
openTSST – An Open Web Platform for Large-Scale,
Video-Based Motion Analysis During Acute Psychosocial

Stress

Bachelor’s Thesis in Computer Science

submitted
by

Tobias Geßler

born 17.07.2001 in Pfaffenhofen an der Ilm

Written at

Machine Learning and Data Analytics Lab
Department Artificial Intelligence in Biomedical Engineering

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

in Cooperation with

Chair of Health Psychology
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Advisors: Robert Richer M.Sc., Luca Abel M.Sc., Arne Küderle M.Sc.,
Prof. Dr. Bjoern Eskofier,
Prof. Dr. Nicolas Rohleder (Chair of Health Psychology)

Started: 15.03.2023

Finished: 14.08.2023





iii

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.
Die Richtlinien des Lehrstuhls für Bachelor- und Masterarbeiten habe ich gelesen und
anerkannt, insbesondere die Regelung des Nutzungsrechts.

Erlangen, den 14. August 2023





v

Übersicht

Um potenzielle negative gesundheitliche Folgen abschwächen zu können, welche akuten
Stressreaktionen zugrunde liegen, ist es von entscheidender Bedeutung, deren Mechanismen
zu verstehen. Stressreaktionen werden in der Regel in einem Labor anhand von Biomarkern
wie Cortisol und Alpha-Amylase im Speichel gemessen, deren Analyse komplexe Ver-
fahren erfordert. Frühere Studien haben gezeigt, dass akuter psychosozialer Stress die Kör-
perhaltung und -bewegung einer Person erheblich beeinflussen kann, was eine wertvolle
Ergänzung zu den herkömmlichen Stressmarkern darstellt. Bewegungsanalyse wird üblicher-
weise mit speziellen Systemen durchgeführt, welche typischerweise optische oder inertiale
Messeinheiten-basierte Verfahren nutzen. Diese Systeme sind jedoch nur begrenzt zugänglich
und erfordern technisches Expertenwissen. Eine mögliche Alternative ist die videobasierte
Bewegungsanalyse, da sie sowohl kostengünstig als auch genau ist.

In dieser Bachelorarbeit wird das openTSST-Framework vorgestellt, eine webbasierte
Plattform, die speziell für die videobasierte Bewegungsanalyse mit Fokus auf akutem psy-
chosozialem Stress entwickelt wurde. Die Plattform steht zur Verfügung unter https://
mad-opentsst.aibe.uni-erlangen.de. Sie ermöglicht Forschern Videos hochzuladen, die
während Stressprotokollen aufgenommen wurden. Die Videoverarbeitung und die Extraktion
von Bewegungsmerkmalen werden automatisch in der Cloud durchgeführt, so dass für die
Nutzung weder spezielle Hardware, Software oder Fachkenntnisse erforderlich sind. Die
Plattform ist modular aufgebaut, um eine einfache Anpassung an neue Forschungserkenntnisse
im Zusammenhang mit Bewegung und akuten Stress zu ermöglichen.

Um die Fähigkeiten der Plattform zu demonstrieren, wurde eine frühere Studie von
Roos et al. [Roo19] erweitert, in der die Wirkung von Stresshabituation bei wiederholtem
akutem psychosozialem Stress untersucht wurde. Unter Verwendung der Aufnahmen aus
der Studie wurden Bewegungsparameter mithilfe der Plattform openTSST berechnet und
geprüft, ob dort ebenfalls Habituationseffekte beobachtet werden können. Die Ergebnisse
zeigten keine statistisch signifikanten Habituationseffekte bei den Bewegungsparametern, wie
es bei den Cortisol Markern der Fall war. Nichtsdestotrotz zeigt dies die Vielseitigkeit der
Plattform. Durch die Erleichterung des Zugangs zur bewegungsbasierten Stressanalyse kann
openTSST die Verwendung von Bewegungsinformationen neben herkömmlichen Markern
für akuten Stress vorantreiben und so zu einer ganzheitlicheren Bewertung der menschlichen
Stressreaktion beitragen.

