an additional 10% need to be inserted manually.
Our tool and protocol, as a whole, will be useful for efficiently
collecting the large datasets needed for training and validation
of algorithms capable of cyclic human motion analysis in natural
environments.

I. INTRODUCTION

Gait analysis and activity recognition in a home environ-
ment is made possible with the use of wearable sensors as
they are small and unobtrusive [1], [2]. Many popular machine
learning methods, such as deep learning, for activity recog-
nition and gait analysis based on wearable sensors require
large, annotated datasets for training and validation [3]. The
annotation cost for producing such large datasets is high if
gait phases and cycle segmentation is important, such as in
the case of home monitoring of patients.

One method for producing labels for such a dataset is to
use an alternative system as ground truth. Prominent examples
are motion capture systems or pressurized carpets [4]. Both
systems suffer from the limitations of a restricted capture
volume, high cost, being immobile and laboratory based.
These restrictions are problematic when home based solutions
are required.

A less restrictive solution is using cameras and manual
labelling, however it is time consuming and often inaccurate
for gait analysis purposes. Alternatively, one can combine
multiple sensors for labelling and providing an algorithm
based suggestion for labels which are then manually checked
and corrected, where necessary. This is often termed smart
annotation or assisted labelling [5], [6]. One advantage of
assisted labelling is that the annotators need not be sensor
or algorithm experts as the initial labels are suggested and
the labeller merely confirms if the label is correct and if
not, adjusts it. This adjustment is also often suggested. The
labellers can also be assisted with camera information and user
information, as well as different visualisations of the sensor
data [7]. This can even be crowd sourced or analysed online
by domain experts [8]. This can even halve the annotation time
and increase the accuracy of the subsequent labels, as shown
in the smart environment context by Szewcyzk et al. [7].

Algorithms such as dynamic time warping (DTW), as well
as support vector machines, are also, often used for assisted la-
belling [5], [8]. Within the industry based activity recognition
field, cameras and inertial measurement units (IMUs) were
combined to produce smart annotation tools [5], [9]. Diete et
al. [5] used the initial labels from the annotator to generate
a template for DTW and allowed the annotator to decide at
what point to automate the remainder of the labelling based
on the generated template. Whereas Barz et al. [9] focussed
on integrating many commonly used commercial sensors into
their tool, such as Myo [10] for electromyography.

Even with single sensors, smart annotation can suggest
labels which the annotator adjusts as needed, so reducing
annotation time. This was demonstrated by Orazio et al.
[11] with their video based soccer annotation tool where the
labeller was shown the labels generated by a computer vision
based player identification algorithm. Incorrectly segmented
or identified players were adjusted and the annotation tool
was evaluated based on the time required to label identical
datasets [11].

The best solution would be to move away from the need for
fully labelled datasets with the use of semi-supervised learning
algorithms. However, large, labelled datasets are still needed to
validate these algorithms. While there are many such datasets
for activity recognition where the labels are given for whole



activities, few exist for gait or human motion cycle analysis
which are needed to validate these semi-supervised algorithms.
Some datasets give gait phase labels for a limited number of
patients, however, often only within a limited capture volume
due to the use of motion capture as the ground truth [12].
One very large dataset exists which was manually labelled on
a gait cycle level, using a single camera, for waist mounted
IMUs [13]. Although it is large with over 700 participants,
it is limited to under 20 steps per person. To the best of
the authors’ knowledge, none exists for gait analysis within a
natural, unrestricted environment (e.g. not treadmill based or
restricted to the capture volume of a motion capture system).

This paper aims to provide a protocol and pipeline to
close this gap. We provide an initial dataset with IMUs at
popular locations on the body, cameras and pressure insoles.
The activities are goal orientated and as natural as possible,
with a focus on cyclic activities such as gait and jumping.
We also present an edge detection method to segment on-the-
ground, off-the-ground phases using insole pressure data and
compare this to a threshold based method and a commercial
sensor. Finally, we combine these two contributions in a smart
annotation tool to assist the labelling of a multi-sensor dataset
to label on-the-ground, off-the-ground phases of activity data.
We describe the above methods and annotation tool and then
compare the methods using a manually corrected set of labels
as the ground truth.

