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Abstract— Gait analysis provides a quantitative method to
assess disease progression or intervention effect on gait disor-
ders. While mobile gait analysis enables continuous monitoring
in free living conditions, state of the art gait analysis for diseases
such as hereditary spastic paraplegia (HSP) is currently limited
to motion capture systems which are large and expensive. The
challenge with HSP is its heterogeneous nature and rarity,
leading to a wide range of ages, severity and gait patterns as well
as small patient numbers. We propose a sensor-based mobile
solution based on a personalised hierarchical hidden Markov
Model (hHMM) to extract spatio-temporal gait parameters.
This personalised hHMM achieves a mean absolute error
of 0.04 s ± 0.03 s for stride time estimation with respect to a
GAITRite® reference system. We use the successful extraction
of initial ground contact to explore the limits of the double
integration method for such heterogeneous diseases. While our
personalised model compensates for the heterogeneity of the
disease, it would require a new model per patient. We observed
that the general model was sufficient for some of the less
severely affected patients.

I. INTRODUCTION

Although hereditary spastic paraplegia (HSP) is a rare dis-
ease, it greatly affects the quality of life of those affected [1].
Progression, age of onset and gait alternations vary within
the HSP population [2]. Research into methods to better
understand the disease and to alleviate the symptoms are
ongoing. A qualitative clinical scale, the Spastic Paraplegia
Rating Scale (SPRS), is commonly used to assess disease
severity [3], [4]. However, there is also a case for assessment
using quantitative measures such as gait anaylsis [5], [6].

Most studies use 3-D motion capture systems for gait
analysis which are large, expensive, limited to the laboratory
environment and often require experts to maintain and run
them. A mobile gait analysis system would not only allow
a quantitative, but also a continuous, measure of gait quality
within more natural environments [7]. There are several
solutions successfully used for mobile gait analysis; the
dominant two are shoe mounted IMU based solutions and
insole based solutions [7], [8].

In the context of HSP, 3D gait analysis has been used to
assess the characteristics of small cohorts of patient groups,
such as in children and within relatives [9], [10]. It has also
been employed to assess intervention effects such as that
of certain drugs or physical therapy [11], [12]. The use of
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gait parameters to distinguish between similar gait disorders
can be helpful in understanding the mechanisms involved
as well as for their diagnostic value. These were assessed
in distinguishing between HSP and cerebral palsy [13],
[14], cerebellar ataxia, Parkinson’s disease [5] and healthy
controls [4]. Clustering approaches were used, yielding sets
of important gait parameters; however, Wolf, Rinaldi and
Serrao et al. [4], [5], [13] concluded that the definition of
specific subgroups within each disease were required due to
their heterogeneous natures.

There are a variety of algorithms to choose from for
the segmentation of strides [15], however, hidden Markov
models seem the most promising [16]–[18]. Our previous
work on mobile gait analysis solutions for HSP patients
achieved an accuracy of 0.14 s ± 0.05 s for stride time
estimation, compared to a manually labelled reference based
on video data [16].

This paper aims to build on this result and proposes
two modifications to the training of a hierarchical hidden
Markov model (hHMM). We also validate the results against
a gold standard system, GAITRite®. The proposed training
of the hHMM uses both initial and terminal ground contact
times. Secondly, the effect of a general model, trained on a
population, is compared to that of a personalised one. The
estimated initial contact times are then used to estimate a
zero velocity point and the double integration method used
by [19], [20] is employed to estimate stride length. We
propose a training method, algorithm and set up to allow
mobile gait analysis for HSP patients.

II. DATASET

We collected gait data from 10 subjects fulfilling the
clinical diagnostic criteria for HSP. The characteristics of
the patients are shown in Table I. The SPRS clinical scale
was used to evaluate the severity of the disease [3]. The first
section of this scale concerns gait related characteristics and,
therefore, the sum of the values from Section A of the scale is
also given (SPRS-SectA). All subjects gave written, informed
consent, prior to the data collection. This study was approved
by the local ethics committee Nr. 4208, 21.4.2010, IRB,
Medical Faculty, Friedrich-Alexander-University Erlangen-
Nürnberg, Germany.

