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Übersicht

Stress kann zu einer Vielzahl von, zum Teil schwerwiegenden, gesundheitlichen Folgen führen.
Um Stressreaktionen zu messen, werden bestimmte Biomarker wie Cortisol, Alpha-Amylase (α-
Amylase) und Entzündungswerte im Labor anhand von Blut- oder Speichelproben bestimmt. Diese
Methoden liefern zuverlässige Ergebnisse, sind jedoch komplex und arbeitsintesiv, was sie teuer
und begrenzt skalierbar machen. Es wäre daher von Vorteil, alternative Verfahren zu entwickeln,
die diese Nachteile nicht haben. In der Stressforschung wäre es außerdem wünschenswert, dass
diese Techniken berührungslos und nicht-invasiv sind, damit sie das natürliche Verhalten der
Person so wenig wie möglich beeinflussen. Ein dabei vielversprechender Ansatz ist die Analyse
von Körperhaltung und Bewegungen als akute psychosoziale Stressreaktion.

Um die Forschung zur berührungslosen Stresserkennung zu unterstützen, wurde eine Studie
durchgeführt, bei der Körperbewegungen und -haltung während einer akuten Stresssituation mit
einer Videokamera aufgezeichnet wurden. Insgesamt wurden einhundertundeins Teilnehmer an
zwei aufeinanderfolgenden Tagen und in zufälliger Reihenfolge dem ”Trier Social Stress Test”
(TSST) und einer modifizierte Version des ”friendly-Trier Social Stress Test” (f-TSST) als stress-
freie Kontrollbedingung im stehen oder sitzen unterzogen. Während des ”(friendly-)Trier Social
Stress Test” ((f-)TSST) wurde der gesamte Körper mit einer Azure Kinect und später mit einem
Smartphone gefilmt. Die Videoaufnahmen wurden anschließend mit dem openTSST-Framework,
einer webbasierten Plattform für videobasierte Bewegungsanalyse, entwickelt vom Machine Learn-
ing and Data Analytics Lab (MaD Lab) (Erlangen, Bayern), verarbeitet. Alle 2D-Positionen, die für
bestimmte Körperteile für ein einzelnes Bild des Videos ermittelt wurden, wurden verwendet um
eine Vielzahl von Bewegungsmerkmalen abzuleiten und statistisch zu analysieren. Wie in anderen
Arbeiten wurde ein defensives ”Freezing”-Verhalten, einem signifikanten Bewegungsrückgang, als
Reaktion während dem TSST festgestellt. Nachgewiesen konnte dies im Hals- und Kopfbereich.
Dies wurde jedoch nur bei den Teilnehmern beobachtet, die den (f-)TSST im Stehen durchführten.
Für die sitzende Variante wurden keine Charakteristika gefunden, die eine Unterscheidung der
beiden Bedingungen ermöglichten.

Darüber hinaus wurden geschlechtsspezifische Unterschiede bei der stehenden Variante un-
tersucht, die darauf hindeuteten, dass sich Frauen in beiden Bedingungen tendenziell mehr im
Hüftbereich bewegten. Außerdem wurden die einzelnen Phasen des TSST getrennt untersucht, was
ein höheres Stressniveau während der Mathephase ergab. Dies wurde durch eine Verringerung der
Bewegung in fast allen beobachteten Körperteilen quantifiziert. Zum Schluss wurde ein Machine
Learning (ML)-Modell trainiert, um zwischen dem TSST und dem f-TSST zu klassifizieren,
welches eine Genauigkeit von 68.5% ± 9.7% erreichte.
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Abstract

Stress can lead to a variety of partly severe health consequences. To measure stress responses,
biomarkers such as cortisol, alpha-amylase (α-amylase), and inflammation levels are evaluated in
the laboratory using blood or saliva samples. These methods provide reliable results but require
complex procedures that demand trained personnel and are labor-intensive, making them expensive
and limited in scalability. It would be advantageous to develop alternative techniques that do
not have these drawbacks. In stress research, it would be desirable for these techniques to be
contactless and non-invasive having as little impact as possible on the person’s natural behavior.
A promising approach is the analysis of body posture and movements as an acute psychosocial
stress response.

To support research towards contactless stress detection, a study was conducted in which body
movements and posture during an acute stress situation were recorded with a video camera. A
total of one hundred and one participants performed the Trier Social Stress Test (TSST) and a
modified version of the friendly-Trier Social Stress Test (f-TSST) as a stress-free control condition
on two consecutive days and in a randomized order. In addition, there was a random allocation to a
group, which determined whether the two tests would be carried out standing or sitting. During the
(friendly-)Trier Social Stress Test ((f-)TSST), the entire body of the participant was filmed using a
Microsoft Azure Kinect and later a cell phone. The video recordings were processed using the
openTSST framework, a web-based platform for video-based movement analysis developed by the
Machine Learning and Data Analytics Lab (MaD Lab) (Erlangen, Bavaria). All the 2D positions
obtained for specific body parts for an individual frame of the video, were then used to derive
and statistically analyze a variety of movement features. The expectation from previous work that
participants would react with defensive freezing behavior during the TSST was quantified in this
study by a significant decrease in movement throughout the neck and head area. However, this was
only observable for the participants performing the (f-)TSST standing. For the seated variation,
no characteristics that allowed the two conditions to be distinguished, were found.

Additionally, gender differences were investigated for the standing variation, which suggested
that females tended to move more in the hip region in both conditions. Furthermore, the individual
phases of the TSST were examined separately, which showed a higher stress level during the math
phase. This was quantified by a decrease in movement in almost all observed body parts. Finally,
a machine learning (ML)-model was trained to classify between the TSST and the f-TSST, which
achieved an accuracy of 68.5% ± 9.7%.
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Chapter 1

Introduction

Stress is an integral part of our daily lives, and although it is a necessary and healthy reaction
of the body, excessive stress may have serious negative effects on our physical and mental well-
being. This can be caused by direct effects, such as autonomic and neuroendocrine responses, or
indirectly through changes to health behavior, e.g. introducing or maintaining harmful eating habits
[OCo21]. Risks associated with stress include life-threatening physiological consequences such as
insulin insensitivity, cardiovascular diseases, or cancer [Coh07], and different mental illnesses like
depression or anxiety [Hal21]. Various consequences of stress as a mediating problem have already
been identified, such as increased smoking, sleep, or eating disorders [Sch05]. Continuing with the
example of smoking, a study by Conway et al. [Con81] showed that stress may additionally play
a moderating role and, on average, more cigarettes were consumed on days with a higher stress
level which in turn poses serious health risks like higher mortality of lung cancer and chronic
obstructive pulmonary disorder [Col94]. Consequently, stress has been recognized as a significant
cause of numerous long-term physical and mental illnesses in many countries [Hap13; APA20],
and is a subject of extensive research [McE93].

To study stress responses, it is necessary to reliably trigger stress in participants. At present,
the gold standard for inducing acute psychosocial stress in a laboratory setting is the TSST [Kir93]
involving public speaking and a challenging arithmetic task. The f-TSST [Wie13] is used as a
control condition, which should not trigger a stress response due to the friendly and encouraging
behavior of the panel not inducing a social-evaluative threat despite relatively similar mental
demands. Of the previously mentioned neuroendocrine responses, as a direct effect of stress,
the two most important stress signaling pathways are the sympathetic nervous system (SNS) and
hypothalamic-pituitary-adrenal (HPA) axis [Mil02]. α-amylase is the sensitive biomarker for the
activation of the SNS, responsible for the ”fight-or-flight” response [Nat09] and the activation
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of the HPA axis is assessed by an increase in cortisol [Goo17]. In addition, SNS activity can
be characterized by measuring electrophysiological signals, such as electrodermal activity or
electrocardiography, from which heart rate and heart rate variability can be derived [Daw16].

Nevertheless, the well-established methods for measuring neuroendocrine and electrophysio-
logical markers, can mean a great deal of effort for the researcher and, in some cases, there is no
alternative to invasive methods. If considering the measurement of inflammatory reactions, which
are activated as an acute stress reaction [Roh19], this can currently only be measured accurately
through the blood, which as an invasive approach may influence natural behavior [Sla15].

Prior studies have demonstrated that encountering acute psychosocial stress has significant
impact on an individual’s body posture and movement [Abe22], presenting a promising expansion
of current markers for acute stress. Incorporating this into stress research offers a non-invasive,
holistic approach that may enables early detection of stress responses and could support the
development of personalized stress management strategies by recognizing specific patterns and
learning strategies to manage them. The gold standard for measuring whole-body movement is
a marker-based optical motion capturing (OMC), or an inertial measurement unit (IMU)-based
motion capturing approach. However, both techniques are costly and have their drawbacks due
to specific sensors that need to be attached, possibly interfering with the participant’s natural
behavior [Col18] or very time-consuming and tedious calibration processes [Roe09]. A good
alternative would therefore be a video-based motion analysis based on established tools such as
OpenPose [Cao19] or AlphaPose [Fan23]. This simple and cost-effective method has not yet been
widely used in researching stress, probably due to the inaccessibility of these tools to non-technical
researchers. A solution for this is offered by the openTSST framework, developed at the MaD Lab,
as an easy-to-use interface to OpenPose as a web application for video-based motion analysis and
feature extraction pipeline with a special focus on the analysis of psychosocial stress [Geß23].

The goal of this bachelor’s thesis is, to use the openTSST framework on video data collected in
a study conducted within the EmpkinS collaborative research center, where participants performed
the TSST as well as the f-TSST as a control condition on two consecutive days in randomized
order. The main focus was on the extraction of movement features and a subsequent statistical and
ML-based analysis of these. Thus, previous features were analyzed and new features developed
and integrated into the existing openTSST framework. This thesis further examined the influence of
people performing the tests standing or sitting and whether there were gender differences. Finally,
ML techniques were used for classification between the TSST and the f-TSST.
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Related Work

2.1 Influence of Emotional States on Body Posture and Move-
ment

It is possible to perceive and express emotional information via different channels, such as facial
expressions, bodily movement, and posture [Gel15]. Thus, human body posture and movements
can offer valuable insights into the physical and psychological state of an individual [Bal00; Wal98;
Dae12]. In this regard, the following section will mention different studies, starting with facial
expressions, followed by research focused on the rest of the body in various scenarios, dynamic
movements, and defensive freezing behavior, ended with the current state of research on gender
differences in the expression of emotions through movement.

Facial expressions have been widely used for this in the past. For example, Zhan et. al.
developed a framework that recognizes the stress-related emotions of anger, fear, and sadness in
real time [Zha19]. Others investigated how stress changes facial expressions to assess the potential
of facial expressions as a feature for recognizing acute and chronic stress [May19]. Giannakakis et
al. used semi-voluntary facial features to recognize stress/anxiety states using ML techniques and
features such as eye-related events, mouth activity, and head motion [Gia17].