II. METHODS
A. Dataset

We propose a dataset design focusing on cyclic activities
measured using IMUs, pressure sensor based insoles and
video. The pressure data is used to detect on-the-ground, off-
the-ground phases and the camera to detect overall activity
labels. The data prepared and used to evaluate the smart
annotation tool proposed in this paper was collected from
20 healthy participants with the following characteristics: 5
females and 15 males, with an average age of 28 4 7 years,
an average height of 175 £+ 6 cm and weight of 74 + 9 kg.
The shoe sizes were limited to the range of 38 to 44 due to
the available insole sizes.

Each participant wore IMUs, the same Bosch development
platform as used in [14], mounted on the lateral side of
each shoe, one on each wrist and, where possible, one in a
trouser pocket as shown in Figure 1. Acceleration (£ 8 g)
and angular velocity (& 2000 dps) were recorded with a
frequency of 200 Hz. The sensors were synchronised by a
simultaneous, Bluetooth based, clock reset and start command.
Each participant wore Moticon pressure sensor insoles, which
have previously been compared to GaitRite under constrained
conditions [15]. In this paper we further use the insoles
in conditions in which other validation systems would be
impractical. For this dataset, the Moticon Science Software
version 01.10.00 was used [16]. Data was recorded with 5
pressure sensors and a 3-axis accelerometer at 100 Hz with
the recommended automatic zeroing activated. The dataset is
available at www.activitynet.org.

Fig. 1. Sensor locations. A. Photograph of IMU sensor system in 3D printed
case. B. Picture showing sensor attachment to shoe, using industrial velcro
and Moticon insole, which was used instead of the original sports shoe insole
C. Pressure sensor location and approximate size and shape within the insole.
Also showing axes location for the insole accelerometer. D. IMU sensor
locations on the body with corresponding axes.

The participants were asked to perform a series of self-
paced and task driven activities such as: “Please run as if
you were late for the bus” or “Please jump twenty times”. If
the activity began incorrectly, it was simply repeated; if the
number of iterations was roughly correct, the task was taken
as complete. The protocol consisted of the following activities
in a randomised order per participant:

« gait based activities including short bouts (writing on 5
posters, spaced 2 m apart), straight walking, jogging and
running (2 times 20 m, including a 180 degrees turn),
non-straight walking (zigzagging between three tables),
standing (while sorting cards between 3 tables) and sitting
(three games at different three desks spaced 3 m apart).

« continuous transitions between walking, running and jog-
ging (6 transition possibilities, order randomised).

e cyclic motion activities: jumping, jumping jacks, skip-
ping, stepping, hopping, side steps, jumping over a line,
zigzagging between 5 cones spaced 2 m apart and high
kick running.

The data was recorded as three continuous recordings, includ-
ing mistakes. Between each activity there were varied amounts
of walking to reach each location. The first and last sections
were performed indoors between a classroom and the adjacent
hallway, while the middle section was performed outdoors
and therefore included stair climbing to and from the second
floor. All sensors were reset and restarted between sections.
The dataset consisted of about 30 minutes of data per person,
totalling more than 1 000 cycles per person per foot.
Multiple cameras were used to minimise occlusion: at
least one static camera per room and one hand-held camera
focused on the participant’s feet. As the cameras were used
to label activity data and verify other labels in combination



with the other available sensors, small sections of occlusion
could be tolerated. The video recordings were synchronised
to the Moticon insoles using a QR code displayed within
the Moticon software at the start and end of each recording
section. Moticon insoles were synchronised to the IMU system
using cross correlation of the y-axis accelerometer data. We
assume here that the acceleration of the sensor within the
insole and that of the IMU attached to the lateral side of the
same shoe are similar enough that cross correlation allows
sufficiently accurate synchronisation. As a final check, the
participants performed 3 jumps at the start and end of each
section; these were used to correct video synchronisation, if
needed.

