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A B S T R A C T

Background: Despite the general success of total knee arthroplasty (TKA) regarding patient-reported outcome
measures, studies investigating gait function have shown diverse functional outcomes. Mobile sensor-based sys-
tems have recently been employed for accurate clinical gait assessments, as they allow a better integration of
gait analysis into clinical routines as compared to laboratory based systems.
Research question: In this study, we sought to examine whether an accurate assessment of gait function of knee
osteoarthritis patients with respect to surgery outcome evaluation after TKA using a mobile sensor-based gait
analysis system is possible.
Methods: A foot-worn sensor-based system was used to assess spatio-temporal gait parameters of 24 knee os-
teoarthritis patients one day before and one year after TKA, and in comparison to matched control participants.
Patients were clustered into positive and negative responder groups using a heuristic approach regarding im-
provements in gait function. Machine learning was used to predict surgery outcome based on pre-operative gait
parameters.
Results: Gait function differed significantly between controls and patients. Patient-reported outcome measures
improved significantly after surgery, but no significant global gait parameter difference was observed between
pre- and post-operative status. However, the responder groups could be correctly predicted with an accuracy of
up to 89% using pre-operative gait parameters. Patients exhibiting high pre-operative gait function were more
likely to experience a functional decrease after surgery. Important gait parameters for the discrimination were
stride time and stride length.
Significance: The early identification of post-surgical functional outcomes of patients is of great importance to
better inform patients pre-operatively regarding surgery success and to improve post-surgical management.

1. Introduction

Osteoarthritis (OA) is a progressive disease mainly occurring in the
latter half of life and is characterized by the wear, softening and thin-
ning of articular cartilage [1]. Symptomatic knee OA exhibits a preva-
lence of 12% among US adults and symptoms not only include pain,
but also severe functional limitations, including gait dysfunction and a
reduction of other activities of daily living [2]. With 1.6% of all US
adults undergoing knee replacement surgery, total knee arthroplasty

(TKA) is the most common invasive intervention for end-stage knee
OA patients [3]. Surgery outcome is usually assessed by patient-re-
ported outcome measures (PROMs), which include the assessment of
pain, functional measures, and satisfaction based on questionnaires [4].
PROMs, however, only yield a global perspective on TKA outcomes, are
rather subjective and do not fully capture functional limitations [5]. It
has been shown, that performance-based measures such as gait para-
meters obtained from instrumented gait analysis contain complemen
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tary information to traditionally used PROMs and that gait function also
contributes to satisfaction after surgery [4,6].

Gait biomechanics of OA and changes due to TKA have been investi-
gated in numerous studies and reviews found mixed results on whether
gait biomechanics (i.e. kinematic and kinetic parameters) improved af-
ter surgery [7–9]. Furthermore, traditionally used laboratory systems
such as infrared cinematography for biomechanical assessment are sta-
tionary, expensive and require trained personnel, such that they are not
routinely used in clinical assessment. Changes in gait function can also
be assessed using spatio-temporal gait parameters, with the benefit of
allowing the use of various motion capture systems that are able to
extract those parameters. Regarding positive TKA outcomes, improved
spatio-temporal gait parameters (i.e. higher gait speed, cadence, stride
length) have partially been observed after surgery [4,6,10–13].

Sensor-based systems including inertial measurement units have
been increasingly used for more mobile, cost efficient and clinically fea-
sible gait assessments in various diseases [14–16]. For example, they al-
low a fast assessment of gait function changes using spatio-temporal gait
parameters, exhibiting higher sensitivities as compared to PROMs in
knee OA [17]. The discrimination of pathologic and healthy gait using
mobile sensor systems has been demonstrated before [18–22] and also
the effect of TKA has been evaluated [6,12], mostly using pelvis-worn
sensors.

Despite the general success of TKA regarding PROMs, some patients
may experience adverse effects with persistent or worsened functional
limitations [23]. By investigating a diverse post-operative patient group,
Berliner et al. predicted functional gait improvements based on pre-op-
erative PROMs [23]. Patients with high self-reported pre-operative func-
tion were less likely to experience a clinically meaningful functional im-
provement after TKA. In a different study, biomechanical parameters
have been used to predict post-operative abnormal knee joint loading
patterns and severity of post-surgery anterior knee pain [24]. Highly ac-
curate predictions of the response to exercise interventions in patients
with mild to moderate knee OA has previously been performed using
three-dimensional lower limb kinematics or inertial data of gait as well
as PROMs [25,26]. Bolink et al. demonstrated that spatio-temporal gait
parameters provide complementary information for the discrimination
between pre- and post-operative function [6]. But it still remains open
whether those parameters can also be used to predict functional surgery
outcome on an objective basis.