Atkinson et al. developed dynamic and static whole-body expressions to identify basic emotions
like happiness, fear, anger, disgust, and sadness. They demonstrated that these emotions are readily
identifiable from body movements, even when using point-light displays (PLDs), reducing the
displayed body movement to moving points representing major joints, waist, head, and feet of
a person performing an action [Atk04]. Distinguishing similar emotions was also achieved by
changes in body movements within dance motions. Significant for the classification of happiness,
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sadness, and fear were the frequency of upward arm movement, duration of times the arms were
kept close to the body, amount of muscle tension, and duration of times an individual leaned
forward. Especially relevant for the distinction of anger were the number of tempo changes as
well as directional changes in the face and torso [Boo98]. Another study focusing on dance moves
was conducted by Camurri et al. focused on expressive gestures in dance, analyzing how dancers
convey emotions like anger, fear, grief, and joy. Thereby considered was the underlying structure
of rhythm, flow of the movement, and to what extent limbs were contracted or expanded in relation
to the body center [Cam03].

Shahidi et al. contributed to the understanding of body posture under stress, focusing on how
mental concentration impacts cervical muscle activity. They found out that a forward head posture
significantly increased with mental concentration compared to baseline [Sha13]. Posture changes
can also be used together with head movements in pain assessment. According to Werner et al.,
these tend to be directed downwards or towards the painful side [Wer18].

Vrij et al. explored the impact of public self-consciousness and behavioral control on hand
movements in deceptive situations. Their hypothesis suggested that people with higher self-
consciousness and better behavioral control would show fewer hand movements when lying. To
test this, they conducted a study with 56 participants, each interviewed once truthfully and once
deceptively. Their findings highlighted a link between individual personality traits and non-verbal
actions during deception, underscoring how internal states affect physical behaviors [Vri97].
Similar research was conducted by Zee et al. who used a motion capture suit to record movements
of the whole body to detect deceit. Whether the interviewees were telling the truth or lying could
be determined with an accuracy of 74% based on the sum of the joint displacements, whereby
liars tend to move around more compared to the control group [Zee19]. This aligns with the study
from Kleinsmith and Bianchi-Berthouze, who underscored the significance of body expressions as
a channel for affective communication. They emphasized that full-body movements are equally or
sometimes more important than facial expressions, reasoning that people consciously attempt to
hide their facial expressions and tend to care less about censoring their body movements [Kle13].

Dynamic movements such as walking can also be informative. In a clinical study, Jarchi et
al. found that certain neuronal disorders such as attention deficit hyperactivity disorder, bipolar
disorder, autism, dementia, depression, Pick’s disease, or Parkinson’s disease lead to slower body,
hand, and foot movements [Jar18]. Stress may also be a decisive factor. According to Nicolas
Rohleder, stress leads to the activation of systematic inflammatory processes in the body [Roh19].
Moreover, such inflammatory processes can become noticeable when walking through shorter,
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slower, and wider strides, less arm extension, less knee flexion, and a more downward-tilting head
[Las20].

As a bodily reaction to acute stress, various studies have identified freezing behavior, an often
significant decrease in body movements [Roe17; Bra04]. Freezing is one of the most common
defense reactions in animals to protect themselves from predators [Eil05; Löw15]. Zito et al.
investigated stress-induced postural motor responses in patients affected by functional movement
disorders (FMD). The participants and a healthy control group were exposed to the TSST. In
contrast to the FMD patients, the healthy participants showed a reduction in thorax sway over time
[Zit19]. Doumas et al. assessed whether similar stress-related changes in postural sway could be
observed by using social evaluative threats to induce stress. During an arithmetic task, twelve young
adults were given negative feedback about their performance while additionally being watched,
which caused the anticipated reduction in body sway [Dou18]. Similar behavior was observed by
Roelofs et al. who studied 40 female participants placed on a stabilometric force platform while
being exposed to social threats to investigate if they could induce freezing behavior. A notable
reduction in the participants’ body sway was achieved by angry faces [Roe10]. This study was
replicated and extended by Noordewier et al. with prior recording of a baseline of the participants.
The results obtained support the basic hypothesis that participants show physiological signs of
freezing when looking at angry faces [Noo20]. Further, Hagenaars et al. observed freezing-like
responses to unpleasant films [Hag14]. Using IMU technology, Abel found that in 41 participants
who were subjected to the TSST, the participants showed defensive freezing behavior based on
the movements of the head, hands, chest, and general body movement compared to the f-TSST as
a control condition [Abe22]. Using a similar study protocol and IMU data, Richer et al. were able
to detect acute stress with a mean accuracy of 73.4% using ML techniques [Ric24].

The influence of gender on the expression of emotions and internal states through body posture
and movement does not yet have a clear answer and remains largely unexplored. Additionally, the
majority of the studies focus on the differences in perception of emotions rather than the expression.
A study by Alaerts et al. used PLDs to display bodily movements like walking, jumping on the
spot, wiping a table, drinking from a water bottle, or kicking a ball with the right leg. These
movements were carried out in different emotional states, namely happy, sad, angry, and neutral.
They found out that females were significantly faster in recognizing the displayed emotions [Ala11].
Another study by Sokolov et al. also used PLDs to portray knocking on a door with different
emotional expressions. They, however, found out that gender affected accuracy rather than speed,
modulated by the underlying emotions. Males more accurately recognized happy, and women
hostile angry and neutral knocking [Sok11]. This partially aligns with the findings from Krüger et
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al. who found out that males surpass females in recognition of happy walking and females tend
to be more accurate in recognizing angry locomotion [Krü13]. Another study found evidence,
that women recognize basic emotions and negative facial expressions far more accurately than
male participants who tend to be significantly better at decoding negative body postures [Cha22].
Due to the lack of research on gender differences in expressing, rather than perceiving, emotions
and internal states through body posture and movement, the evaluation of gender differences is
covered in this thesis.

2.2 Applications of Video-Based Motion Analysis

Several applications, also to answer research questions similar to those outlined above, use video-
based motion analysis, which is characterized by a low barrier of entry and has also been further
improved by recent advancements in computer vision.

FaceReader (Noldus, Wageningen, the Netherlands) is often used to recognize facial expres-
sions. With the help of deep learning (DL) algorithms, a person’s face is recognized using almost
500 keypoints and decoded facial expressions are then classified by artificial neural networks (NN)
to obtain information about emotional reactions and an objective assessment of emotions [Nol23].
So, for example, FaceReader was used to recognize consumer emotions in graphic styles which
provides a preferable basis in relevant fields of design practice and marketing [Yu17]. Terzis
et al. evaluated the efficiency of FaceReader during a self-assessment test by comparing the
instant measurements of FaceReader with the estimations from researchers of students’ emotions
regarding disgust and anger. Results showed an 87% efficacy suggesting a potentially successful
integration in an affect recognition system [Ter10].

Sport is a field in which video-based analysis is also used as an indispensable training tool to
analyze an athlete’s performance to assess the effectiveness of training for instance [Bar08; Wil08],
most recently with the help of other technologies such as DL [Ran20]. By adding human pose
estimation together with artificial intelligence (AI), a personalized training can be developed for
the athlete, to identify certain incorrect postures that should be corrected for improved performance
[Wan19; Par22].

Video-based motion analysis has also found use in human gait analysis [Sin18]. Suman and
Verlekar explored the classification of spinal deformities such as Kyphosis and Lordosis with
29 individuals simulating these conditions together with a normal gait. Applying a specific NN
operating on key body points, they were able to successfully classify these spinal deformities
manifesting not only in the gait but in the movement of the entire body [Sum23]. Abe et al.
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developed a diagnosis system using human pose estimation from video analysis for Parkinson’s
disease aiming to facilitate early detection by analyzing arm angles from videos of patients with
varying Parkinson’s disease conditions [Abe21]. Stenum et al. also used video-based human
pose estimation for human gait analysis. They compared spatiotemporal and kinematic gait
parameters calculated based on keypoints obtained by the human pose estimation against those
from three-dimensional motion capture. The resulting low mean absolute errors demonstrate
the potential of accessible video-based analysis in gait research [Ste21]. Boswell et al. took
advantage of the fact that the use of video-based methods does not necessarily require a controlled
environment and specialized equipment by conducting a nationwide study across 35 US states in
which participants performed the five-repetition sit-to-stand test while filming themselves with
a phone. A later analysis of the data using human pose estimation revealed that the movement
parameters were significantly related to osteoarthritis diagnoses, physical and mental health, Body
Mass Index (BMI), age, and ethnicity [Bos23].

Studies that focus on stress and affective emotion recognition have also used video-based
motion analysis. Giakoumis et al. conducted an experiment with 21 participants using a custom
Stroop color word test as a stress-induction protocol. They introduced activity-related behavioral
features for the upper body, like global activity level, activity symmetry, or frequency of specific
hand movements from video and accelerometer recordings. Their findings indicated that several
behavioral features extracted from video sequences with descriptors like Motion History Images,
significantly correlated with self-reported stress [Gia12]. Using two consumer video cameras,
Glowinski et al. also focused on upper body movement, particularly head and hand movements,
to extract expressive and affective information. They calculated different expressive features like
the smoothness/jerkiness, regarding the motion continuity, by calculating the third derivative of
movement position. They further calculated the spatial extent using a bounding triangle between
the centroids of head and hands, taking the dynamics of the perimeter approximating the space
occupied by the extremities from the frontal view. Their results showed that jerkiness related to
emotions like fear or despair, whereas continuous and spatially invariable movements portrayed
emotions such as anxiety and fear [Glo11]. The paper from Lefter et al. analyzed hand gestures
at service-desk interaction scenarios. The gestures were categorized into different classes and
based on semantic meaning and modulation (i.e. rhythm, speed, jerk, expansion, and tension).
They found out that gesture modulation was a significant indicator of stress with certain gestures,
such as sudden, tense, or repetitive movements being particularly indicative [Lef16]. Aigrain et
al. used a Kinect device to capture skeleton and video data during a self-designed, evaluated,
and time-constrained mental arithmetic test. The key features extracted included the Quantity
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of Movement (QoM) calculated by the sum of joint displacements between two frames, high
activity periods, and posture changes by using the peaks of the QoM computed for each frame.
Additionally, they detected self-touching using a threshold for the distance between the hands or
hands and head region. Using a ML model trained on these features, they were able to detect stress
with an accuracy of 77% [Aig15]. In a follow-up study, Aigrain et al. again used a Kinect for
video and skeleton data for stress detection. They once more computed the QoM but in two forms:
IQoM as the number of pixels that change between two consecutive frames and the SQoM from
displacements of the skeleton joints as well as self-touching. Utilizing peaks in the IQoM signal to
detect periods of high body activity which could characterize an increasing uncomfortability. They
further used the pixel difference of the first and last frame of such a period to detect a change in
posture. They suggested that behavioral in combination with physiological features could enhance
automatic stress detection [Aig18].



Chapter 3

Methods

3.1 Data Acquisition

To investigate the effects of acute psychosocial stress on body movements and posture, a study was
conducted at the MaD Lab from December 2022 to December 2023. Participants were exposed to
the TSST and the f-TSST on two consecutive days. The condition order was swapped after each
pair of days to obtain a balanced data set. Both tests were either performed standing or sitting,
which was randomly assigned.

3.1.1 Study Population

In total, 101 participants (58 females and 43 males) were recruited for the study. Information
about gender, position during the (f-)TSST, and condition order of all participants can be taken
from Table 3.1, demographic and anthropometric data from Table 3.3.

Table 3.1: Gender, position, and condition order overview of entire study population.