B. Algorithms for Annotation of Pressure Data

The main aim of the dataset was to provide gait data in a
relatively natural setting. The gait cycles can be detected from
the pressure insoles and used to label the rest of the data,
assuming the systems are synchronised. While the Moticon
system did provide pressure information, it did not have a
validated step detection algorithm for 100 Hz data at the time
of the experiment. Furthermore, commercial sensor systems
often do not have open source algorithms and do not necessar-
ily have publicly available validation for each software update.
Therefore, we chose to export the raw data from the insoles
and perform the step detection within the annotation tool. A
simple threshold method was insufficient due to a baseline
drift with time over the 30-minute data collection, even when
using the recommended automatic zeroing within the Moticon
Software.

In this paper, we refer to cycles being divided into on-the-
ground, off-the-ground phases due to the data including other
cyclic activities such as jumping as well as gait. For gait this
simply refers to the stance phase and swing phase respectively.
Examples of the raw data with phases labeled are given in
Figure 2. Using the raw pressure data from the insoles, we
compared the following methods to detect on-the-ground, off-
the-ground phases of the motion data:

1) EdgeDetl: Detection of rising and falling edges of the
individual pressure sensors.

2) EdgeDet2: Detection of rising and falling edges of the
all 5 pressure sensors’ profile (the maximum of a sensor
per unit time per foot).

3) Threshold: De-drift using envelope subtraction, followed
by detection of threshold crossings.

4) Moticon: Moticon algorithm based on 100 Hz data.

The main assumption here is that the start of on-the-ground

phases is where the pressure on the insole rises significantly,
above a baseline, causing a rising edge; and vice versa for
the falling edges and the end of the pressure phase per cycle.
For evaluation purposes, an expert examined the results of
the first method, within the smart annotation tool, and man-
ually adjusted any incorrect labels based on the synchronised
visualisation of all the sensor data. These methods were then
assessed by calculating what percentage of the generated labels
required manual adjustment.

Edge Detection: The aim of this method is to detect the
rising and falling edges of the insole pressure data, which
represent the ground contact phases of the feet. The raw pres-
sure data was filtered using a low pass third order Butterworth
filter with a cut off frequency of 20 Hz. This was chosen to
smooth the data by removing high frequency noise, as human
motions fall into the lower frequency ranges. All pressure
values were normalised because only the relative pressure is
important when detecting the rising and falling edges. The
derivative of the filtered pressure data was calculated using
the finite difference equation with 5 sample points [17]. The
positive peaks and the negative peaks of this derivative were
detected using Matlab’s findpeaks function, with the following
restrictions: minimum prominence of 0.1, minimum height of
0.1 and minimum peak distance of 100 ms. These parameters
were found empirically, and we believe they are dependant on
the quality of the pressure data, i.e. the more prominent and
sharp the edges are, the less the restrictions are influential and
empirically dependant. The prominence of the peaks depends
on noise and data quality, therefore this peak picking algorithm
was also chosen empirically.

Individual sensor failure, noise and other artefacts still gave
rise to falsely detected falling and rising edges detected for
each pressure sensor. A rule based approach was applied, in
the order given below, to filter out the unimportant edges. They
are illustrated in Figure 3. If two consecutive edges are found
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Fig. 2. Example data of stepping exercise. Top: Relative pressure data for each
of the 5 pressure sensors (P1 in blue, P2 in red, P3 in yellow, P4 in purple, P5
in green). MiddleUpper: Relative pressure data as a profile of all 5 pressure
sensors. MiddleLower: Angular velocity in the Z-axis Bottom: Acceleration
in the Y-axis. Vertical red solid lines show the rising edge of the pressure
data, i.e. start of the on-the-ground phase. Vertical dashed black lines show
the falling edge of the pressure data, i.e. end of the on-the-ground phase.
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Fig. 3. Rules for post processing of the edge detection algorithm. Dashed
arrows represent removed edges, solid arrows represent kept edges. The black
line represents the sum of pressures.

within 2 seconds of each other then:

1) Remove the latest rising edge if it is within 50 ms of
it neighbour and remove the earliest falling edge if it is
within 50 ms of its neighbour.