https://mad-opentsst.aibe.uni-erlangen.de
https://mad-opentsst.aibe.uni-erlangen.de


vi

Abstract

Understanding the underlying mechanisms of acute stress responses is essential to mitigating
potential negative health outcomes. Stress responses are typically assessed in a laboratory
setting using biomarkers such as cortisol and salivary alpha-amylase, which require complex
laboratory procedures to analyse. Prior studies have shown that exposure to acute psychosocial
stress can significantly influence an individual’s body posture and movement, providing a
valuable extension to traditional stress markers. Motion analysis is conventionally performed
using optical or inertial measurement unit (IMU)-based motion capture systems; however,
these systems come with limited accessibility and demand technical expertise. A possible
alternative to these traditional methods is video-based motion analysis, as it is both cost-
effective and remarkably accurate.

This Bachelor’s thesis presents the openTSST framework, a web-based platform designed
specifically for video-based motion analysis, with a particular focus on analysing acute
psychosocial stress. Available at https://mad-opentsst.aibe.uni-erlangen.de, openTSST
allows researchers to upload videos recorded during stress protocols. Video processing and
feature extraction is performed automatically in the cloud, eliminating the need for specialised
hardware, software, and expertise to use. The platform is designed in a highly modular way,
ensuring seamless updates in line with emerging research insights on motion and acute stress.

To demonstrate the platform’s capabilities, a former study by Roos et al. [Roo19] inves-
tigating the effect of stress habituation on repeated acute psychosocial stress was extended
to assess whether habituation effects could also be observed in freezing-related motion pa-
rameters. Using the recordings from the study, motion parameters were computed via the
openTSST platform. Results showed no statistically significant habituation effects within the
motion parameters, as was the case with the saliva markers. Nonetheless, this showcases the
platform’s versatility, not only applicable to analyse current and future studies but also for
retrospective analyses. By democratising access to motion-based stress analysis, openTSST
can accelerate the incorporation of movement information alongside conventional markers
for acute stress, thus contributing to a more holistic assessment of the human stress response.

https://mad-opentsst.aibe.uni-erlangen.de
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Chapter 1

Introduction

Stress has become increasingly associated with adverse health outcomes [OCo21]. It is
recognised as one of the leading contributing factors to long-term sickness and has, conse-
quently, been the subject of extensive research [McE93]. Stress is a complex phenomenon
that affects an individual in various ways, impacting both psychological and physiological
states [Koo11]. At present, the Trier Social Stress Test (TSST) [Kir93] is the gold standard
for inducing acute psychosocial stress in a laboratory setting [Dic04]. It involves a public
speaking task and a challenging mental arithmetic task that are both performed in front of
a panel of evaluators. Key elements of the stressful nature of the TSST are that it includes
elements of uncontrollability and social-evaluative threat, which leads to strong responses
of the two stress pathways, the sympathetic nervous system (SNS) and the hypothalamic-
pituitary-adrenal (HPA) axis. This response is traditionally assessed using biomarkers such
as cortisol and salivary alpha-amylase [Goo17; Nat09].

Previous research has shown that exposure to acute psychosocial stress can significantly
influence an individual’s body posture and movement [Abe22], thus providing a promising
extension to existing markers for acute stress. Traditionally, motion analysis is performed
using optical or IMU-based motion capturing. Although these techniques offer the best
measurement quality, they come with high costs, have limited availability, and can interfere
with natural behaviours during stress induction [Col18; Roe09]. A possible alternative is given
by video-based motion analysis using tools like OpenPose [Cao19] or AlphaPose [Fan23].
They provide a cost-effective and straightforward way to extract and analyse motion patterns
based solely on video data. Despite these advantages, video-based motion extraction and
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analysis have not yet been widely adopted for motion analysis in psychology. This is likely due
to the limited accessibility of those tools for non-technical researchers. In comparison to facial
expression analysis, where tools such as FaceReader (Noldus, Wageningen, the Netherlands)
provide a convenient solution [Lew14], there is currently a lack of out-of-the-box solutions
for motion analysis.