Two Shimmer 3 (Shimmer Sensing, Dublin, Ireland) in-
ertial measurement units (IMU) were attached to the lateral
side of each shoe (Fig. 1). Each recorded acceleration (± 6 g)
and rate of change of angle (± 500 dps) at 102.4 Hz. Each
subject performed two 4 x 10 m walks at a self-selected pace.



TABLE I
CHARACTERISTICS OF SUBJECTS

Age 58 years ± 7 years
Gender 6 female, 4 male
Weight 83 kg ± 24 kg
Height 1.72 m ± 0.11 m
SPRS score 19 ± 8
SPRS-SectA score 12 ± 5

The subjects were allowed to use their preferred walking aid.
The GAITRite® pressure sensor carpet (GAITRite® Classic,
CIR Systems, PA, USA), 792 cm, was used as a reference
system with a scan rate of 240 Hz. It was positioned such
that the subjects walked the entire length of the carpet within
each 10 m section of the 4 x 10 m walk. This also ensured
that the patient took some strides before and after the active
area of the carpet per pass. For validation purposes, only
the data collected from the sensors during the time in which
the GAITRite® system was also active were used for this
evaluation. Thus, we collected 8 passes per patient, with a
total of 1158 strides used for evaluation.

The entire set up was also recorded by two cameras, one
connected to the GAITRite® system and one independent
camera capturing the entire room. The GAITRite® system
provides a synchronisation signal which we used to synchro-
nise the data from the sensors to the carpet, on a per stride
basis.

The reference data was extracted from the GAITRite® 4.7.
Software with, where possible, automatically detected walk-
ing aids. Manual labelling was performed, when needed,
according to the GAITRite® recommendations. These cases
were for patients with foot drag, or where the path of the
walking aid coincided with the foot path on the carpet.

In total four passes of the GAITRite® system were ex-
cluded due to technical failure of either sensor or carpet.
Only full strides, initial contact to initial contact, were
considered for evaluation. The extracted labels were initial
and terminal contact per foot allowing the calculation of
temporal gait parameters. Stride length was also extracted.

III. METHODS

A. Segmentation Algorithm

The hierarchical hidden Markov model was used for stride
segmentation due to its success in similar applications and
its intrinsic use of the hierarchical nature of gait [15], [16].
The basic model parameters and architecture are similar to
that in [16], the main differences are in the training scheme.
The model parameters and features which achieved the best
results from [16] were used, namely, a window size for
feature extraction of 0.7 s where the features were extracted
from the sagittal plane gyroscope axis (GZ) and the frontal
plane accelerometer axis (AX). The mean, variance, first
three coefficients of the second order polynomial fit and the
raw data itself were used as features, after normalisation. The
features were normalised per pass, per subject and per foot.

The features were modelled by Gaussian mixture models
(GMM), initialised with a diagonal covariance matrix, where

Fig. 1. Experimental set up showing Shimmer sensor with axes directions
for 3D accelerometer (AX,AY,AZ) and gyroscope (GZ,GY,GZ), left, as well
as GAITRite® carpet with example pressure map, right.

the number of required centres was four. The GMM den-
sities were calculated using estimation maximisation (EM)
within 10 iterations. Viterbi training was used and the stride
boundaries were found using Viterbi decoding. Due to a
similar use of hHMM in time series analysis in speech, an
implementation of hHMM from a speech toolbox was used,
the Java Speech Toolkit (JSTK) [21].

A continuous, left-right HMM was used where one model
represented a stride. Within each stride were two phases:
swing and stance. The boundaries of these phases were
supervised using the labels extracted from the GAITRite®

data. The number of states per phase within the model was
four. These states were trained in an unsupervised manner.

B. Training and Evaluation

1) General Model: One version of the hHMM was trained
on the complete population of HSP patients and required no
further training for a new patient. To test the accuracy of this,
a leave one subject out cross validation was used. This means
that 9 subjects were used for training the model, and the final
subject for testing. This was repeated for all subjects. The
estimated gait parameters were averaged per person.