2) When two rising edges occur consecutively, remove
the second rising edge if the maximum of the sum
of pressure between these edges is above the upper
threshold, Thign (Figure 3 A).

3) When two rising edges occur consecutively, remove the
first rising edge if the minimum of the sum of pressure
values between these edges is below the lower threshold,
Tiow (Figure 3 B).

4) When two falling edges occur consecutively, remove
the second falling edge if the minimum of the sum of
pressure values between these edges is below the lower
threshold, Tjoy (Figure 3 C).

5) When two falling edges occur consecutively, remove the
first falling edge if the maximum of the sum of pressure
values between these edges is above the upper threshold,
Thign (Figure 3 D).

Once this is performed then loop through the edges again,

comparing consecutive edges and remove:

1) Opposing edge pairs if the maximum of the sum of
pressure values between rising edge and the falling edge
is below the upper threshold, Th;gn (Figure 3 E).

2) Opposing edge pairs if minimum of the sum of pressure
values between falling edge and rising edge is above the
lower threshold, Tio, (Figure 3 F).

3) The latest of two consecutive falling edges.

4) The earliest of two consecutive rising edges.

The thresholds used were found empirically, Ty, was set
to 0.3 and Tj,y to 0.1. This edge detection method was applied
to all 5 individual pressure sensors (EdgeDetl) and to the
combined profile of the pressure data (EdgeDet2).

De-drifting and Threshold: Due to the drift of the baseline
of the pressure data, an envelope of the data was found by
identifying the negative peaks of the profile of the pressure
data per foot. These minimums were found using Matlab’s
findpeaks algorithm with the following restrictions: minimum
peak distance of 250 ms, peak height of 0.04 and a minimum
prominence of 5. This envelope was then set as the zero
line and a threshold was chosen. The positive crossings and
negative crossings of this threshold were then taken as the
segmentation of the on-the-ground, off-the-ground phases.

C. Smart Annotation Tool

The aim of the proposed pipeline is to automate, as far as
practically possible, the labelling process for a dataset focusing
on cyclic human motions captured by wearable sensors. We
fuse information from all three sensor types in order to
provide assisted labelling. To achieve this, we have developed
a MATLAB based tool, the interface of which is shown in
Figure 4. The pipeline used within the tool can be split in the
following sections:

1) Synchronise video to insole data.

2) Import protocol (participant specific task list).

3) Synchronise shoe-mounted IMU data to insole data via
cross correlation of accelerometer signals.

4) Extract on-the-ground and off-the-ground phases from
insole pressure data using edge detection technique.

5) Manually adjust incorrect labels using suggested possi-
ble corrections based on local minima and maxima.

6) Automatically combine phases and activity labels by
including recognition of standing.

It is described as a smart annotation tool because it initially
suggests all the activity and phase labels to the annotator
who then corrects any erroneous labels with the help of
automated suggestions. The annotator can also force a label if
the suggestions are still incorrect. Each of the above stages in
the annotation process is described in the following section.

Synchronise Video: All raw data (IMUs, pressure and video)
were imported into the tool. The synchronisation between
the pressure data and videos are extracted from the Moticon
software and imported. This synchronisation was performed
by recording the QR code given in the Moticon software for
5 seconds at the beginning and end of each recording. Any
needed adjustments to the synchronisation between video and
pressure are highlighted by inspection of the synchronisation
jumps performed by the participant at the beginning and end
of each section. These were also used to identify possible mis-
calibrations or failure to synchronise.
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Fig. 4. Interface of smart annotation tool which allows the annotator to
display, in a synchronised manner, the video frame plus all sensor signals
(e.g. pressure, gyroscope and accelerometer). The annotator can also adjust
synchronisation and labels. Shown here is a subject performing jumping jacks
with toe pressure sensors (P1 and P2, green) and gyroscope (pink) from the
left shoe. The vertical lines correspond to the start (black) and end (red) of
on-the-ground, off-the-ground phases.