Female Male
Condition order Sitting Standing Sitting Standing Total

f-TSST first 19 13 11 10 53
TSST first 13 13 7 15 48

Total 32 26 18 25 101

Due to incomplete data, 18 participants had to be omitted from the data processing. The final
data set consisted of 48 female and 35 male participants. Table 3.2 provides an overview of their
condition order and position.
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Table 3.2: Gender, position, and condition order overview of used study population.

Female Male
Condition order Sitting Standing Sitting Standing Total

f-TSST first 14 11 9 9 43
TSST first 11 12 6 11 40

Total 25 23 15 20 83

Table 3.3: Demographic and anthropometric data of all participants; Mean ± Standard deviation
(SD).

Age [years] Height [cm] Weight [kg] BMI [kg/m2]

Female 22.04 ± 3.72 168.52 ± 6.91 62.66 ± 7.57 22.04 ± 2.26
Male 22.33 ± 2.88 183.07 ± 6.88 78.80 ± 11.49 23.55 ± 3.46

All 22.16 ± 3.36 174.71 ± 9.97 69.53 ± 12.35 22.68 ± 2.91

Participants were recruited using electronic flyers via social media platforms as well as printed
flyers distributed throughout university buildings or in person in the canteen or library. Ineligible
for the study were people under 18 or over 50 years old, not native German speakers, with a
BMI below 18 or above 30, suffering from physical or mental health conditions, were taking any
medications, smoked, used drugs, were obese, or had previously taken part in a similar stress
test. Interested individuals had to complete a digital screening beforehand and were only allowed
to participate if they met these conditions. Psychology master students were also excluded, as
there is a high probability that they are already familiar with the (f-)TSST. As a reward for their
participation, individuals could choose between receiving 50 Euros or 5 Versuchspersonenstunden
(for psychology bachelor students).

3.1.2 Acute Stress Induction

To induce acute psychosocial stress in the participants, the TSST was used, which is considered the
gold standard in a laboratory setting [Kir93]. The f-TSST was used as a control condition, which
should not trigger a stress response despite relatively similar mental demands [Wie13]. Although
the protocol of the f-TSST was slightly modified to achieve a better comparability with the TSST.
The main differences between the TSST and the f-TSST can be seen in Figure 3.1. Deviating from
the protocols, the panel consisted only of women from about halfway through the study due to the
lack of male staff.
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Panel

Neutral, Dismissive Friendly, Supportive

Phase 1: Preparation (5 min)

Preparation & PASA Preparation & PASA

Phase 2: Talk (5 min)

Job Interview CV & Career Aspiration

Phase 3: Math (5 min)

Count backwards from 2043 in steps of 17 Count from 0 in steps of 15

TSST – Trier Social Stress Test f-TSST – Modified friendly TSST

Figure 3.1: Protocol comparison between the TSST and f-TSST.

TSST

The panel for the TSST consisted of two people the participant did not know, both wearing white
lab coats intended to reinforce a more serious laboratory environment [Wie13]. The active panel
member, who sat on the left from the perspective of the participant, took over the active part of the
experiment, i.e., the interaction with the candidate. They received explicit directives to maintain a
neutral demeanor, minimizing their responses to the participant’s behavior. The protocol consisted
of three distinct phases, each lasting five minutes: Preparation, Talk, and Math, outlined in 3.1.
After the test director explained the protocol and left the room, the first phase began. The briefing
included that participants were to imagine a job interview setting and that the panel would decide
about employment in their dream job, which they told the test director beforehand. Emphasis
was placed on the participant talking about personal attributes, which should justify suitability
for the position, rather than professional competencies. A three-minute interval was allocated for
note-taking, aimed at structuring their talk. This was followed by a two-minute session dedicated
to the completion of the Primary Appraisal Secondary Appraisal (PASA) questionnaire [Gaa09],
to asses cognitive appraisal processes in a stressful situation [Car16]. Participants were, however,
not allowed to bring their notes to the subsequent talk phase.

Afterward, a dual-camera setup, detailed in Section 3.1.3, started recording, and participants
were instructed to start with their speech. Observing the beginning of the video recording con-
tributes to the social evaluative component of the stress response and is therefore an important
element of the TSST [Lab19]. The expectation was to maintain a continuous monologue and the
panel only interrupted if the participant deviated from talking about personal attributes, silences
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surpassing 20 seconds, or if the participant no longer maintained eye contact with the active panel
member. The final phase was an arithmetic challenge, in which the participant should count back
from 2043 in steps of 17. In case of an error, the panel intervened, prompting to restart from 2043.

f-TSST

Mirroring the framework of the TSST, the f-TSST unfolded before a duo of panelists. The f-TSST
was designed to evoke minimal stress while preserving an ambiance analogous to the TSST. In
doing so, the panelists abstained from wearing lab coats, to support the setting of a more casual
environment, and exhibited a demeanor that was not just non-neutral but overtly friendly and
encouraging throughout the protocol. Additionally, the active panel member left the room during
the preparation phase to further relax the participant [Wie13].

The talk segment of the f-TSST deviated from the conventional TSST format, pivoting towards
a dialogue centered on the participant’s Curriculum Vitae and career aspirations, as opposed
to the high-pressure milieu of a job interview. Notably, the original f-TSST protocol does not
include a computational component. Therefore, the numerical task from the placebo-TSST
[Het09] — another variant of the TSST conceptualized as a stress-diminished control condition
— got integrated for consistency and to maintain a low-stress environment. During this segment,
participants had to numerically increment in steps of 15, starting from zero. Any computational
errors were addressed with sympathy, and participants being gently informed of the mistake and
encouraged to proceed from the last correct number.

3.1.3 Test Procedure

Pre-Test Phase

After a participant arrived at the laboratory, they were guided to the preparation room where they
first signed a declaration of consent. Following was a brief explanation of the timeline by the study
leader and the participant provided the first out of eight saliva samples (S0). An overview of the
saliva sampling times can be found in Table 3.4.

Table 3.4: Saliva sampling times relative to the (f-)TSST start.

Relative time [min] −40 −1 0-15 +16 +25 +35 +45 +60 +75

Saliva samples S0 S1 (f-)TSST S2 S3 S4 S5 S6 S7



3.1. DATA ACQUISITION 13

To minimize the effects caused by interindividual differences in energy availability, participants
were provided 200ml of grape juice, substituted with sugar water for fructose-intolerant participants
[Zän20]. Females additionally gave a passive drool sample on the second day to determine
progesterone levels to detect menstrual cycle-related changes in the cortisol response to acute
stress [Ham20]. A body scale was used to determine the participant’s body weight, body fat, and
muscle percentage.

(f-)TSST

All participants were filmed by two cameras during the talk and math phase of the (f-)TSST. An
RGB camera (Sony SRG-300H, Minato, Japan) filmed the head and an RGB-D camera (Microsoft
Azure Kinect, Redmond, WA) filmed the entire body. The RGB-D camera was replaced by a cell
phone (Google Pixel 7A, Foxconn, Tucheng, Taiwan) close to the beginning of the second half of
the study. During the (f-)TSST, the times of individual phases of the protocol (3.1) were tracked
with a mobile application (aTimeLogger - Time Tracker, BGCI)1.

Post-Test Phase

After the (f-)TSST, participants were guided back to the preparation room providing the next
saliva sample (S2: about 15 min after the (f-)TSST start). The remaining saliva samples were
taken according to the relative times provided in Table 3.4.

3.1.4 Video Data

As the openTSST platform only accepts videos in the MP4 file format, the MKV output files from
the Kinect were converted into MP4 files with H.264 encoding. The used cell phone saved the
recordings as MP4 files, which were compressed before uploading.

openTSST Output

This thesis only used the full-body videos, uploaded in a resolution of 1920×1080 for the Kinect,
and 1080×1920 for the phone, respectively, to the openTSST web application. The output was a
Comma-separated values (CSV) file, with one row for each frame of the video and three columns
(x, y, c) for each key body part, representing the x, y coordinates, and a confidence value extracted
by the openTSST framework [Geß23] utilizing OpenPose [Cao19]. An overview of the key body
parts extracted by OpenPose can be found in Figure 3.2.

1https://play.google.com/store/apps/details?id=com.aloggers.atimeloggerapp (visited on 03/02/2024)

https://play.google.com/store/apps/details?id=com.aloggers.atimeloggerapp
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Figure 3.2: OpenPose BODY_25 body part mapping.

Data Cleaning

The CSV file received from openTSST, however, included a larger time frame of the video, which
was actually of interest. This is because the video recording started before the (f-)TSST and only
stopped after a panel member had unplugged all the participant’s cables from various measuring
instruments and the participant had left the room. A clapperboard was used as the start and end
point for the data, which was closed in front of the camera before the talk and after the math
phase of the (f-)TSST. This reduced the additional data that was not part of the actual test to a
few seconds, in which the passive panel member briefly came in front of the camera, closed the
clapperboard, and sat down again. Therefore, the start and end frames, defined by the frame in
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which the clapperboard was closed, were manually extracted for all videos individually using
DaVinci Resolve 18 (Blackmagic Design, Port Melbourne, Australia). To analyze the individual
phases of the (f-)TSST, the start frame of the talk phase was extracted, which was determined
manually based on the vocal prompt from the panel that the participant should start their talk.
However, this was only possible for the cell phone videos, as no sound was available for the Kinect
recordings. The start of the math part and the end of the (f-)TSST were then calculated using the
times logged by the panel. Afterward, all CSV files from openTSST got trimmed to only include
the key body parts information from the extracted start to end frame of the corresponding video.

Data Normalization

All data was normalized based on body height and considering whether the participants performed
the (f-)TSST standing or sitting. This was essential to compensate for differences in the orientation
of the camera between tests and participants to ensure that the results obtained were comparable.
The body height was calculated as the 95th percentile of the vertical distance between two keypoints
yupper and ylower for the entire data sequence (equation 3.1). While the ”Nose” keypoint (fig 3.2)
was always used for yupper, ylower depended on whether the participant performed the (f-)TSST in
a standing or sitting position. Equation 3.2 was used in the standing case for each frame i. The
average was used because the camera was not filming from the front, but from the participant’s
perspective slightly to the right. As a result, the ”Right Heel” keypoint had a larger y-value with
a symmetrical stance, which was compensated for as best as possible. For the seated case, the
”Mid Hip” keypoint was used for ylower and, assuming that the difference between upper body and
leg length does not substantially vary, normalized only for the upper body. This had to be done
because the sitting position varied greatly between the participants. Some participants sat with
their legs stretched out, had their feet firmly on the floor or sat with one leg crossed over the other.

height = quantile(ylower − yupper, q = 0.95) (3.1)

ylower,i =
1

2
(yLeftHeel,i + yRightHeel,i) (3.2)

Additional Preprocessing

Further preprocessing steps were analog to [Geß23], which will be briefly described in the following.
Before normalizing the data, as outlined above, OpenPose’s occasional failures in pose detection
were addressed by using linear interpolation for missing keypoint estimations and discarding gaps
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over half a second. Furthermore, to minimize the impact of high-frequency, low-magnitude noise,
a 6 Hz, fifth-order, zero-lag, low-pass Butterworth filter was applied to the data.

The position of each body part relative to the neck was determined by calculating the difference
between the coordinates of the neck and the opposed body part. The same method was used for
the position of each wrist to its corresponding elbow.