The goal of this Bachelor’s thesis is, therefore, to develop the openTSST framework, an
easy-to-use tool for video-based motion analysis with a particular focus on acute psychosocial
stress. The platform should be capable of performing an end-to-end extraction of meaningful
motion parameters from video data to assess the influence of acute psychosocial stress on
body posture and movements. The platform will be developed with a special focus on a
modular architecture, enabling expansion and adaptation of the processing pipelines to meet
evolving research requirements.

To demonstrate the capabilities of the openTSST framework, a proof-of-concept analysis
will be performed on data from an existing study that investigated the effect of stress habituation
on repeated acute psychosocial stress [Roo19]. The existing analysis of self-reports and saliva
markers will be extended by investigating whether habituation effects can not only be observed
in the cortisol response [Kir95], but also in the freezing-related motion parameters.
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Background

2.1 Human Pose Estimation

The process of pinpointing human keypoints or body parts from input data, such as images
and videos, is commonly referred to as human pose estimation. This task has risen to
prominence as a substantial challenge within the realm of computer vision and related fields
[Che22]. That being said, advancements in motion capture technologies have revolutionised
our interpretation and understanding of human movements. They have been employed in a
variety of sectors, including sports science, animation, virtual reality, and healthcare [Bri18;
Wan21b; Sco22]. The most notable motion capture techniques include optical, IMU-, and
video-based motion capture.

Traditional optical motion capture systems operate by arranging a set of synchronised
cameras around a designated capturing area. The subject is dressed in a specialised suit fitted
with markers positioned on key joints and segments of interest [Gue05]. These systems are
capable of pinpointing positions in 3D space with sub-millimetre precision, and they are
considered the gold standard when it comes to motion capture [Eic16]. However, optical
motion capture systems come with their own set of challenges. They are expensive, require a
specialised environment, and have a time-consuming setup process [Gle02]. Furthermore,
they can be intrusive and interfere with natural behaviour, as they require markers to be
attached to individuals [Col18].

IMU-based motion capture systems are a promising alternative. They utilise a combina-
tion of accelerometers, gyroscopes, and, at times, magnetometers to measure body segment
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orientation and acceleration [Fil17]. IMU-based systems are portable and relatively inex-
pensive when compared to optical motion capture systems [Fil17]. They are particularly
suitable for capturing movements in sports and outdoor activities. Yet, these systems have their
drawbacks as well. They are notably prone to drift over time, which can lead to inaccuracies
in motion data when captured over longer periods [Ahm13]. Moreover, for a full-body motion
capture using IMUs, it is still necessary to attach a considerable number of sensors to the
body [Roe09]. This can be intrusive for the individuals, thus also possibly interfering with
natural movements. Even when considering sparse tracking systems [Hua18] that use fewer
sensors to record full-body motion the need to strap sensors onto the body still presents some
degree of intrusion.

On the other hand, video-based motion capture systems have recently seen a surge in pop-
ularity due to advancements in deep learning [Zhe23]. These systems can extract movement
data directly from raw video data, making them easy and affordable to use. Additionally,
they eliminate the need for markers, thereby avoiding interference with natural movements.
Despite ongoing efforts by computer vision researchers to enhance the accuracy of deep
learning-based pose estimation algorithms, the accuracy of video-based motion data is still a
major concern [Nak20]. Furthermore, these systems can be affected by lighting conditions,
and they may struggle with occlusions and complex movements.

2.2 Video-Based Human Pose Estimation Tools

State-of-the-art video-based human pose estimation tools are primarily reliant on deep
learning-based architectures. They typically employ convolutional neural networks (CNNs)
to extract robust features corresponding to each keypoint from input images. CNNs are
capable of finding patterns and understanding structures without human supervision [Alz21].
These networks are trained using large, high-quality datasets like the common objects in
context (COCO) keypoint detection dataset [Lin15] and the Max Planck Institute for Infor-
matics (MPII) human pose dataset [Fan18].