Therefore, the goals of this study were to (a) demonstrate the feasi-
bility of characterizing pre- and post-operative OA gait in comparison
to healthy gait using a mobile foot-worn sensor-based system and to (b)
predict post-operative gait function using pre-operative spatio-temporal
gait parameters. As mobile sensor-based systems have the potential to
assess patients’ gait on a large scale without the impediments of labora-
tory based motion capture setups, they might be more feasible in clini-
cal routine use for intervention assessment and outcome prediction.

2. Methods

2.1. Participants

A total of 24 patients with end-stage unilateral knee OA
(mean ± stdev, 8 males, 16 females; age: 64.0 ± 11.0 years; mass:
90.8 ± 19.4 kg; height: 170.6 ± 10.4 cm; BMI: 31.3 ± 6.8 kg m−2) were
recruited at the University Hospital Erlangen and underwent TKA with
the endoprosthesis “BPK-S Integration” (Brehm, Weisendorf, Germany).
Patients with moderate-to-severe knee OA elected for knee replacement
surgery were included in the study (mean Kellgren-Lawrence grade of
3.4 ± 0.7). Exclusion criteria were bilateral joint dysfunction and other
pathologies potentially interfering with the gait pattern, such as neuro

logical diseases. Gait assessment was performed on average
1.5 ± 0.5 days before and 48.3 ± 11.2 weeks after surgery. Six patients
dropped out after the first assessment. Age and sex matched partici-
pants were identified for gait parameter comparison from a previously
recruited population of healthy participants with no self-reported his-
tory of neuro-muscular diseases and joint deterioration of the lower
limbs (mean ± stdev, 8 males, 16 females; age: 62.3 ± 9.7 years; mass:
70.7 ± 11.6 kg; height: 168.4 ± 6.2 cm; BMI: 24.9 ± 4.1 kg m−2). The
study was approved by the local ethical committee (Ethical approval
Re.-No. 181_12 B, Ethics Committee of the Faculty of Medicine,
Friedrich-Alexander-University Erlangen-Nürnberg, Germany) and writ-
ten informed consent was obtained from all study participants before
participation.

2.2. Instrumentation

Two Shimmer3 sensors (Shimmer, Dublin, Ireland) were laterally at-
tached to each shoe using rigid sensor mounts to ensure the same sen-
sor positions for each participant. Each sensor contained a three-axis
accelerometer (range: ±8 g) and a three-axis gyroscope (range:
±500° s−1) sampling at a rate of 102.4 Hz. The data were transferred
via Bluetooth to a mobile device for storage. We detected single strides
in the continuous inertial data stream using the multi-dimensional sub
sequence dynamic time warping approach (msDTW) which nonlinearly
matches time series of different length to a pre-defined stride template
[27]. Then, the gait events heel strike (HS) and toe off (TO) were de-
tected for each stride [16]. The inertial measurements from the local
frame of measurement of the shoe were transformed into the global co-
ordinate frame and gravity was removed. Finally, the feet's trajectories
were calculated using double integration by also accounting for drift
effects [28]. The trajectories, orientations, and gait events were used
to extract the parameters gait speed, stride length, stance time, swing
time, HS angle, TO angle and maximal toe clearance in Matlab R2016b
(MathWorks Inc., Natick, MA, USA). The whole system has previously
been described in more detail and has been validated with healthy and
affected gait patterns [16,27–29]. All participants wore the same shoe
model (Adidas Duramo 6, Herzogenaurach, Germany) to reduce poten-
tial gait differences arising from wearing differing footwear [30].

2.3. Protocol

PROMs regarding gait and other functional activities as well as qual-
ity of life were assessed using the Western Ontario & McMaster Universi-
ties Osteoarthritis Index (WOMAC), Oxford Knee Score (OKS), Knee So-
ciety Score (KSS, parts 1 and 2), general health status (EQ-5D-3L), and
WHO Disability Assessment Schedule 2.0 (WHODAS 2.0, short version)
scores. Gait parameters were assessed using a standardized 4 × 10 m
overground walking test, which has been suggested as a preferred gait
test for knee OA [31]. From initially standing, the patient walked to
a mark 10 m away. This distance was covered four times back and
forth with 180° turnings (clockwise and counter-clockwise alternately)
around marks on the ground.