Finally, velocities in the x- and y-dimensions, as well as the 2-dimensional velocity were
computed. For the x and y components, the Euclidean norm was applied to the respective
differences in the x and y coordinates of the position. Similar computations were made for the
2-dimensional velocity which was additionally divided by the elapsed time, resulting in the velocity
measured in units of pixels per frame.

3.2 Endocrinological Features

To assess the activity of the HPA axis and confirm the anticipated stress reaction induced by the
TSST, four saliva features were calculated from the raw cortisol values obtained by the saliva
samples (S0 - S7). This involved the maximum cortisol increase (∆cmax ), the slope from S1 to
S4 (mS1S4), and, termed by Pruessner et al., the ’Area under the curve with respect to ground’
(AUCg) as well as the ’Area under the curve with respect to increase’ (AUCi) [Pru03]. The first
saliva sample (S0) was excluded from the analysis, as the main purpose of it was for baseline
comparisons and a potential retrospective exclusion of participants. For the remaining samples
(S1 - S7), the features were calculated as follows, where ti denotes the time of the measurement
and Si is the corresponding cortisol level.

The maximum increase in cortisol (∆cmax ), expressed as the difference between the peak
cortisol level after the TSST and the cortisol level S1, measured right before the TSST:

∆cmax = max{S2, ..., S7} − S1 (3.3)

The slope mS1S4 between S1 and S4 was calculated as:

mS1S4 =
S4 − S1

t4 − t1
(3.4)
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Furthermore, the AUCg, quantifying the ’Area under the curve with respect to ground’ was
computed as:

AUCg =
6∑

i=1

(Si+1 + Si) · (ti+1 − ti)

2
(3.5)

Finally, the equation for AUCi, representing the ’Area under the curve with respect to increase’
is:

AUCi =
6∑

i=1

(Si+1 + Si) · (ti+1 − ti)

2
− S1 · (t7 − t1) (3.6)

3.3 Motion Feature Calculation

After the data preprocessing, various features were computed, mostly similar to previous work
[Abe22; Ric24]. These features were calculated for the individual body parts. To quantify move-
ments of composite body regions, some body parts were additionally grouped according to Table
3.5. The calculated features can be divided into two categories, generic and expert features.
Generic features, accessible without specialized domain knowledge, included fundamental statisti-
cal metrics such as mean and SD in addition to signal characteristics like entropy. Expert features,
conversely, rely on pre-existing expertise and are tailored to delineate movement patterns identified
in prior research or observations during data collection. The calculated features are listed in Table
3.6 for the generic, and in Table 3.7 for the expert features, respectively. The metrics for the expert
features are detailed in B.1.

Table 3.5: Definition of body part groups; {L/R} denotes the left and right side.

Group Body Parts

Trunk {L/R} Hip, {L/R} Shoulder, Neck
Upper Extremities {L/R} Shoulder, {L/R} Elbow, {L/R} Wrist
Lower Extremities {L/R} Knee, {L/R} Ankle, {L/R} BigToe, {L/R} SmallToe,

{L/R} Heel
Total Body All body parts

Static Periods

To measure anticipated freezing behavior, static periods were identified in 0.5 s windows with a
50% overlap. A window was considered static if its total variance fell below a certain threshold
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Table 3.6: Overview of computed generic features.

Name Abbreviation

Mean mean
SD std
Entropy entropy
Absolute Energy abs_energy
Mean Crossing mean_crossing
Zero Crossing zero_crossing
Fast Fourier transform (FFT) Aggregated Centroid fft_aggregated_centroid
FFT Aggregated Kurtosis fft_aggregated_kurtosis
FFT Aggregated Skew fft_aggregated_skew
FFT Aggregated Variance fft_aggregated_variance

based on the observed body part. The thresholds for the velocity norm can be taken from B.2
and for the velocity norm relative to the neck from B.3. In addition, for the left and right wrist,
the expert features mentioned in Table 3.7 were further calculated relative to the corresponding
elbow with a threshold of 2× 10−7. All the thresholds were determined iteratively by manually
comparing the computed feature value to the actual video data.

Euclidean Distance

Observations indicated that participants experiencing acute stress tended to bring their hands closer
together, touch their heads more often, and adopt a tenser posture. Consequently, the Euclidean
distance, as a simple and for this purpose previously successfully used method [Car06; Gia12],
between the left and right wrist, as well as between the wrists and nose keypoint, was computed.
Additionally to the mean and SD of that distance throughout the (f-)TSST, frames in which a pair
of these body parts were close together were counted. This was achieved by applying a threshold
on the Euclidean distance calculated for each frame. Due to the different normalization techniques,
based on whether participants performed the (f-)TSST standing or sitting, different thresholds were
applied. For standing participants, a threshold of 0.11 was used between the wrists and 0.095 for
the {L/R} wrist and the nose. For the seated position 0.095 between the wrists and 0.35 between
the {L/R} wrist and the nose. These thresholds were determined by manually searching for videos
where the participant touched their nose or had their hands very close together, indicating the
minimum Euclidean distance throughout the video. Followed was adding a buffer of 25% for
touching the head to also capture head scratching, touching chin, etc. For bringing their hands
closer together, a buffer of 40% was used. The higher buffer for the hands was because the wrists
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were the representative keypoints for hands and touching fingers should also be captured. The
thresholds were checked by manually counting the frames and comparing them to the computed
results for a small subset of the data.

Table 3.7: Expert features overview.

Name Abbreviation Channels Metrics

Static Periods stat_periods vel_norm count_per_min
vel_norm_rel2neck max_duration_sec

mean_duration_sec
longer_than_3sec
std_duration_sec
ratio_percent

Euclidean Distance eucl_dist pos_norm mean
std
frames_below_threshold

3.4 Evaluation

3.4.1 Statistics

The Shapiro-Wilk test was used to check the data for normal distribution at the beginning to
determine the type of subsequent statistical test [Pea08]. However, once this showed nonconformity
for the majority of features, further testing was carried out with a non-parametric test. The paried
Wilcoxon signed-rank test [Wil45] was performed for all features, as a non-parametric equivalent
of the paired t-test [Dam23], with the condition (TSST or f-TSST) as the within variable. This
was possible because there was full data for both the f-TSST and the TSST for each participant
included in the statistical analysis. All statistical computations were performed using the Python
package biopsykit [Ric21] based on pingouin [Val18]. The significance level was set at α = 0.05,
and t-test effect sizes were reported as Hedge’s g. Despite the highly explorative character of the
study, an attempt was made to correct for the multiple comparisons problem using Bonferroni
corrections across all tests [Arm14]. All figures and tables utilise the following notation to denote
statistical significance: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

The motion features described in 3.3 were used for all statistical analyses. To assess the
influence of acute psychosocial stress on body posture and movements, statistically significant
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features were be reported. In addition to these, or should there be none, other noticeable features or
characteristics that have proven to be conclusive in studies mentioned in chapter 2 were evaluated.

3.4.2 Classification

To distinguish between the TSST and the f-TSST in standing position, a ML model was trained on
the calculated motion features. Only the standing participants were considered, as only for these
was it possible to differentiate between the conditions. The classification pipeline used for this is
shown in Figure 3.3.

Standard

Scaling

Min-Max

SelectKBest

Feature Selection

RFE

kNN

Classification

SVM

DecisionTree

AdaBoost

RandomForest

Figure 3.3: Trained classification pipeline.

A total of five different models were trained for classification, namely k-nearest neighbors
(kNN), Support vector machine (SVM), DecisionTree, Adaptive Boosting (AdaBoost), and Ran-
domForest. Using a five-fold cross-validation (CV), they were evaluated according to the mean
test accuracy. With each iteration of the CV, the hyperparameters of the feature selection and
classification were optimized using grid search, and for RandomForest random search with 100

iterations. During each segment of the cross-validation process to optimize the hyperparameters,
the features were first scaled by either StandardScaler or MinMaxScaler. The StandardScaler
normalizes the features by adjusting their distributions so that they have a mean of 0 and a SD
of 1, using z-score normalization. The MinMaxScaler, on the other hand, adjusts the features
so they fall within a range of 0 to 1. After scaling, the dimensionality of the feature space was
minimized using either SelectKBest or recursive feature elimination (RFE). SelectKBest selects
the top k features based on the highest analysis of variance (ANOVA) F-score, effectively reducing
the number of features. In the case of RFE, an SVM estimator is used to determine the importance
of each feature. Subsequently, the features deemed least important are gradually eliminated until
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the target number of features is reached. The above-outlined CV approach has been successfully
utilized in the past [Abe19; Abe22]. The used hyperparameter grid is shown in Table 3.8.

Table 3.8: Used hyperparameter grid; 1 RandomizedSearch was used for RandomForest.

Feature Selection Hyperparameter Values

SelectKBest k 2 to 5; steps of 1
RFE n 2 to 10; steps of 2

Classifier/Regressor Hyperparameter Values

kNN k 2 to 20; steps of 2
weights uniform, distance

DecisionTree criterion gini, entropy
depth 2, 4

SVM kernel linear
C 10−2, 10−1, 100, 101, 102, 103, 104

AdaBoost base_estimator DecisionTree
n_estimators 10 to 500; steps of 20
learning_rate 0.01 to 1; steps of 0.1

RandomForest 1 bootstrap True, False
max_depth 5 to 50; steps of 5

max_features auto, sqrt
min_samples_leaf 1 to 10; steps of 1
min samples_split 2 to 20; steps of 1

n_estimators 10 to 500; steps of 10





Chapter 4

Results & Discussion

4.1 Endocrinological Measures

As the laboratory had not yet finished analyzing the saliva samples at the time of writing this
thesis, only the cortisol data from the first 45 participants was used.

The cortisol increase peaked with sample S3, 10 min after the end of the (f-)TSST as shown in
Figure 4.1. Compared to the f-TSST, the average maximum value of the TSST was approximately
66% higher. A substantial increase of 157% in the TSST and just under 42% in the f-TSST
occurred for S3 relative to the baseline measure S1, which was taken immediately before the
(f-)TSST.
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Figure 4.1: Cortisol response; Mean ± Standard error (SE).
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All of the derived cortisol features, shown in Figure 4.2, revealed a significant difference
between the TSST and the f-TSST. A list of the statistical test results can be taken from Table 4.1.
The largest effect sizes were found for mS1S4 with g = 0.809 (mean increase of 0.15 nmol L−1) and
∆cmax with g = 1.024 (mean increase of 5.13 nmol L−1). The outcomes for the endocrinological
responses were consistent with previous findings [Abe22; Wie13; All14].
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Figure 4.2: Calculated cortisol features; Mean ± SE.

Table 4.1: Results of statistical cortisol feature analysis.

T df p Hedges’ g
Feature

AUCg 3.097 37 0.004∗∗ 0.556
AUCi 3.766 37 <0.001∗∗∗ 0.710
∆cmax 3.979 39 <0.001∗∗∗ 0.746
mS1S4 3.969 38 <0.001∗∗∗ 0.809

No major differences were found when analyzing the cortisol response according to the position
in which the (f-)TSST was performed, as can be seen in Figure 4.3. These results indicate that
the TSST successfully triggered stress in the participants, regardless of whether the participants
performed the (f-)TSST while standing or sitting.
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Figure 4.3: Cortisol response separated by position; Mean ± SE.