Current video-based human pose estimation tools differ in their approach to modelling
the human body [Wan21a]. The most common methodology employs a kinematic model
– also referred to as a skeleton-based model – that is applicable to both 2D and 3D pose
estimation. An alternative strategy found in 2D pose estimation employs planar or contour-
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Figure 2.1: Illustration of the OpenPose processing pipeline [Cao19].

based models [Dub23]. To capture the most amount of details, 3D volumetric models can be
employed to generate a detailed surface-based representation of the human body [Wan21a].

OpenPose, AlphaPose, DensePose, and OpenCap have emerged as prominent video-based
pose estimation solutions due to their precise detection and inference capabilities, along with
their widespread usage across various domains [Zhe23].

OpenPose
OpenPose1 was developed at Carnegie Mellon University as a real-time multi-person body,
face, hand, and foot keypoint estimation tool [Cao19]. It first employs CNNs to predict
confidence maps for body part detection and utilises part affinity fields to associate body
parts with individuals in an image. Subsequently, a set of bipartite matching is performed
to associate body part candidates, as illustrated in Figure 2.1. This technique allows for
highly accurate real-time performance, regardless of the number of people in the image. The
OpenPose library is open-source and freely available for non-commercial use. It supports
a variety of hardware architectures, such as CUDA (Nvidia GPU), OpenCL (AMD GPU),
and non-GPU (CPU-only) devices. OpenPose can provide up to 25 body and foot keypoint
estimates, and it can be configured to additionally track up to 2x21 hand keypoints and 70
face keypoints. Images, video files, or cameras are supported as input [Cao19].

AlphaPose
AlphaPose2 is also an accurate multi-person pose estimation tool [Fan23]. In contrast to
OpenPose, AlphaPose employs a top-down approach to multi-person pose estimation. This
means that it first detects individuals inside an image, and then applies pose estimation to

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
2https://github.com/MVIG-SJTU/AlphaPose

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/MVIG-SJTU/AlphaPose
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detect keypoints of each individual. AlphaPose is capable of detecting face, body, hand,
and foot keypoints. It is compatible with the OpenPose keypoint output format, making it a
convenient interoperable tool [Fan23].

DensePose
DensePose3 is a surface-based pose estimation tool [Gül18]. DensePose is built upon a variant
of Mask R-CNN, a straightforward and flexible framework for object instance segmentation
[He18]. It is a part of Detectron2 [Wu19], which was developed by Facebook’s artificial
intelligence research team and it is capable of mapping pixels of RGB images to a 3D surface-
based representation of the human body. It has been trained using the DensePose-COCO
dataset, which provides the annotations for 50,000 image-to-surface correspondences [Gül18].

OpenCap
OpenCap4 is an open-source platform designed to compute movement dynamics using videos
recorded from a minimum of two smartphones [Uhl22]. After setting up the smartphones on
tripods, the platform guides users through a camera calibration process using a checkerboard.
OpenCap takes less than five minutes to set up and is then ready for data collection and
visualisation of 3D kinematics. There is no need for specialised hardware, software, or
expertise, as the platform utilises automated cloud-based processing. OpenCap is capable
of accurately predicting dynamic measures, including muscle activations, joint loads, and
joint moments. These data points can potentially be used to screen for injury or disease risk,
evaluate intervention efficacy, and inform rehabilitation decisions [Uhl22].

3https://github.com/facebookresearch/detectron2/tree/main/projects/DensePose
4https://github.com/stanfordnmbl/opencap-core

https://github.com/facebookresearch/detectron2/tree/main/projects/DensePose
https://github.com/stanfordnmbl/opencap-core
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Related Work

3.1 Influence of Internal States on Body Posture and Move-
ment

Human body posture and movements can offer valuable insights into the physical and psycho-
logical state of an individual [Wal98; Dae12; Bal00]. Emotional information, for instance, is
expressed through several channels, including facial expressions, body motion, and posture
[Gel15]. Humans naturally interpret a variety of emotions, from joy and happiness to sadness
and anger, simply by observing movements [De 06]. Atkinson et al. demonstrated this ability
using dynamic and static body expressions, visualised through point-light displays. Partici-
pants could reliably differentiate between emotions such as anger, disgust, fear, happiness,
and sadness [Atk04].