2.4. Data analysis

Automatic stride segmentation [27] was manually checked to elimi-
nate potentially falsely detected strides. Gait parameters were extracted
only for straight walking sequences. A total of 1105 pre-operative, 912
post-operative strides, and 936 strides from healthy participants (aver-
age number of strides per participant: 46.0 (pre), 50.7 (post), 39.0 (con-
trol)) were used in the analysis. Participant and foot-wise outlier re-
moval was performed based on the median absolute deviation (MAD)
around the median [32]. PROMs and gait parameters were assessed for
group differences using univariate inferential statistics. As data normal
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ity was not generally assured, paired Mann-Whitney u-tests with a pri-
ori significance levels α of 0.05 were applied for pairwise comparisons.
The coefficient of variation (CV) was considered over all strides for each
performed 4 × 10 m test and each participant separately as a measure
of stride-to-stride variability.

2.5. Outcome prediction

We defined a performance-based dichotomization into “positively”
and “negatively” responding patients based on the changes of spa-
tio-temporal gait parameters. First, the difference between pre- and
post-operative gait parameters was calculated to determine gait im-
provements. As single strides between post- and pre- session cannot be
directly related, the difference of each single post-operative stride xpost
to the mean parameter of the pre-operative session was calculated:

(1)

with i being the post-operative stride index, j the pre-operative stride
index, k the patient index and npre,k the number of strides per patient
pre-operatively.

Based on the parameter differences, a median split was performed
to dichotomize the stride parameters. The definition of “positive” and
“negative” was heuristically defined for every gait parameter. Increases
in gait speed, stride length, swing time, HS angle and maximum toe
clearance were defined as improvements (positive response). Decreases
in stance time, stride time and TO angle were equivalently defined as
improvements. Accordingly, decreases in gait speed, stride length, swing
time, HS angle and maximum toe clearance and increases in stance time,
stride time and TO angle were defined as negative responses. By defini-
tion in our employed system, higher negative TO angles indicate steeper
foot to ground angles.

It was thus possible to label each post-operative single stride as a
positive or negative response. Subsequently, the patients were clustered
into the associated positive or negative responder class by assigning
each patient the label of the most frequent stride type that he exhib-
ited in the respective post-operative 4 × 10 m test. Each patient could
thus be assigned to either positive or negative responder group using the
heuristic clustering.

We then predicted this group membership based only on pre-opera-
tive gait parameters. Every single pre-operative stride was input into a
classification model to predict an outcome (either positive or negative
response). Due to variability in the performed strides of the 4 × 10 m

test, both positive and negative outcomes might have been predicted for
a patient. To assign a patient a uniform response label, a majority vote
was performed on those single stride predictions. This assigned the pa-
tient the final class label based on the strides with the highest occur-
rence frequency. Finally, it was evaluated whether this prediction was
correct by comparing the predicted patient label with the label of the
heuristic reference clustering. The CVs were not used for prediction, as
they represent only summary measures over the whole gait test.

Logistic regression (LR), decision trees (DT), k-nearest neighbors
(kNN), Adaboost, and linear support vector machines (SVM) were used
to find the best classification scheme. Classification metrics were calcu-
lated based on the majority voting results, as the final patient assign-
ment to the respective response cluster was of relevance in this study.
Generalizability of the models was evaluated using a leave-one-sub-
ject-out cross-validation, in which one patient is left out once as a test
observation while the remaining patients are used as training observa-
tions. This is repeated until all patients have been used as test subject
once. Model parameter selection for each classification algorithm was
performed. The performance of the optimal parameter set was evalu-
ated using an inner cross-validation in each of the 18 leave-one-sub-
ject-out cross-validation folds. The overall performance was evaluated
using accuracy, confidence intervals, sensitivity, specificity, and area
under the curve (AUC) of the receiver operating characteristic (ROC)
analysis [33].