2) Personalised Model: Due to the wide variety of gait
patterns possible in HSP patients, the other version of the
hHMM was personalised, with a patient specific model. Due
to unevenly affected gait, the model was also foot specific.
Therefore, a model was created per subject, per foot. It was
tested using a cross validation approach where one 10 m pass
was used for testing, per subject, and the remainder to train.
This cross validation was performed such that no pass used
for training the model appeared in the test set.

3) Gait Parameter Calculation and Evaluation: The
hHMM estimated the initial and terminal contact times,
enabling the calculation of temporal gait parameters. From
the initial contact time, the zero velocity phase was estimated
as described in [19]. Subsequently, the double integration
approach was used to estimate the stride length from mid
stance to mid stance using the SensorDataToolbox (Machine
Learning and Data Analytics Lab, FAU).

Each stride detected by the GAITRite® system was
matched to the corresponding stride predicted by the hHMM
by finding the strides with the maximum overlap. In cases
where strides where more strides were predicted than were



Fig. 2. Paired box plots of hHMM estimated versus GAITRite® stride
times, using the general hHMM model, top, and the personalised model,
bottom. Subject numbers in ascending order of SPRS-SectA score.

found in the reference data, the one with maximum overlap
was used. The frequency of this occurrence was calculated.

IV. RESULTS AND DISCUSSION

The stride time per subject was calculated and compared
to the reference GAITRite® values, for both the person-
alised and general model, as illustrated in Figure 2. Subject
numbers are ordered in ascending SPRS-SectA values. The
estimated stride times correspond well with the GAITRite®

values, although the actual range of values vary per sub-
ject. The personalised model has less outliers; this is most
noticeable for Subjects 8 and 10. To quantify these errors,
the mean and standard deviation of the error per stride, per
subject, are shown in Table II, for both the personalised and
general models. Each subject’s total SPRS score and gait
related SPRS score (SPRS-SectA) is also given. In general,
the results are subject specific in that for some subjects the
personalised and general model work equally well, where for
others, mostly corresponding to those with a higher SPRS
score, the personalised model would be a better choice.

The mean errors for stride time for both models are good
compared to that reported in [16], where the mean absolute
error was 0.14 s ± 0.08 s. These two studies are comparable
due to the use of a very similar cohort and sensor set up.
The difference between the [16] model and the general model
presented here is the use of both initial and terminal contact
time to train stance and swing phase models per stride.

The subjects where too many strides were predicted, in the
case of the general model, were subjects 2, 3, 7, 8 and 10
where there were, respectively, 9.8 %, 2.0 %, 1.0 %, 3.6 %
and 15.8 % too many strides detected. The personalised
model predicted too many strides for subjects 2, 4 and 10 by,

Fig. 3. Paired box plots of hHMM estimated versus GAITRite® swing
durations, using the general hHMM model, top, and the personalised model,
bottom. Subject numbers in ascending order of SPRS-SectA score.

respectively, 5.6 %, 1.0 % and 2.1 %. There were no missed
strides. This shows that the personalised model produced
fewer false positives. The effect of these false positives is
seen in the corresponding standard deviations in Table II for
these subjects.

Due to the hHMM detecting both swing and stance phase,
swing duration was also calculated. The swing duration per
subject is shown in Figure 3. Here, one can clearly see the
effect of the personalised model. The swing duration error,
given in Table II, show in detail the worse results for the
general model.

The results for stride length estimation are given in
Table II. While the mean stride length error is reason-
able at 0.13 m for the general model, the standard de-
viation is high with respect to an average stride length
of 0.96 m ± 0.24 m. For subjects 1, 3 and 9, the estimated
stride lengths are acceptable, showing that this solution could
be useful on for particular types of subjects. This error in the
stride length could be due to the variety of ground contact
techniques within HSP patients. The heel, where the sensor is
located, may not remain at zero velocity during the midstance
phase which would violate the zero velocity assumption [20].