4.2 Body Posture & Movement Feature Evaluation

4.2.1 (f-)TSST Features In Standing Position

A total of 258 features were computed, of which 8 were statistically significant. These included 2
generic and 6 expert features.

Generic Features

The statistically significant generic features are shown in Figure 4.4. Similar to [Abe22], the
generic features showed a reduced head movement during the TSST compared to the f-TSST,
represented by the nose keypoint. Looking at mean velocity, the head generally moved 14% less
during the stressful situation (4.53 × 10−4 ± 1.36 × 10−4 vs. 5.27 × 10−4 ± 1.38 × 10−4) and
almost 12% less relative to the neck (5.76× 10−4 ± 1.44× 10−4 vs. 6.51× 10−4 ± 1.53× 10−4),
which could indicate a more tense posture in the cervical region. This would partly align with the
findings of Shahidi et al., although participants were sitting during the stressful situation [Sha13].

In contrast to the mentioned studies [Dou18; Roe10; Zit19], no significant reduction in postural
sway was observed. The trunk was used as the representative group, which, according to Table
3.5, is made up of the keypoints on the hip, shoulders, and neck. Features that would show such a
behavior can be seen in Figure 4.5. The mean velocity was only reduced by 3% during the TSST
compared to the f-TSST (8.4× 10−4 ± 2.22× 10−4 vs. 8.69× 10−4 ± 2.09× 10−4). A detailed
evaluation of all the generic features can be found in Table B.4.
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Figure 4.4: Statistically significant generic features; (f-)TSST standing.
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Figure 4.5: Generic features characterizing postural sway; (f-)TSST standing.

Expert Features

The static periods showed a significant difference for the head. In Figure 4.6, the features concern-
ing only the nose are displayed. During the TSST, static periods occurred far more frequently each
minute. There were, on average, around 19% more static periods during the TSST compared to the
f-TSST (32 ± 8 vs. 27 ± 7) in one minute. Additionally, there were 19% more static periods lasting
for more than 3 seconds while being exposed to acute psychosocial stress (228 ± 54 vs. 191 ± 53).
Analyzing the mean time of the static periods relative to the total length of the (f-)TSST, there was
an increase of 33% throughout the TSST compared to the baseline (16% ± 5% vs. 12% ± 5%).
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Figure 4.6: Statistically significant expert features for the nose; (f-)TSST standing.

Even more notable results were found when observing the nose relative to the neck (Figure 4.7).
Static periods were around 24% more frequent each minute while stressed (26 ± 8 vs. 21 ± 7).
Furthermore, there was a mean increase of 26% in static periods longer than 3 seconds, as well
as 25% more total static time during the TSST in comparison to the f-TSST. This would further
support the conclusion that stressful situations may lead to increased muscle tension in the neck
and shoulder area. It has also been shown in the past that stress generally causes increased muscle
activity in these areas of the body [Wij10; Nim12]. Decreased movement was also found for the
wrists relative to their corresponding elbow which can be seen in Figure A.1.

The computed Euclidean distance metrics did not provide any statistically significant results.
Especially the attempt to recognize self-touching did not lead to any meaningful findings. Figure
4.8 shows the remaining Euclidean distance features regarding the wrists and nose. The average
distance between the wrists was 11% less for the TSST, supporting the observed behavior that the
participants tended to keep their hands closer together while being exposed to acute psychosocial
stress. There was also an increased SD for the wrists as well as relative to the nose. This elevated
variability in movements may indicate more jerky and less smooth motions, and relative to the
nose, potentially be reflective of behaviors such as frequently touching the head region. Utilizing
the smoothness/jerkiness of movements [Glo11; Lef16] or self-touching [Aig15; Aig18] were
used as meaningful features in previous stress reaction studies. A comprehensive overview of all
calculated expert features can be found in Table B.5.

The difference in motion and posture features observed during the TSST compared to the
f-TSST, concerning less movement or a more tense posture, are characteristic for defensive freezing
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Figure 4.7: Statistically significant expert features for the nose relative to the neck; (f-)TSST
standing.
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Figure 4.8: Euclidean distance features; (f-)TSST standing.

behavior [Roe17; Bra04] and especially the reduced head movement seemed to be a distinct marker
for acute psychosocial stress. Due to the saliva features (4.1) confirming successfully induced stress
during the TSST and the statistical significance of the features regarding less or static movement, it
would suggest that defensive freezing behavior is a promising indicator for an acute stress reaction.
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Condition order

An additional statistical analysis was carried out, which, in addition to the procedure described in
3.4.1, also included the condition order as a between variable. This resulted in p > 0.999 for all
features indicating that it did not matter, whether the TSST or f-TSST was performed first.

4.2.2 (f-)TSST Features In Sitting Position

A total of 288 features were computed from which none showed statistical significance with the
methods used in this thesis.

Generic Features

The previously descriptive generic features for the (f-)TSST are illustrated in Figure 4.9. During
the TSST, there was again a reduction in head movement, but in direct comparison with the f-TSST,
this was noticeably less.
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Figure 4.9: Generic features for the nose; (f-)TSST sitting.

Expert Features

Similar to the standing position, there were more static periods during the TSST. Looking at
the nose keypoint, this behavior accounted for an average of 16% more of the total length of
the recording than during the f-TSST, which can be seen in Figure A.2 (23.4% ± 8.2% vs.
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20.2% ± 7.7%). When viewed relative to the neck, there was also a reduction in movement during
the stressed condition, but the differences were all less noticeable, as shown in Figure A.3.

An attempt was made to represent leg-shaking in a feature for the seated variant. In addition
to a disease-related trigger such as Restless Leg Syndrome or Attention Deficit Hyperactivity
Disorder [Was05; All03], it can also be triggered by experiencing anxiousness or agitation [All03].
After examining the static periods of the two knees (Figure 4.10), no clear result was apparent.
Both were not showing fewer static periods during the TSST despite the successfully induced
stress. However, the static periods of the knees relative to the corresponding big toe, which should
remain relatively still when bouncing with the knees, would support the observation. This was
quantified by more static periods throughout the recording of the baseline which is displayed in
Figure 4.11. Three participants had to be excluded from the analysis as the camera was inaccurately
placed, and the feet were not in the frame.
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Figure 4.10: Expert features for the knees; (f-)TSST sitting.

In conclusion, based on the lack of statistical significance and the sometimes ambiguous or
marginal differences, which could also be due to inaccurate pose estimation, the stressed condition
could not be distinguished from the control condition in a seated position. This is at least the case
for the techniques and features used in this thesis.

4.2.3 Gender differences

Since the stressed condition could only be differentiated from the control condition in a standing
position, the investigation of gender differences was limited to this variation of the (f-)TSST. For
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Figure 4.11: Expert features for the knees relative to corresponding big toe; (f-)TSST sitting.

this purpose, a statistical analysis was carried out, which, in addition to the procedure described in
3.4.1, also factored in the gender of the participant as a ”between” variable. This resulted in some
statistically significant features, which can be seen in Table 4.2. The statistical results of these
features are displayed in Table B.8. As expected, both genders showed a stress reaction throughout
the TSST based on the, in some cases drastic, increase in features related to static periods.

Table 4.2: Statistically significant gender differences regarding static periods (SP) for the mid hip,
1relative to the neck; mean ± SD.

Female Male
Metric TSST f-TSST TSST f-TSST

Max. Duration (s) 107.78 ± 44.79 90.04 ± 49.24 208.25 ± 93.62 136.50 ± 208.25
Mean Duration (s) 21.13 ± 3.59 20.09 ± 3.38 27.94 ± 6.47 23.15 ± 3.07
Ratio (%) 13.41 ± 7.07 11.65 ± 6.81 23.82 ± 8.38 19.37 ± 6.49
SD Duration (s) 12.86 ± 4.73 11.05 ± 4.69 22.76 ± 9.05 15.36 ± 5.12
Counts per Min1 29.91 ± 13.49 25.22 ± 11.66 44.96 ± 12.02 41.16 ± 11.80
Longer 3 Sec1 215.87 ± 97.18 182.87 ± 83.40 323 ± 86.07 291.05 ± 85.51
Ratio (%)1 10.26 ± 5.89 8.03 ± 4.72 17.91 ± 6.58 14.69 ± 5.26

Interestingly, the features concerned exclusively the mid hip keypoint, partly relative to the neck.
Looking at the maximum duration of the static periods in seconds, for example, this increased,
on average, by 53% for men, whereas there was only a 20% increase for women. The SD of the
duration of static periods was also striking. There was a mean increase of 48% for male participants
in the TSST, while for female participants it was only 16% more than in the f-TSST. The women
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therefore tended to move more in the hip area during both conditions and the acute stress reaction
had a less dramatic effect on this region of their bodies. However, a clear reason explaining these
differences could not be found either through further analysis or in other studies.

4.2.4 Phases of (f-)TSST

For the analysis of the differences within the individual phases of the (f-)TSST, only the standing
variant of the (f-)TSST was considered. Additionally, none of the participants recorded with the
Kinect were included, due to the reasons explained in 3.1.4. Based on previous findings that static
periods are particularly meaningful for the stress level of the participants, the focus was on the
features that would characterize a freezing behavior. Figure 4.12 shows how the velocity of various
body parts changed during the individual phases.
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Figure 4.12: Generic features for different body parts during individual (f-)TSST phases.

It can be seen that there was a decrease in movement for most body parts throughout the TSST,
indicating an increased stress level. What could be observed, except for the left wrist, was that the
participants moved less during the math part of the (f-)TSST. This was true for both the TSST and
the control condition. Such a behavior suggests that the math part caused more acute stress than
the talk part. Looking at the head region, which was the most informative body part to distinguish
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between the two conditions, there was a considerable difference between the two phases in the
TSST. The observation is supported by the expert features in Figure 4.13.
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Figure 4.13: Expert features (SP) for different body parts during individual (f-)TSST phases.

Identified was, in most cases, an increase in static periods during the TSST and an additional
increase during the math phase. The head region was again particularly indicative, and a substantial
difference could be observed between the conditions, as well as the two phases.

In conclusion, the results showed a noticeable decrease in movement throughout the arithmetic
task, indicating a greater stress response. This would further agree with the results of Abel, who
came to a similar conclusion using IMU data [Abe22].

4.2.5 Camera Modality

As already mentioned in 3.1.3, about halfway through the study, there was a switch from a Microsoft
Kinect camera to a Google Pixel 7A cell phone as the device for recording full-body videos. To
investigate whether the used camera influenced motion-based stress detection, a statistical analysis
was carried out for the (f-)TSST variant in a standing position. The procedure was analogous to
3.4.1 with the addition that the used camera was factored in as a between variable. The statistically
significant features can be taken from Table 4.3.
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Table 4.3: Statistically significant features regarding the different cameras.

