Marlies Nitschke

Marlies Nitschke, M. Sc.

Researcher & PhD Candidate

Department Artificial Intelligence in Biomedical Engineering (AIBE)
Lehrstuhl für Maschinelles Lernen und Datenanalytik

Room: Room 01.024
Carl-Thiersch-Straße 2b
91052 Erlangen

LinkedIn GoogleScholar ORCID ResearchGate

Since 11/2017 Ph.D. Student
Machine Learning and Data Analytics Lab at Friedrich-Alexander-University Erlangen-Nürnberg
Topic: Biomechanical Simulation
12/2019 Passed the trainer examinations (Ausbildereignungsprüfung/ADA-Schein) of the IHK
Qualification to train apprentices to become IT specialists (Fachinformatiker)
04/2015 – 10/2017 M.Sc. in Medical Engineering
Pattern Recognition Lab at Friedrich-Alexander-University Erlangen-Nürnberg
Master Thesis: “Sensor-based Movement Analysis Using Optimal Control Simulation of a 3D Biomechanical Model”
09/2016 – 12/2016 Research Internship
Molecular Imaging Laboratory at Peking University (China)
Topic: “SIFT Key-Points for Lung Tumor Detection in PET/CT Images”
10/2011 – 02/2015 B.Sc. in Medical Engineering
Friedrich-Alexander-University Erlangen-Nürnberg
04/2014 – 09/2014 Research Internship for the Bachelor Thesis
Laboratory of Movement Analysis and Measurement at École polytechnique fédérale de Lausanne (EPFL, Switzerland)
Bachelor Thesis: “Feasibility of Sit-to-Stand Analysis with the G4TM Polhemus System”






  • : Young Investigator Award (Footwear Biomechanics Symposium) – 2021
  • : Preis für hervorragende Hochschulabschlüsse von weiblichen Studierenden der Ingenieurwissenschaften (Bayerisches Staatsministerium für Wissenschaft und Kunst) – 2018

       Press report

I supervised or co-supervised the following student theses besides several research internships:
Year Name Title
2021 Alexander Weiß An investigation of ground contact models in biomechanical simulations
(Masters’s Thesis)
2021 Christopher Löffelmann Biomechanical assessment of sprint performance via trajectory optimization
(Bachelor’s Thesis)
2020/21 Matthias Mayer Gait Reconstruction from Sparse Sensordata for Identification and Visualization of Parkinson’s Disease
(Master’s Thesis)
2020/21 Lukas Stegmaier Understanding movement decisions in gait using inverse optimal control
(Master’s Thesis)
2020/21 Christian Attenberger Optimal Control Simulation of Musculoskeletal Models for Predictive Gait Analysis in Virtual Footwear Design
(Master’s Thesis)
2020 Markus Gambietz Energy Cost of Walking with a Three Dimensional Musculoskeletal Model
(Master’s Thesis)
2019 Robert Schleicher Animation of 3D Human Surface Models for Biomechanical Analysis
(Master’s Thesis)
2018 Jannis Wolf Learning on Synthesized Inertial Sensor Data for Human Movement Analysis
(Bachelor’s Thesis)



MaD Walker Demo




Cleveland State University