Import Protocol: The study protocol was imported (ran-
domised activity order per participant) and an initial sugges-
tion for activity labels was created by uniformly dividing the
experiment time by the number of activities, including the
insertion of transition periods between activities. These labels
were then manually corrected using the video data.

Synchronise IMU and Insoles: IMU data is synchronised
to the pressure sensor data by piecewise cross-correlation of
the accelerometer signal in the y-axis. The Moticon based
accelerometer data is resampled using a range of frequency
ratios between 1.4 and 3.3 with a resolution of 0.001, where
the expected ratio is 2.0 due to Moticon having a sampling
frequency of 100 Hz and the IMU of 200 Hz. The resampling
frequency which achieves the highest cross correlation value
is then selected. Using this resampling frequency, the time
difference between signals is then calculated. These are then
used to display the synchronised pressure and IMU data. IMU
to IMU synchronisation is performed based on initial clock
reset and the time of the start command sent using a single
packet Bluetooth command. These are again checked for any
obvious errors by inspecting the synchronisation jumps.

Extract Cycle Phases: The pressure data was found, em-
pirically, to have a baseline drift which increased over time,
therefore a simple threshold method for gait phase segmen-
tation was insufficient for accurate labelling. Two alternative
methods were investigated and implemented to segment the
on-the-ground, off-the-ground cycle phases: edge detection
and baseline subtraction plus threshold. These were described
in detail in section II-B.

Manual Adjustment: The labels generated by the chosen
method were then displayed and, based on the visualisation
of the combination of all sensor data, erroneous on-the-
ground, off-the-ground phase labels were found and adjusted.
The labeller was then able to perform the following manual
corrections:

o Delete labels.

e Add labels which snapped to the local maximum or

minimum of the derivatives of the pressure data, within
a 250 ms window.
o Add labels which snapped to the local maximum or
minimum of the derivative of the pressure data, within
a 50 ms window.
« Shift the labels earlier or later within a 250 ms window
of the previous label.
These manual adjustments assumed that the edges should be
detected within the pressure data.

Combine Phase and Activity Labels: On-the-ground, off-
the-ground phases plus the energy of the acceleration signal
were used to detect standing or no movement phases and
combine these with the activity labels. Any erroneous data
could also be removed manually. The energy threshold was
adjusted per person.

III. RESULTS & DISCUSSION

Each algorithm for assisted annotation was compared to
the manually corrected version of the edge detection method

applied to the 5 pressure sensors’ data (EdgeDetl). A label
was considered to be a false negative if there was no generated
label within 50 ms of the manual label. It was considered to
be a false positive if there was a generated label but no manual
label within 50 ms. It was considered to be a true positive if
the generated and manual labels were within 50 ms of each
other. These were calculated as an average of the percentage
of the total number cycles found by the algorithm per person.
The combination of the percentage of false positives and false
negatives can be seen as the effort required in labelling, i.e. the
percentage of cycles which still needed manual input. The F1-
score for each algorithm versus the manually adjusted labels
was also calculated.

For the edge detection method using all 5 pressure sensors
separately (EdgeDetl), 17.2% of the strides needed to be
manually changed, as shown in Table I. This is much less
effort than labelling 100% of the dataset. The percentage of
true positives, labels correctly generated by the algorithm and
so needing no manual adjustment, was 93.0%. The remaining
7% were incorrect, false positives. After this an additional
10%, relative to the total number of initially generated labels,
needed to be inserted (false negatives). The manual labels refer
to the labels checked and adjusted by an expert using the smart
annotation tool. This is also reflected in the F1-score of 91.6%.

The second method (EdgeDet2) performed worse, requiring
roughly 33 % to be manually corrected, although only 16.9%
of the found labels were incorrect.