U p Hedges’ g
Body Part Channel Metric

Left & Right Ankle vel_norm_rel2neck SP Counts per min 402 0.034∗ -1.312
Left Elbow pos_norm_rel2neck Entropy 52 0.014∗ 1.642
Left Elbow vel_norm Abs. Energy 448 <0.001∗∗∗ -2.555
Neck vel_norm Mean Crossings 63 0.047∗ 1.443
Nose vel_norm Abs. Energy 431 0.001∗∗ -2.5
Nose vel_norm Mean Crossings 50 0.011∗ 1.533
Nose vel_norm_rel2neck Mean Crossings 49 0.010∗ 1.765
Right Elbow pos_norm_rel2neck Entropy 43 0.005∗∗ 1.667
Right Elbow vel_norm Abs. Energy 452 <0.001∗∗∗ -2.815
Right Wrist vel SD 42 0.005∗∗ 1.754
Trunk pos_norm_rel2neck Entropy 62 0.042∗ 1.449
Trunk pos_norm_rel2neck SD 60 0.034∗ 1.543
Trunk vel_norm Abs. Energy 459 <0.001∗∗∗ -3.427
Trunk vel_norm_rel2neck Abs. Energy 37 0.003∗∗ 1.666
Trunk vel_norm_rel2neck SD 57 0.025∗ 1.286
Upper Extremities pos_norm Entropy 62 0.042∗ 1.454
Upper Extremities pos_norm_rel2neck Entropy 56 0.022∗ 1.680

Initially excluding the trunk and upper extremities as grouped body regions, it is noticeable that
the remaining body parts showing significant differences were primarily the extremities, or body
parts generally closer to a border of the frame. It is important to mention that the Kinect was used
to record horizontally and the cell phone in vertical format. For the cell phone videos, this caused
the keypoints showing significant differences, to be very close to the borders of the camera frame.
Since the study environment did not change, the differences must be due to technical specifications.
The biggest and probably most important differences are in the camera lenses. The Google Pixel
7A has a wide-angle camera with a field of view (FOV) of 80◦ and an ultra wide-angle camera
with a FOV of 120◦1. The Kinect, on the other hand, works in horizontal color mode with a FOV
of 90◦2. Wide-angle cameras lead to object distortion, making it more difficult to estimate its

1https://store.google.com/product/pixel_7a_specs?hl=de (visited on 02/27/2024)
2https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification (visited on 02/29/2024)

https://store.google.com/product/pixel_7a_specs?hl=de
https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification
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distance, area, or direction [Fan21]. A subsequent pose estimation that should be as accurate as
possible can be more difficult, which is why special techniques for pose estimation of distorted
images are being actively developed [Mik20; Miu20]. This could have led to certain movements
being over- or underestimated due to distortion. Additionally, even if the spatial conditions have
not changed over the entire period of data collection, the lighting conditions were likely picked up
differently by the two cameras. Lighting conditions can can have an influence on pose estimation
[Ye22]. In table B.6, the evaluation (mean ± SD) for the Kinect camera and in table B.7 for the
cell phone is shown. It can be seen that features that indicate more movement were often higher
for the cell phone camera. However, this was not apparent for all features of this type. What limits
the direct comparability is that these were two completely different groups of participants.

4.2.6 Classification

Since the statistical analysis only allowed a distinction to be made for the standing (f-)TSST variant,
only these participants were considered for the ML-based classification. The best-performing
pipeline achieved a mean accuracy of 68.5% ± 9.7% and had the following configuration:

• Scaling: MinMaxScaler

• Feature Selection: RFE

• Classification: DecisionTree

The respective confusion matrix is shown in Figure 4.14. Table 4.4 provides an overview of
the results for the different pipelines according to 3.4.2.
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Figure 4.14: Confusion matrix for condition classification.
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An evaluation based on the condition order did not provide any major differences in the average
classification accuracy. The respective confusion matrices are displayed in Figure 4.15. The mean
test accuracy for TSST-first was 65.2% and for f-TSST-first 72.5%, although the data sets were
not equal in size and included different participants.

Table 4.4: Comparison of different ML pipelines; accuracy ± SD; best performing pipeline per
classifier highlighted.

Feature selection RFE SelectKBest
Scaling MinMax Standard MinMax Standard

Classification

KNeighborsClassifier 60.4 ± 6.5 60.7 ± 6.0 55.7 ± 6.1 55.7 ± 5.0
SVC 56.0 ± 5.3 56.0 ± 8.5 58.3 ± 13.1 57.2 ± 12.1

DecisionTreeClassifier 68.5 ± 9.7 64.3 ± 7.7 57.9 ± 5.6 61.4 ± 6.8
AdaBoost 63.7 ± 8.1 59.7 ± 14.1 59.3 ± 11.5 57.9 ± 10.3

RandomForestClassifier 60.1 ± 12.3 65.3 ± 4.9 53.1 ± 11.7 55.6 ± 11.7
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Figure 4.15: Confusion matrices for condition classification separated by condition order.

Comparing these results with studies by Richer et al. [Ric24] and Abel [Abe22], who achieved
a mean test accuracy of 71.6% and 74.3% respectively, the results of this thesis are only slightly
worse. It should be considered that in the two studies mentioned, the motion features were
calculated on considerably more labor-intensive IMU data, making the results of this work quite
promising.

In contrast to Abel [Abe22], there were smaller differences in classification accuracy by
condition order. Thereby, 81.6% for TSST-first and 67.5% for f-TSST-first were achieved with a
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comparable size of participants. This would suggest that the acute psychosocial stress responses
on body posture and movements were only marginally influenced by the condition order. These
findings would also be consistent with the statistical analysis regarding the effect of condition
order in 4.2.1.

4.2.7 General Discussion & Limitations

In summary, the stressed condition could be distinguished from the control condition, at least
when standing, using body posture and movement. The statistical analyses performed and a
ML-based classification between the TSST and the f-TSST led to results that are comparable
with similar studies [Abe22; Ric24]. Hence, this work supports the notion that bodily freezing
behavior can be used as a significant characteristic for an acute psychosocial stress reaction.
Notable is the used baseline, composed of the f-TSST [Wie13] and the placebo-TSST [Het09].
Even though the evaluated cortisol features clearly showed that there was no activation of the
HPA-axis with the modified f-TSST, studies comprehensively investigating this protocol are still
lacking. Even though this variant has been proven useful in comparable studies due to its better
comparability to the TSST, it is still not optimal. As reported, the math part of the f-TSST still
resulted in a stress response, which is probably because mental arithmetic, especially in front of
other people, was not one of the strengths of many participants, even though the task was much
easier compared to the TSST. Other participants, however, might have perceived this part as rather
tiresome, especially considering the duration of 5 minutes. Nevertheless, it should be worthwhile
to continue researching and to develop a baseline protocol that does not trigger a stress reaction in
the participant, but which is directly comparable to the TSST.

Further, the change in gender composition of the panel in the second half of the study was
also not optimal. Research suggests that for both men and women, interactions with the opposite
gender result in increased discomfort and anxiety [McC91; Cho08]. Regarding the TSST, males
and females showed greater cortisol increase when exposed to a panel including the opposite sex
[Duc12]. Additionally, a meta-analysis revealed one of the lowest effect sizes concerning cortisol
stress response for an all-female panel [Goo17], although no comparison to an all-male panel was
made. Even though the effect was not investigated in this thesis, it would be advisable for future
studies to follow the original protocol and have both genders represented on the panel.

The same applies to the used camera. As it was established that there was a, in some cases
significant, difference in the features between the cameras. Therefore, the same camera should
be used for the entire study. This makes the results more comparable and does not introduce any
additional variables into the analyses.
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Furthermore, the results are limited by the data used and its processing. The selection of
candidates was based on a digital screening to check prerequisites for participation in the study.
However, the actual participants were, except for physical measurements, not examined, and it
can therefore not be ruled out that there were participants who should not have been allowed to
take part in the study. Additionally, only young people participated in the study. Future studies
should involve different age groups and potentially review the eligibility criteria more rigorously.
In addition, a study with even more participants would be recommended to achieve a better
generalizability of the results. Nevertheless, the data set for this thesis was already relatively
extensive, with a total of 83 participants, whose data were complete and could therefore be included
in the analysis.

For the seated participants, normalization was only performed for the upper body, as the sitting
positions greatly varied during the (f-)TSST. This may have had an influence on how successful
differences between the conditions were able to be observed. To solve this problem, a baseline
could be recorded beforehand, in which the participant sits upright with both feet firmly on the
ground to take measurements for later normalization.

The identification of the start and end of the (f-)TSST using a clapperboard was also not
optimal. This had to be done because no system time was stored in the metadata for the videos,
and therefore no synchronization with the times tracked by the panel for the start and end of the
(f-)TSST was possible. It cannot be excluded that it took different lengths of time to sit down or to
start, which could be caused by a technical error appearing just before the intended start, causing a
delay after the clapperboard was closed. Furthermore, the manual determination of start and end
times is very time-consuming. Future studies could remedy this by using a lamp with a visible
light within the video, that is assigned different meanings depending on its color. The times within
a video could thus be extracted automatically, based on the light filling out the video frame.

Another limiting factor was OpenPose itself and its data processing. In some cases, there
were non-reproducible errors in OpenPose or an output that proved to be unusable only after
extensively checking the data manually. This involved unpredictable shifts of the output in the
2D plane, sometimes minutes of missing pose estimation, or considerable time lags. Filling in
missing frames using linear interpolation could also be inappropriate, as whole-body motion
is inherently redundant and nonlinear [Fur17]. Furthermore, a standardized way of calculating
thresholds, crucial for features like self-touching, which have been proven to be informative in
other studies, should be developed. A future comparison with other pose estimation frameworks,
interpolation techniques, and optimized features would be a useful extension.
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A substantial drawback of the data collection was that different stress effects were examined
in the course of the study. During the (f-)TSST, a total of seven electrodes were attached to
the skin of each participant, which were connected to different instruments. This might have
negatively influenced the baseline movement and the changes in movement due to an acute stress
reaction. The participants may have actively tried to move less so that no cable was pulled out of
a measurement instrument, or the cable pulled on the electrodes when they were under tension
and thus pulled uncomfortably on the skin or lost contact. If possible, future studies should avoid
wiring the participants to avoid any inherent restriction of movement.





Chapter 5

Conclusion & Outlook

This bachelor thesis presented a comprehensive analysis of bodily movement changes as an acute
psychosocial stress response. Using camera videos of the whole body and OpenPose as the pose
estimation framework, a contactless distinction between the stressed condition and the baseline
for standing participants was achieved. For this purpose, different statistical metrics and features
characterizing certain behaviors based on literature or observations during data acquisition were
calculated and analyzed using statistics and ML. The TSST as the gold standard has proven to
be a reliable tool to induce stress in participants in a laboratory setting. Despite the mentioned
limitations, the f-TSST variant used proved to be a functional baseline with good comparability to
the TSST. This was confirmed by the calculated endocrinological measures, which all showed
a significant difference between the conditions regardless of condition order and whether the
participants performed the (f-)TSST while standing or sitting.

For the successful distinction between the conditions in the standing variant, the head turned
out to be the most meaningful body part. During the TSST, its movement, also relative to the neck,
decreased significantly. This was confirmed by other features quantifying SP. The stress response
was shown by a significant decrease in movement in this body region, indicating a freezing behavior
and a more tense posture, which was also found in previous studies. Features such as self-touching,
body-sway, or non-smooth movement did not prove to be significant in this study.