Additionally, Vrij et al. examined how public self-consciousness and behavioural control
influence hand movements during deception. They hypothesised that individuals with high
self-consciousness and greater behavioural control would display fewer hand movements while
lying. They conducted a study involving 56 participants who were interviewed twice, once
truthfully and once deceptively. The results revealed a connection between the participant’s
personality traits and non-verbal behaviours during deception, emphasising the influence of
internal states on physical behaviours [Vri97]. Furthermore, van der Zee et al. utilised a motion
capture suit to record full-body movements, with the aim of detecting deceit. They discovered
that the sum of joint displacements allowed them to distinguish whether interviewees were
lying or telling the truth with 74% accuracy [Zee19].
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When exposed to acute stress, humans often exhibit a significant decrease in bodily
movements, commonly referred to as freezing [Bra04; Roe17]. Freezing is a well-studied
phenomenon and is a common defensive response in animals facing threats from predators
[Löw15; Eil05]. Roelofs et al. found that social threat cues could induce freezing behaviour
in humans. In their study, 50 female participants stood on a stabilometric force platform while
being exposed to various viewing cues. Angry faces notably reduced the participants’ body
sway [Roe10]. Haagenars et al. observed similar behaviour in response to unpleasant films
[Hag14]. Doumas et al. found that exposure to social evaluative threat leads to systematic
changes in postural control [Dou18].

The impact of acute psychosocial stress on body posture and movement could be a valuable
extension to the current biomarkers for acute stress detection. Abel et al. conducted a study to
measure body posture and movement using an IMU-based system during acute psychosocial
stress. They gathered data from 41 participants who underwent the TSST and the friendly
Trier Social Stress Test (f-TSST) – a friendly version of the TSST that does not activate the
HPA axis in healthy individuals [Wie13] – as a control condition in a randomised order on
two consecutive days. They computed various motion features from the IMU recorded data.
The results indicated that, compared to the control condition, participants exhibited defensive
freezing behaviour during acute stress, evident in the reduced head, hand, chest, and overall
body motion [Abe22]. Following a similar protocol, Richer et al. conducted a study with 21
participants. They developed a machine learning pipeline, capable of detecting acute stress
with an accuracy of 90%, based on the captured IMU data [Ric23].

3.2 Applications Utilising Video-Based Motion Analysis

Video-based motion analysis is utilised in a broad spectrum of applications due to the low
barrier of entry and recent advancements in computer vision. Video-based human pose
estimation tools are widely available and provide high accuracy (Section 2.2).

FaceReader (Noldus, Wageningen, the Netherlands) is an application used to decode
facial expressions automatically, providing insights into emotional reactions and an objective
assessment of emotions. The software uses deep learning-based algorithms to find a person’s
face, which is subsequently mapped using almost 500 keypoints. By utilising artificial neural
networks, the emotions expressed are then classified [Tec23]. The accuracy of FaceReader
has been validated in several studies. Skiendziel et al. investigated the correlation between
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FaceReader and the manual facial action coding system (FACS), which scores for 20 action
units. FACS enables the objective description of facial expressions based on individual
muscle activations. On average, 80% of the expressions assessed by FaceReader were cor-
rectly classified [Ski19]. Chia-Yin Yu and Chih-Hsiang Ko utilised FaceReader to recognise
consumer emotions towards graphic styles and found that FaceReader could be an effective
tool to evaluate consumer emotion in the field of design research [Yu17]. Terzis et al. em-
ployed FaceReader to measure emotions during self-assessment tests with an efficacy of over
87% [Ter10]. Further studies have demonstrated the capabilities of FaceReader to assess
emotion in response to tourism advertisements and the perceived healthiness of consumer
products [Had19; Pic21].