3. Results

All gait parameters of the healthy population were significantly dif-
ferent from the patient population except for the CVs of some parame-
ters (Table 1). After TKA, all PROMs showed significant improvements
(Table 2). Contrarily, gait performance as quantified by stopwatch mea-
sures did not improve after surgery. The time to complete the 4 × 10 m
test remained unchanged (pre: 46.0 ± 18.2 s, post: 44.9 ± 12.4 s,
p = 0.70). Equivalently, no gait parameter changed significantly af-
ter surgery (Table 1). Fig. 1 depicts the distribution of the gait pa-
rameter differences Δxi,k according to the positive and negative re-
sponse classes. The median of the gait parameter differences was ap-
proximately zero for all parameters (Fig. 1 and Table 3), indicating
an equal distribution of positive and negative responders according to
the heuristic response definition. Eight patients were clustered as posi-
tive responders and ten patients were clustered as negative responders
by dichotomization. All gait parameters showed significant differences
between both responder groups (Table 3). When predicting those re

Table 1
Spatio-temporal gait parameters for “Control” participants and patients before (“Pre”) and after (“Post”) surgery. Given are the mean and standard deviation (SD) for all gait parameters.
p values are stated for the pairwise comparisons “control participants vs. pre-operative patients” (pc−pre), “pre- vs. post-operative patients” (ppre−post), and “control participants vs. post-op-
erative patients” (pc−post).

Parameter Control Pre pc−pre Post ppre−post pc−post

Mean SD Mean SD Mean SD

Gait speed [m/s] 1.38 0.18 1.06 0.24 <0.001 1.10 0.25 0.98 <0.001
Stride time [s] 1.02 0.06 1.14 0.09 <0.001 1.11 0.09 0.36 <0.001
Swing time [%] 36.60 1.45 33.59 3.10 <0.001 34.50 2.36 0.12 <0.001
Stance time [%] 63.40 1.45 66.41 3.10 <0.001 65.50 2.36 0.12 <0.001
Stride length [cm] 140.06 15.11 118.98 23.33 <0.001 121.04 23.18 0.62 <0.001
Max. toe clear. [cm] 7.96 2.80 5.47 1.86 <0.001 5.33 2.12 0.42 <0.001
TO angle [°] −66.20 5.62 −56.55 12.11 <0.001 −57.47 14.18 0.43 0.001
HS angle [°] 19.68 5.66 15.59 5.91 <0.001 16.24 6.14 0.26 0.02
Gait speed CV [%] 7.76 1.76 7.32 2.49 0.34 6.82 2.49 0.41 0.21
Stride time CV [%] 3.11 1.05 3.40 1.81 0.36 3.27 1.90 0.15 0.53
Swing time CV [%] 3.18 1.14 7.17 7.77 <0.001 5.12 4.51 0.29 0.01
Stance time CV [%] 1.86 0.75 3.41 3.37 <0.001 2.66 2.32 0.28 0.02
Stride length CV [%] 6.90 1.93 6.40 2.45 0.33 5.87 2.43 0.06 0.26
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Table 2
Overview over pre- and post-operative PROMs. Mean values and standard deviation (SD),
p value, and effect size (ES).

PROM Pre Post p ES

Mean SD Mean SD

WOMAC 59.1 14.8 21.5 20.0 <0.001 1.4
OKS 18.8 6.2 36.1 9.2 <0.001 1.9
KSS 1 41.3 12.2 84.6 14.0 <0.001 2.7
KSS 2 58.1 10.6 81.7 19.3 <0.001 1.8
EQ.5D.3L 54.1 7.1 79.4 17.8 0.002 1.3
WHODAS 12.3 5.2 4.8 3.9 <0.001 2.0

sponse outcomes using pre-operative gait parameters, all classifiers
achieved accuracies higher than chance level, which was 66.7% for
this small data set [34]. The highest accuracy 89% was achieved by
a decision tree (Table 4), which falsely classified the responses of two
positively responding patients which were misclassified as negative re-
sponders (sensitivity = 0.75). All negatively responding patients were
correctly identified (specificity = 1.00). All other classifiers misclassi-
fied three patients, from which also one negative responder was la-
beled as a positive responder. For the best performing classifier, the fi-
nal decision tree model was trained on the whole data set. Only stride
time and stride length contributed to the model (Fig. 2a). Short stride
times and long strides predicted patients to respond negatively. The

misclassifications in the decision tree mainly occurred due to stride time
(Fig. 2b).

4. Discussion

Currently, the main outcome measures for TKA assessment have
been PROMs including pain and self-reported function. The motivation
for this study was to explore the potential of a mobile gait analysis sys-
tem (a) to objectively characterize gait of end-stage knee OA patients
undergoing TKA as compared to healthy participants and (b) to predict
functional outcome after TKA based on spatio-temporal gait parameters.