It was not possible to achieve a differentiation between the conditions while sitting with the
features calculated in this thesis. Even though the head, as the significant body region in the
standing variant, showed a reduction in movement in the seated variation as well, the differences
were minimal. The leg bouncing feature, which only applied to the seated participants, showed
that there was an increased knee bouncing during the TSST, but the results were not significant.
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To the best of my knowledge, this is the first work to examine a seated variant, and therefore no
comparison can be made with other findings.

In contrast to other studies, there was a difference between the genders, but this was limited to
hip movements. Men and women both showed a decrease in movement in the TSST, but the effect
was smaller for women, who tended to move more in this body region throughout both conditions.
However, no robust explanation for this behavior was found through literature or further analysis.

A comparison of the math and talk phase of the standing variant showed a greater stress
reaction during the math part. This was characterized by a freezing behavior in different parts of
the body. A comparable study showed similar findings.

During the data collection, there was a switch from a Microsoft Kinect to a Google Pixel 7A
for video recording. The effect of the switch revealed some significant findings. Mainly affected
were physical extremities or body parts that were closer to the edge of the frame and could have
led to differences due to distortion. Therefore, as in other studies, one camera should be chosen
and remain the same throughout the data acquisition.

A ML-based classification between the TSST and the f-TSST with a mean accuracy of 68.5%
is not far from comparable results, which were based on a considerably more sophisticated data
collection technique using IMU data.

In conclusion, despite the limitations, the results of this work are promising and provide a
basis for further research. Bodily freezing has been confirmed as a characteristic for an acute
psychosocial stress response triggered by the TSST. Both statistical analysis and ML-based
classification have led to confident results that automated stress detection using contactless motion
analysis is possible. However, these results also show that there is still a long way to go for reliable
detection, preferably outside of a laboratory.

Future studies should optimize the data collection process by not wiring participants and
always using the same camera to prevent potentially causing movement restrictions and improve
comparability between participants. Further optimizations regarding the feature calculation would
also be advisable. In particular, the thresholds should be adjusted and additional features added.
Overall, an attempt could be made to use a more natural stress protocol and move away from a
standardized laboratory environment. A long-term goal would be a truly comprehensive under-
standing of stress and how it manifests itself through easily measurable markers in the body, which
cannot only be determined in the laboratory. This would make it possible to recognize repeated
stress at an early stage and take countermeasures to prevent it from becoming chronic. Research
into psycho-motoric models could create the basis for characterizing humans’ inner states during
an acute, psychosocial stress reaction from purely contactless measurements.
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Figure A.1: Static periods for the wrists relative to corresponding elbow; (f-)TSST standing.
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Figure A.2: Expert features for the nose; (f-)TSST sitting.
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Figure A.3: Expert features for the nose relative to the neck; (f-)TSST sitting.
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Additional Tables

Table B.1: Metrics for the expert features.

Metric Definition

count_per_min Number of occurences per min
max_duration_sec Longest duration in s
mean_duration_sec Mean duration in s
longer_than_3sec Number of intervals longer than 3 s
std_duration_sec SD of duration in s
ratio_percent Ratio of total time in %
frames_below_threshold Number of frames below threshold

Table B.2: Thresholds and body parts for velocity norm.

Body Part Threshold

Nose 5× 10−8

Mid Hip 2.5× 10−7

Trunk 5× 10−7

{L/R} Wrist 5× 10−7

Upper Extremities 1× 10−6
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Table B.3: Thresholds and body parts for velocity norm relative to the neck.

Body Part Threshold

Nose 1× 10−7

{L/R} Ankle 5× 10−7

Mid Hip 2.5× 10−7

Trunk 1× 10−6

{L/R} Wrist 5× 10−7

Upper Extremities 2.5× 10−6
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Table B.4: Statistical results of all generic features.

W p Hedges’ g
Body Part Channel Metric

Left Elbow pos_norm SD 398 >0.999 0.188
Entropy 469 >0.999 0.081

pos_norm_rel2neck FFT Centroid 435 >0.999 -0.004
FFT Skewness 434 >0.999 0.085
SD 378 >0.999 0.129
Entropy 427 >0.999 0.056
FFT Kurtosis 459 >0.999 0.066
FFT Variance 420 >0.999 0.078

vel SD 436 >0.999 -0.069
vel_norm Abs. Energy 458 >0.999 -0.018

Mean 344 >0.999 -0.226
Mean Crossings 303 >0.999 -0.273

vel_norm_rel2neck Abs. Energy 430 >0.999 0.008
Mean 339 >0.999 -0.226
SD 473 >0.999 0.063
Mean Crossings 317 >0.999 -0.275

vel_norm_rel2neck_2d FFT Centroid 468 >0.999 -0.021
FFT Skewness 408 >0.999 -0.052
FFT Kurtosis 444 >0.999 -0.050
FFT Variance 447 >0.999 -0.034

Left Wrist pos_norm SD 333 >0.999 0.222
Entropy 456 >0.999 0.285

pos_norm_rel2leftelbow FFT Centroid 443 >0.999 0.095
FFT Skewness 381 >0.999 0.124
SD 312 >0.999 0.350
Entropy 449 >0.999 0.065
FFT Kurtosis 435 >0.999 0.035
FFT Variance 400 >0.999 0.143

pos_norm_rel2neck FFT Centroid 385 >0.999 0.234
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FFT Skewness 459 >0.999 -0.044
SD 353 >0.999 0.180
Entropy 463 >0.999 0.272
FFT Kurtosis 439 >0.999 -0.095
FFT Variance 339 >0.999 0.281

vel SD 350 >0.999 0.003
vel_norm Abs. Energy 385 >0.999 0.151

Mean 368 >0.999 -0.079
Mean Crossings 443.500 >0.999 -0.046

vel_norm_rel2leftelbow Abs. Energy 456 >0.999 0.152
Mean 383 >0.999 -0.061
SD 417 >0.999 -0.035
Mean Crossings 448 >0.999 0.020

vel_norm_rel2leftelbow_2d FFT Centroid 426 >0.999 0.133
FFT Skewness 456 >0.999 -0.011
Zero Crossings 209 >0.999 -0.239
FFT Kurtosis 417 >0.999 0.097
FFT Variance 454 >0.999 0.077

vel_norm_rel2neck Abs. Energy 400 >0.999 0.145
Mean 361 >0.999 -0.083
SD 368 >0.999 -0.056
Mean Crossings 453 >0.999 -0.018

vel_norm_rel2neck_2d FFT Centroid 438 >0.999 0.144
FFT Skewness 429 >0.999 -0.067
Zero Crossings 214 >0.999 -0.239
FFT Kurtosis 384 >0.999 0.188
FFT Variance 470 >0.999 0.085

Neck pos_norm SD 253 >0.999 0.350
vel SD 464 >0.999 -0.025
vel_norm Mean 376 >0.999 -0.138

Mean Crossings 294 >0.999 -0.280
Nose pos_norm SD 290 >0.999 0.295

Entropy 412 >0.999 -0.043
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pos_norm_rel2neck FFT Centroid 307 >0.999 -0.216
FFT Skewness 366 >0.999 0.144
SD 364 >0.999 0.135
Entropy 329 >0.999 -0.168
FFT Kurtosis 386 >0.999 0.123
FFT Variance 387 >0.999 -0.158

vel SD 366 >0.999 -0.315
vel_norm Abs. Energy 320 >0.999 -0.225

Mean 140 0.006∗∗ -0.537
Mean Crossings 217 0.400 -0.435

vel_norm_rel2neck Abs. Energy 241 >0.999 -0.273
Mean 156 0.015∗ -0.501
SD 268 >0.999 -0.253
Mean Crossings 227 0.628 -0.380

vel_norm_rel2neck_2d FFT Centroid 392 >0.999 0.055
FFT Skewness 269 >0.999 -0.389
FFT Kurtosis 378 >0.999 -0.143
FFT Variance 379 >0.999 0.097

Right Elbow pos_norm SD 266 >0.999 0.293
Entropy 430 >0.999 0.160

pos_norm_rel2neck FFT Centroid 385 >0.999 -0.188
FFT Skewness 293 >0.999 0.380
SD 286 >0.999 0.230
Entropy 363 >0.999 -0.038
FFT Kurtosis 300 >0.999 0.353
FFT Variance 423 >0.999 -0.061

vel SD 388 >0.999 -0.204
vel_norm Abs. Energy 377 >0.999 -0.116

Mean 374 >0.999 -0.196
Mean Crossings 356 >0.999 -0.263

vel_norm_rel2neck Abs. Energy 378 >0.999 -0.010
Mean 340 >0.999 -0.254
SD 397 >0.999 0.016
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Mean Crossings 362 >0.999 -0.227
vel_norm_rel2neck_2d FFT Centroid 443 >0.999 -0.005

FFT Skewness 434 >0.999 -0.069
FFT Kurtosis 427 >0.999 -0.039
FFT Variance 458 >0.999 0.021

Right Wrist pos_norm SD 276 >0.999 0.388
Entropy 366 >0.999 -0.058

pos_norm_rel2neck FFT Centroid 457 >0.999 0.010
FFT Skewness 359 >0.999 0.223
SD 318 >0.999 0.341
Entropy 382 >0.999 -0.109
FFT Kurtosis 387 >0.999 0.202
FFT Variance 430 >0.999 0.092

pos_norm_rel2rightelbow FFT Centroid 369 >0.999 -0.168
FFT Skewness 374 >0.999 0.212
SD 393 >0.999 0.338
Entropy 332 >0.999 -0.146
FFT Kurtosis 379 >0.999 0.184
FFT Variance 412 >0.999 -0.070

vel SD 327 >0.999 -0.140
vel_norm Abs. Energy 455 >0.999 -0.018

Mean 359 >0.999 -0.181
Mean Crossings 319 >0.999 -0.270

vel_norm_rel2neck Abs. Energy 414 >0.999 0.002
Mean 348 >0.999 -0.198
SD 415 >0.999 -0.028
Mean Crossings 316 >0.999 -0.274

vel_norm_rel2neck_2d FFT Centroid 469 >0.999 0.007
FFT Skewness 471 >0.999 -0.003
FFT Kurtosis 458 >0.999 -0.017
FFT Variance 461 >0.999 0.024

vel_norm_rel2rightelbow Abs. Energy 416 >0.999 -0.020
Mean 335 >0.999 -0.165
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SD 425 >0.999 -0.046
Mean Crossings 329 >0.999 -0.189

vel_norm_rel2rightelbow_2d FFT Centroid 457 >0.999 -0.003
FFT Skewness 466 >0.999 0.010
FFT Kurtosis 430 >0.999 0.045
FFT Variance 462 >0.999 -0.032

Trunk pos_norm SD 269 >0.999 0.259
Entropy 467 >0.999 0.067

pos_norm_rel2neck FFT Centroid 443 >0.999 -0.125
FFT Skewness 335 >0.999 0.247
SD 269 >0.999 0.514
Entropy 422 >0.999 0.032
FFT Kurtosis 345 >0.999 0.251
FFT Variance 460 >0.999 -0.039

vel SD 443 >0.999 -0.108
vel_norm Abs. Energy 433 >0.999 -0.033

Mean 389 >0.999 -0.133
vel_norm_rel2neck Abs. Energy 414 >0.999 0.075

Mean 368 >0.999 -0.167
SD 447 >0.999 0.147

vel_norm_rel2neck_2d FFT Centroid 457 >0.999 -0.000
FFT Skewness 370 >0.999 -0.239
FFT Kurtosis 450 >0.999 -0.057
FFT Variance 473 >0.999 0.008

Upper Extremities pos_norm SD 337 >0.999 0.226
Entropy 452 >0.999 0.152

pos_norm_rel2neck FFT Centroid 458 >0.999 -0.005
FFT Skewness 328 >0.999 0.229
SD 304 >0.999 0.309
Entropy 443 >0.999 0.087
FFT Kurtosis 358 >0.999 0.223
FFT Variance 409 >0.999 0.077

vel SD 405 >0.999 -0.063
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vel_norm Abs. Energy 399 >0.999 0.113
Mean 328 >0.999 -0.141

vel_norm_rel2neck Abs. Energy 380 >0.999 0.136
Mean 318 >0.999 -0.162
SD 380 >0.999 0.036

vel_norm_rel2neck_2d FFT Centroid 462 >0.999 0.050
FFT Skewness 408 >0.999 -0.083
FFT Kurtosis 440 >0.999 -0.015
FFT Variance 447 >0.999 0.034
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Table B.5: Statistical results of all expert features.