In the field of sports analysis, video-based methods have become a crucial training tool
for coaches, giving them a better understanding of all aspects of an athlete’s performance
[Ran20; Bar08; Wil08]. As well, training quality often depends on the correct execution of
exercises, which can be improved using automated systems [Gar13]. For instance, human
pose estimation in combination with artificial intelligence is capable of providing personalised
athletic training experiences and of detecting postural misalignments of an athlete’s body that
need to be corrected [Wan19; Par22]. Movement analysis is also an integral part of physical
therapy practice; video-based motion analysis is employed by sports physical therapists to
enhance assessment and treatment outcomes [Hen21; Yan18].

Video-based motion analysis has found widespread use in the field of human gait analysis
[Sin18]. The technology enables applications such as spinal deformity classification [Sum23]
and Parkinson’s disease diagnosis by examining bilateral differences between left and right
arm swings [Abe21]. Several low-cost video-based tools for clinical gait analysis have
already been developed [Sod09; Vis19; DAn20]. Stenum et al. have proposed a versatile
workflow that leverages video-based pose estimation to perform gait analyses using videos
recorded from multiple perspectives. OpenPose is used to detect keypoints of healthy adults
walking overground, and a variety of spatiotemporal and kinematic gait parameters are
calculated. This workflow allows researchers to perform quantitative gait analysis using only
household devices and computer vision. This marks a major enhancement in the accessibility
of clinical gait analysis, which traditionally requires complex measurement setups [Ste21].
Boswell et al. have introduced an approach for self-guided, smartphone-assisted quantitative
motion analysis using the five-repetition sit-to-stand test. This experiment was conducted by
participants in their own homes across 35 US states, where they recorded themselves with
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their personal smartphones sitting and then standing five times. By employing OpenPose to
perform human pose estimation, the researchers successfully extracted motion parameters
from smartphone videos. They found that these parameters significantly correlated with
various factors, including diagnoses of osteoarthritis, indicators of physical and mental health,
body mass index, age, race, and ethnicity. This not only demonstrates the feasibility of
at-home movement analysis, but also allows for affordable, objective, and digital outcome
metrics for large-scale, nationwide studies [Bos23].
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Methods

4.1 Platform Requirements

The openTSST platform is intended to be capable of performing an end-to-end extraction of
meaningful motion parameters from video data to assess the influence of acute psychosocial
stress on body posture and movements. The platform shall offer a web interface for users to
upload videos they recorded during TSST. These videos should then be processed automat-
ically in the cloud. Once the processing is completed, the researcher shall be notified and
be able to access the results. A thorough requirement analysis was carried out to ensure the
openTSST platform is designed to meet researchers’ needs and quality expectations. This
section outlines the identified functional and non-functional requirements for the platform.

4.1.1 Functional Requirements

The following functional requirements define what the platform must do, and what its features
and functions are:

• The openTSST platform should provide a web interface that is intuitive and user-
friendly, allowing even non-technical researchers to interact with the platform with
ease, thus lowering the barrier to entry. Furthermore, the web interface needs to
provide a comprehensive usage guide as part of the platform’s documentation. This
guide shall provide clear instructions on effectively utilising the platform, along with
troubleshooting strategies to resolve commonly encountered issues.
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• TSST studies typically involve multiple study participants and may encompass several
trials per participant, such as tests conducted on consecutive days [Roo19] or variations
of the TSST protocol like the f-TSST [Wie13]. To spare researchers the repetitive work
of individually uploading all these videos, the platform must be designed to implement a
batch processing mode capable of simultaneously uploading multiple videos. Moreover,
given that processing can be time-consuming, particularly for large batches of data,
the platform must be able to execute the computation asynchronously. The researcher
should be able to track the progress of running processing tasks in real-time. Once
processing is finished, a mechanism should be in place to notify the researcher that the
results are ready, along with a direct link for accessing them.

