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Abstract—Current stress assessment methods include self-
reports and biomarkers which are evaluated in often complex,
laboratory procedures. Due to that investigating new indicators
for acute stress is crucial for the development of automatic stress
detection systems. A promising extension might be provided by
investigating speech, which has been shown to be affected by
negative emotions and threatening situations. For that reason,
we extracted verbal acoustics from audio data collected during
a study where N=21 participants underwent the Trier Social
Stress Test (TSST), the gold standard for laboratory stress in-
duction, and a stress-free control condition (friendly-TSST) while
concurrently collecting cortisol via saliva samples to assess the
biological response to stress. Our results show that acute stress
leads to significant (p < 0.05) alterations of acoustic features. A
stepwise backward multiple linear regression model explained
58.8 % of the variance of the maximum cortisol increase. In
addition to that, we performed classification experiments that
distinguished stress from non-stress situations with an accuracy
of 80.0 ± 12.7 %. While further research is needed to validate our
approach, we are convinced that the information extracted from
speech can be a valuable indicator for automatic stress detection
systems and can even predict the biological response to stress
situations.

Index Terms—Acute stress, speech, acoustic features, machine
learning, cortisol

I. INTRODUCTION

Psychosocial stress is a prevalent phenomenon that we en-
counter in our everyday lives dealing with work, personal rela-
tionships, or daily life demands [1]. It encloses the psycholog-
ical and social challenges that arise in demanding situations,
often leading to physiological and psychological responses [2].
One of the key responses to this form of stress involves
activation of the hypothalamic-pituitary-adrenal (HPA) axis,
which triggers the release of the stress hormone cortisol [3].
While this reaction is considered crucial for preparing the
body to adequately handle the upcoming stressful situation, a
maladaptive HPA axis reaction can, if not effectively managed,
transition into chronic stress, leading to detrimental changes
in a person’s physical and mental health [4].

To investigate acute psychosocial stress and measure the
physiological responses, researchers have developed standard-
ized laboratory stress induction procedures. Among these,
the Trier Social Stress Test (TSST), initially proposed by
Kirschbaum et al. [5], has emerged as the gold standard for
acute psychosocial stress induction as it reliably activates the
HPA axis [2]. The body’s stress response is typically measured
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using self-reports for assessing the subjective stress experi-
ence, saliva- or blood-based samples to extract neuroendocrine
markers like cortisol or alpha-amylase, or electrophysiological
data like electrocardiography (ECG) or electrodermal activity
(EDA). With stress being a risk factor for human health [4], the
demand for automatic, unobtrusive, possibly even contactless
stress markers to prevent the transition to chronic stress is
high. Since the evaluation of self-reports and saliva samples
are not feasible in a large-scale, real-world setting, other digital
biomarkers are required to be investigated.

Speech as a stress detection modality has been widely
researched, revealing observable changes like an increasing
fundamental frequency in response to stress exposure [6].
Leveraging similar effects, Baird et al. examined the ef-
fectiveness of speech-based features in predicting sequential
cortisol measurements [7]. Their results show a moderate
correlation between speech and cortisol data in the TSST.
In a follow-up work, they predicted physiological parameters
such as heart rate and respiration using the same feature
set and a deep learning-based architecture [8]. Norden et al.
explored the impact of different stress definitions for stress
detection, observing better results for external annotations
than for cortisol stress levels [9]. However, one drawback
of all previous approaches is that their findings are only
based on acoustic data collected during the TSST, without
having a comparable stress-free control condition. Thus, their
findings are limited to the efficacy of verbal acoustics for the
prediction of sequential physiological responses. To determine
whether verbal acoustics can be used as potential biomarkers
to distinguish between stressed and non-stressed conditions, it
is necessary to evaluate participants in the same experimental
setting with and without the presence of acute stress.

For that reason, we present an approach for detecting acute
psychosocial stress with verbal acoustics based on data from
participants that were exposed to acute psychosocial stress
via the TSST, and the friendly-TSST, a stress-free control
condition [10], on two consecutive days. To the best of our
knowledge, our work is the first to assess the efficacy of vocal
acoustics for stress detection in a within-subjects design.