The final proposed method, involving zeroing and thresh-
olding (Threshold), performed similarly, with the number of
edits required reaching 29%. It achieved a false negative rate
of 7% and a false positive rate of 21% meaning that although
it detected too many labels, it only missed 7%.

These figures are influenced by the fact that the first two
methods are similar to each other and find the middle of the
slope of an edge, whereas the threshold method will always
find the lower end of an edge. Therefore, the results for the
threshold method could be considered as conservative, and are
influenced by the slew rate of the change in pressure between
cycle phases. Furthermore, all three proposed methods used
the same peak detection algorithm. One should consider this
when applying these to data collected by different sensors or
conditions, where another peak picking algorithms could be
advantageous.

Finally, the cycles given by the Moticon software were

TABLE I
COMPARISON OF ALL METHODS, SHOWN AS AVERAGE PERCENTAGE OF
GENERATED LABELS. AVERAGE TOTAL NUMBER OF LABELS WAS: 4029,
4106, 4806, 3467 RESPECTIVELY.

Value (%) EdgeDet1 EdgeDet2 || Threshold || Moticon
Total changed 17.2 33.1 28.5 73.8
True positives 93.0 83.8 78.7 75.6
False positives 7.0 16.2 21.3 24.2
False negatives 10.1 16.9 7.2 49.6

F1-score 91.6 83.5 84.7 67.2




correct, within a 50 ms window, 75.6% of the time; although
the software warned that they were not tested for 100 Hz data.
The Moticon labels showed a 49.6% false negative rate. When
the required accuracy of the labels was relaxed to 100 ms, then
a true positive rate of 87.6% was achieved with only 12.2%
which needed to be deleted (false positives). With this higher
error tolerance, the results were reasonable, however, if all
cycles should be detected then still 37.6% more labels would
need to be added.

These results could be improved if the thresholds within
the algorithms were adjusted per person or per activity, based
on within which activities the cycles were best detected. The
sample size used for these results is relatively small, and
so difficult to draw conclusions across different populations,
however it is sufficient to assess the feasibility of the smart
annotation tool and experiment design.

While all the methods considerably reduced the labelling ef-
fort with an error tolerance of up to 50 ms, manually labelling
10% of the data is still a large effort. However, the proposed
protocol and smart annotation tool are intended to assist the
generation and labelling of validation datasets which include
realistic gait and cycle data. Such a benchmark dataset would
enable testing and further development of algorithms which are
robust within realistic conditions. The use of cameras, IMUs
and pressure sensors as well as a set protocol are needed for
dataset which are to be used to validate algorithms, however
not all sensors would be needed for deployable solutions. Such
solutions could exploit the existence of several sensors, or test
the limits of minimal sensors.

In future work, one could use this smart annotation tool and
the current dataset to include sub phases of steps or cycles.
The main challenge with this would be the need to define these
sub phases, especially for non gait-based activities. The edges
for gait sub phases are not as sharp as the on-the-ground, off-
the-ground phases and so there is a need to define at what
point of a rise or fall constitute the beginning of the phase.

IV. CONCLUSION

The proposed pipeline provides a method for data collection
which allows semi-automated labelling and an efficient method
of collecting daily activity data labelled on a cycle level.
Although it was still in some ways a controlled setup, the
same principles could be applied to more natural or specific
applications. An edge detection method was proposed to detect
on-the-ground, off-the-ground stride phases with only 17%
manual labelling or correction required. These two contri-
butions were combined in a smart annotation tool which is
being used as the basis of an ongoing large dataset collection.
This means that labelling time was reduced by 83%, versus
complete manual labelling, without the assistance of the smart
annotation tool.

We aim to use this methodology to label large volumes of
IMU data to produce a benchmark dataset which will be useful
for validation of gait events occurring within natural settings.
We believe the dataset plus annotation tool will be useful for
validating IMU based home monitoring algorithms or those

designed for ’in the wild’ use. Furthermore, we plan to use
it to train and validate semi-supervised, or even unsupervised
algorithms for segmentation and classification of cyclic human
motion using wearable sensors.
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