• The TSST encompasses multiple phases, therefore the platform must provide a mech-
anism to partition videos into multiple segments, each to be processed individually.
Furthermore, it should be possible to trim the beginning and end of each video.

• The platform shall be usable in its full functionality without the necessity of an account.
Processing tasks shall be accessible via a unique identifier, ensuring a secure way
to access tasks and results without an account. Furthermore, it shall be possible for
administrators, authenticated via a login screen, to access an overview of all processing
tasks. Admins shall also have the capability to remove old processing tasks and examine
their results.

• Given that each study’s processing requirements may differ, the platform should sup-
port the ability to individually enable or disable processing options beyond the basic
computation performed for every task. This not only conserves resources but also
enables faster processing.

4.1.2 Non-Functional Requirements

The following non-functional requirements specify criteria in regard to the architecture and
operation of the platform:

• The openTSST platform’s web interface must be responsive to user interactions. Due
to the high computational load of processing tasks, the system must schedule jobs with
minimal overhead, and, even during high load, the user’s interactions shall remain
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fluent. Furthermore, the platform shall be designed to accommodate a growing number
of researchers. The platform must be able to handle growing demands without any
compromise in performance. If all available computational resources are in use, the
platform shall remain responsive and all additional jobs shall be queued until additional
resources are available.

• Given the ever-evolving needs of researchers, the platform’s data processing pipeline
must feature a modular design. This will enable future adaptations to the data processing
pipeline with minimal alterations to the fundamental platform structure.

• Moreover, the codebase should conform to best coding practices and standards, and it
should include comprehensive instructions to aid new developers in the project. This
will minimise the effort for pipeline modifications, bug fixes, and general enhancements
made by new contributors.

• Furthermore, it is important to protect sensitive user data and research findings. The
security measures to be employed include but are not limited to secure data transmission
and the implementation of robust access control mechanisms.

4.2 Platform Architecture

Designing systems that can handle computationally intensive workloads on a large scale is
a challenge, so the underlying platform architecture needs to be thought through carefully.
The openTSST platform is divided into two primary components. The first component is the
processing gateway that provides both a web interface for the user as well as the business
logic for coordinating processing tasks. The second component is the worker cluster, which
is specifically designed to process compute-intensive workloads. Video files and processing
artefacts are stored in a simple storage service (S3) instance. A comprehensive schematic
representation of the platform architecture can be found in Figure 4.1.
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Figure 4.1: High-level openTSST platform architecture overview.

4.2.1 Processing Gateway

The primary responsibility of the processing gateway is to offer a web-based interface for user
interaction with the platform. It also manages all logic for scheduling processing workflows,
sending user notifications, and storing persistent workflow states. The gateway is built
in TypeScript using the Next.js1 framework, a powerful framework for the development
of full-stack web applications. The integration of web interface (frontend) and business
logic (backend) within a single codebase significantly accelerates the development process
and enhances its efficiency. To facilitate the exchange of data between the frontend and the
backend, the library tRPC2 is employed. This fully typesafe library allows the construction of
application programming interfaces (APIs) without schemas or code generation.

1https://nextjs.org/
2https://github.com/trpc/trpc

https://nextjs.org/
https://github.com/trpc/trpc
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Table 4.1: Processing gateway environment variables overview.

Name Explanation

DATABASE_URL PostgreSQL database URL
S3_REGION S3 Region
S3_ACCESS_KEY S3 Access Key
S3_SECRET_KEY S3 Secret Key
NEXT_PUBLIC_S3_ENDPOINT S3 Endpoint
NEXT_PUBLIC_S3_BUCKET S3 Bucket
EMAIL_ADDRESS openTSST Email Address
EMAIL_PASSWORD openTSST Email Password
DEPLOY_URL Deployment URL
INTERNAL_API_KEY Internal API Key
ADMIN_PASSWORD Admin Password
TOKEN_SECRET JWT Token Secret

To inject configuration parameters as well as sensitive information – such as access
tokens – into the application, environment variables are employed. Table 4.1 provides a
comprehensive list of all required environment variables. Environment variables that begin
with the prefix NEXT_PUBLIC_ are also exposed on the client side.