V. SUMMARY AND OUTLOOK

In general the personalised model is superior for temporal
gait parameters, due to a lower mean error and fewer false
positive stride detections. While stride length estimation
using double integration works for some subjects, it is not
a general solution for a population where the zero velocity
assumption may be violated due to ground contact technique
and sensor position. This could be mitigated by choosing a
sensor position which ensures a zero velocity phase, such



TABLE II
ERROR OF GENERAL AND PERSONALISED HHMM PER SUBJECT. CORRESPONDING SPRS AND SPRS SECTA VALUES ARE ALSO REPORTED

Subject Mean Error Mean Error Mean Error Mean Error Mean Error Mean Error SPRS SPRS
Number Stride Time Stride Time Stride Length Stride Length Swing Duration Swing Duration SectA

Personalised [s] General [s] Personalised [m] General [m] Personalised [%] General [%]
Subject 1 0.00 ± 0.04 0.01 ± 0.05 -0.05 ± 0.05 -0.05 ± 0.05 0.0 ± 2.2 4.4 ± 2.9 7 5
Subject 2 -0.04 ± 0.17 -0.08 ± 0.21 -0.11 ± 0.30 -0.19 ± 0.41 1.0 ± 5.4 10.9 ± 7.8 8 5
Subject 3 0.00 ± 0.02 -0.02 ± 0.09 -0.03 ± 0.09 -0.08 ± 0.18 0.8 ± 2.1 11.3 ± 2.2 11 6
Subject 4 -0.01 ± 0.09 -0.00 ± 0.02 -0.06 ± 0.15 -0.06 ± 0.11 0.0 ± 2.7 4.2 ± 2.3 19 11
Subject 5 0.00 ± 0.03 0.00 ± 0.03 0.17 ± 0.30 0.18 ± 0.30 0.0 ± 1.6 5.1 ± 3.7 26 13
Subject 6 0.00 ± 0.04 0.00 ± 0.03 0.14 ± 0.21 0.11 ± 0.26 0.7 ± 2.2 1.5 ± 1.7 21 14
Subject 7 0.00 ± 0.06 -0.02 ± 0.14 0.25 ± 0.30 0.24 ± 0.33 0.7 ± 2.1 2.7 ± 3.1 24 15
Subject 8 0.00 ± 0.07 -0.11 ± 0.44 0.09 ± 0.18 0.08 ± 0.38 -0.0 ± 1.9 0.9 ± 10.1 21 16
Subject 9 0.00 ± 0.03 0.00 ± 0.04 0.04 ± 0.06 0.04 ± 0.06 0.6 ± 1.3 1.1 ± 2.2 22 16
Subject 10 -0.06 ± 0.48 -0.20 ± 0.63 1.16 ± 1.05 1.04 ± 0.96 2.4 ± 4.1 -0.3 ± 4.5 31 18

Mean -0.01 ± 0.02 -0.04 ± 0.07 0.16 ± 0.37 0.13 ± 0.34 0.6 ± 0.9 4.2 ± 4.0 19 12
Mean Absolute 0.04 ± 0.03 0.07 ± 0.08 0.25 ± 0.34 0.26 ± 0.31 1.9 ± 0.9 5.5 ± 3.7 19 12

as near the ball of the foot. The clear advantage of a
personalised approach for such a rare disease is that one does
not need a large population of subjects to train the model.

As an outlook, we plan to use semi-supervised learning
approaches and a clearly specified task, such as an exact
number of strides to be taken, to initialise the personalised
model. Furthermore, subgroups could be found according to
the SPRS-SectA scores and stride and a model trained per
subgroup.

This paper provides a mobile gait analysis solution which
achieves a stride time error of 0.04 s and swing duration
error of 1.9 % for HSP patients, using the personalised
model. These gait parameters also vary with the gait related
section of the SPRS scale, showing that such a mobile
gait analysis system could be a useful, quantitative clinical
tool. Furthermore, we have shown the limitations of double
integration based approaches to stride length estimation for
such a population.
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