W p Hedges’ g
Body part Channel Metric

Left & Right Ankle Static Periods Counts per Minute 345 >0.999 -0.129
Max. Duration (s) 424 >0.999 0.094
Mean Duration (s) 320 >0.999 0.252
Ratio (%) 330 >0.999 0.197
SD Duration (s) 382 >0.999 0.177
Longer than 3 Seconds 361 >0.999 -0.129

Left Wrist vel_norm_rel2leftelbow Counts per Minute 284 >0.999 0.351
Max. Duration (s) 275 >0.999 0.103
Mean Duration (s) 236 0.924 0.297
Ratio (%) 281 >0.999 0.324
SD Duration (s) 289 >0.999 0.156
Longer than 3 Seconds 268.500 >0.999 0.363

Left Wrist & Nose euclidean_distance Mean 382 >0.999 -0.135
SD 327 >0.999 0.200
Frames below threshold 117.500 >0.999 -0.187

Left Wrist & Right Wrist euclidean_distance Mean 293 >0.999 -0.309
SD 371 >0.999 0.240
Frames below threshold 218 >0.999 0.191

vel_norm Counts per Minute 458 >0.999 -0.030
Max. Duration (s) 304 >0.999 0.440
Mean Duration (s) 283 >0.999 0.450
Ratio (%) 298 >0.999 0.316
SD Duration (s) 288 >0.999 0.460
Longer than 3 Seconds 454 >0.999 -0.022

vel_norm_rel2neck Counts per Minute 373 >0.999 0.121
Max. Duration (s) 313 >0.999 0.374
Mean Duration (s) 283 >0.999 0.454
Ratio (%) 280 >0.999 0.362
SD Duration (s) 294 >0.999 0.487
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Longer than 3 Seconds 329.500 >0.999 0.139
Mid Hip vel_norm Counts per Minute 432 >0.999 0.145

Max. Duration (s) 239.500 >0.999 0.558
Mean Duration (s) 246 >0.999 0.552
Ratio (%) 307 >0.999 0.352
SD Duration (s) 243 >0.999 0.612
Longer than 3 Seconds 419.500 >0.999 0.163

vel_norm_rel2neck Counts per Minute 323 >0.999 0.293
Max. Duration (s) 251 >0.999 0.430
Mean Duration (s) 225 0.575 0.543
Ratio (%) 279 >0.999 0.402
SD Duration (s) 250 >0.999 0.491
Longer than 3 Seconds 329.500 >0.999 0.313

Nose vel_norm Counts per Minute 112 <0.001∗∗∗ 0.666
Max. Duration (s) 399 >0.999 -0.059
Mean Duration (s) 216 0.382 0.494
Ratio (%) 72 <0.001∗∗∗ 0.707
SD Duration (s) 347 >0.999 0.162
Longer than 3 Seconds 129.500 0.003∗∗ 0.684

vel_norm_rel2neck Counts per Minute 107 <0.001∗∗∗ 0.680
Max. Duration (s) 323 >0.999 0.082
Mean Duration (s) 325 >0.999 0.265
Ratio (%) 122 0.002∗∗ 0.609
SD Duration (s) 347 >0.999 0.132
Longer than 3 Seconds 121 0.001∗∗ 0.702

Right Wrist vel_norm_rel2rightelbow Counts per Minute 271 >0.999 0.406
Max. Duration (s) 361 >0.999 0.019
Mean Duration (s) 312 >0.999 0.298
Ratio (%) 290 >0.999 0.393
SD Duration (s) 358 >0.999 0.065
Longer than 3 Seconds 272.500 >0.999 0.426

Right Wrist & Nose euclidean_distance Mean 308 >0.999 -0.241
SD 289 >0.999 0.339
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Frames below threshold 109 >0.999 0.077
Trunk vel_norm Counts per Minute 323 >0.999 -0.334

Max. Duration (s) 285 >0.999 0.306
Mean Duration (s) 319 >0.999 0.281
Ratio (%) 433 >0.999 0.116
SD Duration (s) 307 >0.999 0.272
Longer than 3 Seconds 308 >0.999 -0.328

vel_norm_rel2neck Counts per Minute 255 >0.999 -0.442
Max. Duration (s) 305 >0.999 0.348
Mean Duration (s) 281 >0.999 0.342
Ratio (%) 423 >0.999 0.111
SD Duration (s) 253 >0.999 0.406
Longer than 3 Seconds 254.500 >0.999 -0.432

Upper Extremities vel_norm Counts per Minute 283 >0.999 -0.475
Max. Duration (s) 158 0.064 0.667
Mean Duration (s) 230 0.715 0.546
Ratio (%) 295 >0.999 0.288
SD Duration (s) 191 0.112 0.576
Longer than 3 Seconds 274.500 >0.999 -0.482

vel_norm_rel2neck Counts per Minute 302 >0.999 -0.314
Max. Duration (s) 228 0.656 0.398
Mean Duration (s) 301 >0.999 0.322
Ratio (%) 372 >0.999 0.196
SD Duration (s) 256 >0.999 0.361
Longer than 3 Seconds 285.500 >0.999 -0.321
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Table B.6: Statistically significant features for the kinect camera; mean ± SD.

f-TSST TSST
Body Part Channel Metric

Left & Right Ankle vel_norm_rel2neck SP Counts per Minute 70.16 ± 12.29 67.64 ± 14.56
Left Elbow pos_norm_rel2neck Entropy 10.10 ± 0.09 10.11 ± 0.04

vel_norm Abs. Energy 0.20 ± 0.04 0.20 ± 0.04
Neck vel_norm Mean Crossings 3444.80 ± 640.54 3270.91 ± 621.64
Nose vel_norm Abs. Energy 0.16 ± 0.03 0.15 ± 0.03

Mean Crossings 3708.41 ± 444.07 3594.55 ± 281.72
vel_norm_rel2neck Mean Crossings 4863.68 ± 777.59 4569.45 ± 600.37

Right Elbow pos_norm_rel2neck Entropy 10.11 ± 0.09 10.11 ± 0.03
vel_norm Abs. Energy 0.15 ± 0.03 0.15 ± 0.03

Right Wrist vel SD 1.82 ± 0.29 1.78 ± 0.27
Trunk pos_norm_rel2neck Entropy 10.11 ± 0.09 10.12 ± 0.03

pos_norm_rel2neck SD 0.00416 ± 0.00125 0.00436 ± 0.00119
vel_norm Abs. Energy 0.32627 ± 0.06268 0.32216 ± 0.05920
vel_norm_rel2neck Abs. Energy 0.04312 ± 0.01710 0.03881 ± 0.01129
vel_norm_rel2neck SD 0.00078 ± 0.00009 0.00077 ± 0.00008

Upper Extremities pos_norm Entropy 10.11 ± 0.09 10.13 ± 0.04
pos_norm_rel2neck Entropy 10.09 ± 0.09 10.11 ± 0.04
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Table B.7: Statistically significant features for the phone; mean ± SD.

f-TSST TSST
Body Part Channel Metric

Left & Right Ankle vel_norm_rel2neck SP Counts per Minute 51.50 ± 16.93 49.54 ± 15.01
Left Elbow pos_norm_rel2neck Entropy 10.17 ± 0.03 10.17 ± 0.02

vel_norm Abs. Energy 0.10 ± 0.07 0.10 ± 0.07
Neck vel_norm Mean Crossings 4186.50 ± 517.40 3977.81 ± 492.11
Nose vel_norm Abs. Energy 0.07 ± 0.09 0.05 ± 0.03

Mean Crossings 4493.26 ± 500.48 4099.55 ± 600.10
vel_norm_rel2neck Mean Crossings 6253.43 ± 872.11 5754.43 ± 938.72

Right Elbow pos_norm_rel2neck Entropy 10.18 ± 0.03 10.17 ± 0.03
vel_norm Abs. Energy 0.07 ± 0.05 0.06 ± 0.04

Right Wrist vel SD 2.71 ± 0.78 2.54 ± 0.86
Trunk pos_norm_rel2neck Entropy 10.18 ± 0.03 10.17 ± 0.03

pos_norm_rel2neck SD 0.00502 ± 0.00078 0.00633 ± 0.00151
vel_norm Abs. Energy 0.12641 ± 0.09454 0.12186 ± 0.10021
vel_norm_rel2neck Abs. Energy 0.06454 ± 0.01760 0.07340 ± 0.04022
vel_norm_rel2neck SD 0.00090 ± 0.00016 0.00098 ± 0.00033

Upper Extremities pos_norm Entropy 10.17 ± 0.04 10.17 ± 0.03
pos_norm_rel2neck Entropy 10.17 ± 0.04 10.16 ± 0.03
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Table B.8: Statistically significant features regarding gender differences for SP.

U p Hedges’ g
Body Part Channel Metric

Mid Hip vel_norm Max. duration (s) 50 0.012∗ 1.698
Mean duration (s) 52 0.015∗ 1.590
Ratio (%) 59 0.033∗ 1.636
SD (s) 47 0.009∗∗ 1.697

vel_norm_rel2neck Counts per Min 53 0.017∗ 1.590
Longer 3 Sec 57 0.026∗ 1.580
Ratio (%) 53 0.017∗ 1.604
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Appendix C

Acronyms

TSST Trier Social Stress Test

f-TSST friendly-Trier Social Stress Test

(f-)TSST (friendly-)Trier Social Stress Test

HPA hypothalamic-pituitary-adrenal

SNS sympathetic nervous system

α-amylase alpha-amylase

OMC optical motion capturing

IMU inertial measurement unit

ML machine learning

FMD functional movement disorders

DL deep learning

NN neural networks

AI artificial intelligence

BMI Body Mass Index
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QoM Quantity of Movement

MaD Lab Machine Learning and Data Analytics Lab

PASA Primary Appraisal Secondary Appraisal

CSV Comma-separated values

PLDs point-light displays

FFT Fast Fourier transform

SD Standard deviation

kNN k-nearest neighbors

SVM Support vector machine

AdaBoost Adaptive Boosting

CV cross-validation

RFE recursive feature elimination

ANOVA analysis of variance

SE Standard error

SP static periods

FOV field of view
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