II. METHODS

A. Data Acquisition

The data used in this work was collected as part of an
experiment to examine the influence of acute psychosocial
stress on body posture and movements [11]. For this study,
we recruited N=21 young healthy individuals (85.7 % women)
aged 22.6 ± 4.0 years. The exclusion criteria for study par-
ticipation are in line with the recommended guidelines for
assessing HPA axis activity [12] and explained in detail in
our previous work [11]. The study was approved by FAU’s



ethics committee (protocol #493_20 B) and was conducted in
compliance with relevant guidelines and regulations. All par-
ticipants gave written consent before starting the experiment.

Each participant underwent the procedure shown in Fig-
ure 1. The Trier Social Stress Test (TSST) [5] and the friendly
Trier Social Stress Test (f-TSST) [10] were conducted in
randomized order on two consecutive days. Both conditions
were carried out at similar times to control for the diurnal
cortisol rhythm [13].

The TSST was conducted following the protocol initially
proposed by Kirschbaum et al. [5]. The TSST is designed as a
fictional job interview with social-evaluative elements and con-
sists of three different phases (Preparation, Interview, Mental
Arithmetics) lasting 5 min each. All tasks are performed in
front of an evaluation panel wearing lab coats. The panel was
trained to maintain complete neutrality, minimize emotions,
and not engage in any interaction with the participants. As
a stress-free control condition that does not activate the HPA
axis, we used the f-TSST as proposed by Wiemers et al. [10].
The f-TSST has a structure similar to the TSST, but all social-
evaluative elements were removed. Additionally, it did not
contain a Mental Arithmetics phase but only consisted of a
10 min Interview phase.

Before and after (f-)TSST, we collected six saliva samples
(S0-S5) per day at defined time points to assess HPA axis
activity from salivary cortisol (Figure 1). In addition, partici-
pants were video-recorded during the Interview and/or Mental
Arithmetic phases.
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Fig. 1: Study protocol of (f-)TSST; P: Preparation; I: Inter-
view; MA: Mental Arithmetic

B. Data Processing

1) Cortisol Measures: To assess HPA axis activity, we ex-
tracted raw cortisol concentrations using a chemiluminescence
immunoassay (CLIA, IBL, Hamburg, Germany) as described
in more detail in previous publications (e.g. [14]). From
the raw cortisol levels, we computed the maximum increase
(∆cmax) as response to the (f-)TSST between S1 and S2-S5
as a measure for HPA axis reactivity.

2) Audio Processing: To process audio data, we extracted
the audio channels from the video recordings using ffmpeg1

and stored them as .wav files. As the audio data recorded
during the (f-)TSST contained conversation shares of both
panel and participant, we first segmented the audio data into
the individual speech segments by applying a speaker di-
arization algorithm implemented in the pyannote.audio Python

1https://ffmpeg.org/

package [15]. Based on this output, we discarded all speech
segments shorter than 0.3 s. Afterwards, we identified the
participant as the speaker with the highest conversation share,
while the remaining identified speakers were considered as
the panel. If multiple speakers were detected simultaneously,
regardless of whether the participant was speaking, we dis-
carded this segment to avoid overlap. Subsequently, we con-
catenated consecutive segments of either the participant or
panel speaking. This resulted in a segmentation where parts of
the panel speaking can be distinguished from parts that contain
the participant’s verbal acoustics or periods of silence before,
between, or after the speech.

3) Feature Extraction: For feature extraction, we used the
OpenDBM v2.0 library [16] that allows the computation of
digital acoustic biomarkers. OpenDBM extracts a set of raw
variables using Parselmouth [17], such as audio intensity
(I), fundamental frequency (F0) and formant frequencies
(F1...4), vocal jitter and shimmer, and mel frequency cep-
stral coefficients (MFCC1...12). They serve as the basis for
computing derived variables, which aggregate the time-series
raw variables by computing basic signal characteristics. Since
the derived variables were computed over the whole audio
input and, therefore, also included parts where the panel was
speaking, we re-implemented the derived variable extraction
methods to compute the derived variables for each speech
segment of participants individually. We then aggregated the
derived variables per segment by computing mean (µ) and
standard deviation (σ) as well as mean and standard deviation
weighted by the segment lengths (µ̂ and σ̂, respectively). An
overview of extracted features is provided in the OpenDBM
documentation2.

C. Evaluation

To investigate the association between acute psychosocial
stress and changes in verbal acoustics, we only considered
features computed over the Interview phases of the (f-)TSST
to allow better comparability between both conditions.