The employed system comprising of two foot-worn inertial measure-
ment units was able to discriminate between gait of healthy partici-
pants and end-stage knee OA patients, which is a necessary require-
ment for treatment assessment [35]. The differences were comparable
to those in literature using various other systems [4,19,36]. However,
TKA had no significant effect on gait performance in terms of gait pa-
rameters. This is similar to previous studies, which have shown diverse
results on gait changes after TKA, so that no global gait improvement
after TKA could a priori be assumed [4,6,10–13]. The significant im-
provement of all PROMs is in line with literature, which has shown
improved post-operative PROMs [6,12], but it also indicates a discrep-
ancy between PROMs and gait parameters. PROMs are important pa-
rameters in clinical evaluation. Although they remain subjective, they
might relate better to quality of life and subjective well-being than

Fig. 1. Dichotomized gait parameters based on the single stride differences. The black lines indicate the medians of the gait parameters that were used to split the patient group into
“positive” and “negative” responders.
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Table 3
Gait parameter changes due to surgery for “positive” and “negative” responders. Given are
the mean and standard deviation (SD), p value, effect size (ES), and the median which
splits the two groups.

Parameter Positive Negative p ES Median

Mean SD Mean SD

Gait speed
[m/s]

0.19 0.21 −0.10 0.12 <0.001 1.79 −0.02

Stride time
[s]

−0.08 0.11 0.04 0.10 <0.001 1.13 −0.01

Swing time
[%]

2.62 3.27 −0.72 2.21 <0.001 1.22 0.60

Stance time
[%]

−2.62 3.27 0.72 2.21 <0.001 1.22 −0.60

Stride
length
[cm]

15.39 18.79 −7.86 8.41 <0.001 1.67 −2.15

Max toe
clearance
[cm]

0.65 2.09 −0.57 2.65 <0.001 0.50 −0.27

TO angle [°] −9.97 9.89 5.15 12.40 <0.001 1.33 −0.54
HS angle [°] 2.56 5.78 −0.26 4.39 <0.001 0.56 0.63

Table 4
Classification results of the outcome prediction (classes: “positive” and “negative” respon-
ders) using pre-operative gait parameters (CI = confidence interval, AUC = area under the
curve is based on the single stride prediction ROC curve). The chance level for this small
data set is 66.7% [34]. Sensitivity (true positive rate) is the probability of correctly de-
tecting positive responders. Specificity (true negative rate) is the probability of correctly
identifying negative responders.

Classifier Accuracy (CI) Sensitivity Specificity AUC

Decision tree 0.89 (0.65, 0.99) 0.75 1.00 0.76
kNN 0.83 (0.59, 0.96) 0.75 0.90 0.80
AdaBoost 0.83 (0.59, 0.96) 0.75 0.90 0.77
Logistic regression 0.83 (0.59, 0.96) 0.75 0.90 0.77
SVM (linear) 0.83 (0.59, 0.96) 0.75 0.90 0.77

other parameters. However, the assessment of gait parameters intro-
duces objectivity in the disease and rehabilitation assessment (further
studies regarding clinical relevance need however to be performed).
Therefore, gait parameters currently have to be regarded as complemen-
tary parameters. Nevertheless, the importance of including gait parame-
ters as objective measures also in clinical follow-ups has already been
highlighted [6,14,18,19].

The gait-based measures showed a differentiated picture of im-
proved and deteriorated gait performance for individual patients, while
the PROMs improved for all patients. Therefore, we were not able to
use those self-reported measures as a reference for the clustering of the

