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In contemporary society, the pervasive integration of Deep Learning (DL) and Machine Learning
(ML) techniques has assumed a pivotal role across diverse domains such as science, technology, and
public life [1]. The reliance on intelligent systems is continuously escalating, evident in applications
ranging from autonomous vehicles and adaptive email filters to cutting-edge proactive law maintenance
models. With the growing prevalence of intricate DL models, there arises an imperative need to
comprehensively comprehend their internal mechanisms and glean insights into their outcomes. This
imperative forms the foundational motivation driving the pursuit of Explainable Artificial Intelligence
(XAI) [2]. Within the domain of Explainable Artificial Intelligence (XAI), diverse methodologies have
emerged to elucidate the inner workings of Deep Learning (DL) models when presented with specific
inputs, particularly within the context of computer vision tasks.

XAI methods broadly fall into two categories: gradient-based approaches, exemplified by techniques
such as GradCAM [3] and GradCAM++ [4], and attribution methods like LRP [5]. Additionally, a
distinct paradigm within XAI is perturbation-based methods, which assess how small alterations to
the input impact the network’s decision-making process. These perturbation-based methods offer an
intuitive means of explanation and are applicable even to any kind of black-box models, obviating the
need to scrutinize either the activations or gradients [1].

In the context of neural network models, Neural Visual Attention (NeVA) [6], is devised to generate
human-like visual scanpaths in a top-down and unsupervised manner. NeVA is constructed around
three core elements: 1) a differentiable foveation mechanism that simulates the human foveated vision
with a central region of high visual acuity and peripheral coarse resolution, 2) a task model pretrained
on a visual downstream task, and 3) an attention mechanism responsible for selecting the next point
of interest based on the current stimulus. By its very definition, NeVA highlights the locations in the
input image that are the most relevant to solving the corresponding downstream task.

Our study aims to leverage NeVA to generate explanations to interpret black-box models effectively.
An explanation is a rule that specifies how a black box model behaves given specific inputs. In our case,
the explanations represent attribution maps that highlight the regions of the image crucial for model
prediction. NeVA possesses the unique advantage of being model agnostic, i.e., applicable to various
architectural paradigms, including Convolutional Neural Networks (CNNs) and Transformers, without
requiring any modifications. We intend to adopt NeVA to generate explanations for widely-used models
like ResNet50 [7] and Vision Transformer (ViT) [8] on benchmark datasets such as ImageNet [9] and
PASCAL VOC 2012 [10]. We plan to conduct a thorough evaluation of these generated explanations,
employing both qualitative and quantitative assessments. NeVA, with its human-like exploration of
input data, offers the potential for deeper insights into the predictive behavior of deep learning models.

The proposed work comprises the following key components:

• Apply NeVA to ResNet50 [7] and ViT [8] models to generate scanpths on ImageNet [9] and
PASCAL VOC [10] datasets.

• Creation of explanations from the generated scanpaths. More specifically, we convert scanpaths
to attribution maps (i.e., saliency maps). We analyze the importance of different receptive field
sizes.

• Qualitative assessment of the generated explanations through visualizations and class-specific
explanation generation.

• Quantitative evaluation of explanation faithfulness through metrics including % Drop [4], %
Increase [4], Insertion [11], and Deletion [11].

• Quantitative assessment of explanation localization using the pointing game methodology [12].

• Quantitative evaluation of explanation plausibility in terms of similarity to human gaze using
MIT1003 [13] human attention dataset

• Comparison of NeVA-generated explanations with popular methods like gradCAM [3], gradCAM++
[14] (gradient-based method), and Meaningful Perturbations [15] (perturbation-based method)
on ImageNet [9] and PASCAL VOC [10] datasets, both qualitatively and quantitatively.
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This comprehensive analysis will shed light on the effectiveness of NeVA-generated explanations in
comparison to established explanation techniques, facilitating a deeper understanding of model behavior.
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