1) Statistical Analysis: We performed non-parametric
Wilcoxon signed-rank tests on all extracted audio features
with condition as between-variable since all participants were
exposed to both TSST and f-TSST and applied Bonferroni
corrections across all tests to control for multiple comparisons.
We set a significance level of α = 0.05 and report effect
sizes as Hedge’s g. In all Figures and Tables, statistical sig-
nificance was denoted using the following notation: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

2) Stepwise Backward Multiple Linear Regression: To in-
vestigate the association between cortisol and verbal acoustics
we employed a stepwise backward multiple linear regression
(SBMLR) approach by computing the differences of acoustic
features and ∆cmax between TSST and f-TSST to quantify the
stress-induced voice alteration. For the features, we only used
statistically significant features from the previous step as input
and standardized them via z-score normalization. SBMLR was

2https://aicure.github.io/open_dbm/docs/verbal-acoustic
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performed iteratively with acoustic features as predictors and
∆cmax as dependent variable. In each iteration, the predictor
with the highest p-value was removed until all p-values were
below α. The final selection of the best-fitting model was
based on the highest adjusted R2 value.

3) Classification Experiments: To assess the possibility of
detecting acute stress situations based on acoustic features,
we conducted a series of classification experiments, evaluating
different combinations of pre-processing, feature selection,
and classification algorithms. After removing all features with
zero variance in the pre-processing, we scaled features with
a Standard Scaler or Min-Max Scaler. In the feature selection
step, we applied either Select-k-Best (SkB) or Recursive
Feature Elimination (RFE). As classifiers, we evaluated Naïve
Bayes (NB), k-Nearest-Neigbors (kNN), Decision Tree (DT),
Support Vector Machine (SVM), Random Forest (RF), Multi-
Layer Perception (MLP), and AdaBoost (Ada). All different
pipeline combinations were evaluated using a five-fold nested
cross-validation (CV). The outer CV was used for model
evaluation and assessing the generalizability of our approach,
the inner CV was used for hyperparameter optimization using
randomized-search with 40 000 iterations (RF) or grid-search
(all others). Each CV split was performed on a participant
level, ensuring that all data from a participant was either in
the training or the test set. In the inner CV, we retrained
the classification pipelines with the best-performing hyperpa-
rameters and made predictions on the unseen test set of the
model evaluation CV folds. We used the accuracy as metric
for optimization and additionally computed the F1-score.

All evaluation experiments were conducted using the Python
libraries BioPsyKit (v0.9.0) [18], tpcp (v0.13.0) [19], and
scikit-learn (v1.2.2) [20].

III. RESULTS

We excluded data from one participant due to failed speaker
segmentation, resulting in a final sample size of N = 20
participants. In our previous work, we demonstrated that the
TSST successfully induced acute psychosocial stress while the
f-TSST did not, indicated by a significantly higher cortisol
increase ∆cmax as response to the TSST, W = 26.0, p =
0.004, g = 0.746 [11].

A. Statistical Analysis

After statistical testing, nine out of 48 acoustic features
showed significant differences between TSST and f-TSST (Ta-
ble I, Figure 2). Acute psychosocial stress leads to increased
audio intensity variation σ(I). Additionally, all four formants
µ(F1...4) increased, on average, during the TSST. In contrast,
µ(MFCC1) and µ(Shimmer) decreased during the TSST.

B. Stepwise Backward Multiple Linear Regression

Before fitting the SBMLR model, µ̂(Shimmer) was omitted
due to high multicollinearity (> 0.8). Based on the resulting
eight features, the best-performing regression model based on
five features explained 58.8 % of the variance (indicated by
adj. R2) in cortisol increase ∆cmax (Table II).

TABLE I: Results of statistical analysis showing all features
with significant differences between (f-)TSST

Feature W p Hedges’ g

σ(I) 21 0.041∗ −0.893
µ(F1) 14 0.010∗ −0.740
σ(F1) 2 <0.001∗∗∗ −0.783
µ(F2) 0 <0.001∗∗∗ −1.277
µ(F3) 10 0.004∗∗ −0.708
µ(F4) 9 0.003∗∗ −0.552
µ(MFCC1) 21 0.041∗ 0.985
µ(Shimmer) 20 0.034∗ 0.927
µ̂(Shimmer) 19 0.028∗ 0.877
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Fig. 2: Selection of features showing significant differences
between (f-)tsst