patients’ functional responses. Instead, we introduced a clustering of pa-
tients into positive and negative responder classes based on post- vs.
pre-operative gait parameter changes. A two class approach was used
by dichotomizing the gait parameters based on a median split. Patients
showing improved or deteriorated gait parameters were considered pos-
itive and negative responders, respectively. The approach of defining
positive and negative improvement is only heuristic but a first step to-
wards the quantification of functional improvement using objectively
measured gait parameters. It needs to be further validated based on
larger sample sizes. However, the direction of positive change of gait
corresponding to gait improvement follows biomechanical considera-
tions (e.g. higher gait speed). The median split thresholds lay around
zero for all gait parameters, which was equivalent to the heuristically
chosen improvement definition and thus a strong argument for the va-
lidity of the median split for dichotomization. However, the median split
has drawbacks due to the loss of information, as small and large differ-
ences contribute equally to class membership. An assignment to either
class would necessitate further investigation whether the gait parameter
differences truly indicate clinically meaningful changes. In the future,
the minimal clinically important difference (MCID) could be employed.
This choice would also create an additional “non-responder” class, clus-
tering patients showing only small gait changes. The introduction of an
additional class would, however, necessitate a higher sample size. A dif-
ferent approach would be to use regression methods in order to avoid
dichotomization of patients into different response classes. Other objec-
tive functional outcome assessments involving measures such as phys-
ical performance from accelerometry could be used to assess real-life
physical performance and to group patients into differently respond-
ing groups [37]. It has also been shown that PROMs based on the
Knee Injury and Osteoarthritis Outcome Score (KOOS) could be used for
sub-grouping into non-, low-, and high-responders [25,26].

The prediction of positive or negative surgery outcome based on
objective gait parameters was well feasible with all classification al-
gorithms. For this data set, the decision tree performed best (89% ac-
curacy) and allowed the direct interpretation of the prediction model.
The final model included stride time and stride length as discrimina-
tive gait parameters. Patients with short stride times and long strides
pre-operatively were prone to exhibit rather negative responses. This
corresponds to findings of Berliner et al., who observed that patients
with high pre-operative function were less likely to experience clinically
meaningful improvements [23]. The high specificity indicates that pa-
tients with low probability of benefiting from TKA could be well pre-
dicted beforehand from a gait function evaluation using spatio-temporal
gait parameters. Non-invasive treatment options (e.g. insoles, physical
therapy, braces) could be exhausted for those patients before surgery.
Additionally, joint preserving surgery for leg axis correction could be
considered.

Fig. 2. (a) Decision tree trained on the whole data set. (b) Outcome prediction for all pre-operative strides based on the gait parameters stride length and stride time. The misclassifications
occurred mainly due to stride time.
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Our approach of using gait parameters allows the direct clinical in-
terpretation of the results and a direct comparison with results from dif-
ferent motion capture systems that extract the same parameters. Generic
features (e.g. frequency features or curve extrema) directly extracted
from the raw inertial sensor signals could also be used for prediction.
Such features instead of spatio-temporal gait parameters may further
improve the classification accuracy for this specific application. How-
ever, transferability to other measurement systems (e.g. gait carpets) is
limited, if differing raw signals are acquired.

We cannot exclude that between-day variability had an effect on our
outcomes. This should be further evaluated for example by using a lon-
gitudinal study protocol. Such a protocol could also reveal information
on the patient's rehabilitation process and the optimal time-frame for
post-TKA gait analysis.

A limitation of this study is that possible joint deteriorations of the
control participants were only assessed by self-reports. No radiographic
imaging was performed which could have revealed potential deteriora-
tions and might have led to the exclusion from a radiographic perspec-
tive.

The cause for patients to respond differently to the surgery remains
as an open question. A limitation of this study was that we could not
guarantee the same rehabilitation procedures for all patients over the
whole time frame between surgery and post-operative gait assessment.
All patients underwent rehabilitation, but we did not monitor the indi-
vidual physical therapy schemes in detail. This has to be kept in mind as
a major confounding variable which should be controlled in future stud-
ies. Other potential confounding factors (e.g. population characteristics
such as gender [38]) influencing the results should be investigated using
a larger cohort of patients. Future studies should also evaluate different
clustering approaches to refine the response definition, include further
gait parameters (also considering generic features) assessed in different
clinical tests. Due to the ease of application, mobile gait analysis sys-
tems could also enable the study of the rehabilitation process in more
detail in longitudinal study designs.

To conclude, the employed mobile gait analysis system compris-
ing of two foot-worn sensors allowed the acquisition of spatio-tempo-
ral gait parameters that provide complementary information to tradi-
tionally used PROMs. We were able to objectively assess functional lim-
itations before and after TKA in a population of knee OA patients. In
the future, refined methods to identify responders and discriminate be-
tween different disease stages are envisioned based on more available
data. The identification of patients who are likely to exhibit negative
functional gait changes after TKA may allow a better informed pre-oper-
ative advice regarding surgery success, including altered treatment op-
tions (such as non-invasive treatments or joint preservative surgery),
more detailed information on what to expect after surgery, and an im-
proved post-surgery management, including adapted physiotherapeutic
training.
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