TABLE II: Results of linear regression predicting ∆cmax;
β: standardized regression coefficient; σ: standard error; adj:
adjusted

Feature β σ t p R2 adj. R2

µ(F1) 8.228 1.564 5.263 <0.001 0.697 0.588
σ(F1) −1.842 1.094 −1.683 0.114 0.697 0.588
µ(F4) −5.717 1.533 −3.729 0.002 0.697 0.588
µ(MFCC1) 6.521 1.363 4.785 <0.001 0.697 0.588
µ(Shimmer) −3.277 1.026 −3.195 0.006 0.697 0.588

C. Classification Experiments

The highest accuracy of 80.0 ± 12.7 % across the 5-fold
model evaluation CV was achieved by the classification
pipeline comprising Standard Scaler, SkB, and DT while the
pipeline comprising Standard Scaler, RFE, and NB achieved
the highest F1-score (Table III). Splitting the predictions by
the condition order, i.e., whether the TSST or the f-TSST was
performed on the first day, revealed that most misclassifica-
tions were performed when TSST was the first condition, with
the TSST wrongly being classified as f-TSST (Figure 3).

IV. DISCUSSION

The main objective of our work was to investigate the
feasibility of identifying situations of acute psychosocial stress
from speech information recorded during the gold standard
protocol for laboratory stress induction (TSST) and a stress-
free control condition (f-TSST).

In line with the findings by Baird et al. [8] who predicted se-
quential cortisol levels from acoustic information, we showed
that stress-induced changes in verbal acoustics can predict the
differences in cortisol increase between f-TSST and TSST. Our
best-fitted SBMLR model was able to significantly explain the



TABLE III: Classification performance metrics (M ± SD)
over the 5-fold model evaluation CV. For each classifier, the
pipeline combination with the highest mean accuracy is shown.
The pipelines with the highest metrics are highlighted in bold.

Scaler Feature
Selection Classifier Accuracy [%] F1-score [%]

Standard SkB DT 80.0 ± 12.7 74.1 ± 20.5
Standard RFE NB 80.0 ± 17.0 79.9 ± 17.0
Standard RFE MLP 77.5 ± 9.4 74.7 ± 11.8
Standard RFE RF 77.5 ± 12.2 74.9 ± 14.6
Min-Max RFE Ada 75.0 ± 7.9 73.1 ± 16.7
Standard RFE kNN 75.0 ± 7.9 72.9 ± 10.1
Min-Max SkB SVM 72.5 ± 16.6 71.8 ± 15.4
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Fig. 3: Confusion matrices for the classification pipeline with
the highest mean accuracy over the 5-fold model evaluation
CV, split by condition order.

variance of the cortisol response. Similarly, the results of our
classification experiments support the feasibility of leveraging
vocal acoustics for detecting situations of acute stress. Despite
a classification accuracy of 80.0 ± 12.7 % using a traditional
machine learning approach with a rather simple decision
tree as classification algorithm, the large number of TSST
misclassifications in the group of participants performing the
TSST on the Day 1 needs further investigation. A potential
explanation could be that individuals performing the f-TSST
on Day 2 were ruminating about the stressful situation on
the previous day, resulting in vocal changes that made a
classification between TSST and f-TSST more difficult.

Although both the results from our regression and machine
learning approach are promising, the limited sample size of our
study requires future work to assess the generalizability of our
findings on a larger and more balanced dataset. Additionally,
we plan to extend our analysis by integrating other digital
biomarkers, such as facial activity [21], or speech semantics.
Since acute stress detection from acoustic features alone yields
promising results, we are convinced that also our approach
could benefit from an extension by digital biomarkers of other
modalities.

V. CONCLUSION AND OUTLOOK

In our work, we investigated the feasibility of acute stress
detection from verbal acoustics. By comparing acoustic fea-
tures extracted from a stress and non-stress condition with
statistical measures, we demonstrated the potential for predict-
ing the biological response to acute stress and to differentiate
stress from non-stress situations. While our results confirmed

the findings of previous work that acute stress alters the
acoustics of speech and revealed the possibility to – at least
partly – predict the cortisol response, they also highlight
the potential of verbal acoustics being a reliable indicator
for detecting acute psychosocial stress. Given its widespread
accessibility, it holds great promise as a valuable component
in automated, unobtrusive stress detection systems.
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