Users can submit TSST videos in the form of a processing task. A processing task includes
information such as name, email, processing options, and a batch of videos. Each video
file within the batch triggers the creation of an individual video task, associated with the
processing task.The processing status of each video task is stored in the dedicated state
field. While the task is being processed, its real-time progress is tracked through the progress
field. This granular approach is crucial as internal processing occurs at the level of individual
video tasks and not at the level of aggregated processing tasks. The system stores persistent
processing task information in a PostgreSQL3 database. An illustrative representation of the
database schema is provided in Figure 4.2. The processing gateway utilises Prisma4 as a tool
for managing migrations and orchestrating the object-relational mapping (ORM) layer.

3https://www.postgresql.org/
4https://www.prisma.io/

https://www.postgresql.org/
https://www.prisma.io/
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Figure 4.2: Processing gateway database models.

The web interface is constructed using React5, a popular JavaScript library for creating
dynamic web interfaces. The use of Tailwind CSS6 in combination with Flowbite7 – an
open-source library with over 600 Tailwind components – covers the aesthetic and intuitive
styling requirements of the web interface. Moreover, to adapt to user preferences, a dark
mode has been integrated. Screenshots of selected interfaces can be found in Appendix A.

The web interface itself consists of three primary pages. The first page is the processing
task submission page, which enables users to create new processing tasks. Users can assign an
alias for the task and an email address for receiving updates. Additionally, optional processing
steps can be selected via the available checkboxes. Users can then either select or drag and
drop all study videos intended for processing into a designated upload area. Upon selecting
each video, the video segmentation interface opens. This interface permits users to partition
and trim the video into multiple segments through a tailored video timeline interface.

5https://react.dev/
6https://tailwindcss.com/
7https://flowbite.com/

https://react.dev/
https://tailwindcss.com/
https://flowbite.com/


4.2. PLATFORM ARCHITECTURE 17

S3 StorageBackendBrowser

S3 StorageBackendBrowser

User
Submit processing task.

Create new processing task.

S3 presigned upload URL.

Upload videos.

Confirm upload.

Submit processing task.

Confirm submission.

Redirect to processing task.

User

Figure 4.3: Processing task submission flow.

Upon submission, the initial information, which includes the task alias, email, processing
options, video filenames, and segmentation data, is transmitted to the backend server. This
information is then stored in the database, and a unique identifier for the task, along with a
pre-signed URL for S3 storage, is generated and returned. This pre-signed URL enables the
client to upload files to a pre-determined S3 bucket, only allowing access to files that begin
with a specific key prefix. In this context, the processing task ID serves as the prefix. File
uploads are restricted to a maximum file size of 1 GB per file. Once the browser receives the
pre-signed URL, it triggers the simultaneous upload of all study videos. Upon completion of
the upload, the client dispatches a submission request to the backend server, thereby marking
the processing task as ready for processing. Throughout this process, users are presented
with an informative loading screen that provides progress bars and updates. Once the task
has been successfully submitted, the user is redirected to the detail page of the newly created
processing task. Figure 4.3 further illustrates the workflow of this submission process.
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The second page, the processing details page, enables users to monitor the status of their
processing tasks and view the results, should they already be available. Users also receive an
overview of all selected processing options. For each submitted video associated with the task,
they can view processing artefacts, such as the extracted movement features, the OpenPose
pose estimation output as pandas8 DataFrame, and the rendered OpenPose overlay video. If
the results are not yet available, the page presents the current status of the processing task. If
the processing has already started, the user can monitor the progression of the processing
steps in real-time. In the event of an error, the corresponding error message is displayed. The
system periodically updates the page to load new information as it becomes available.

The last page of the website features an admin panel that enables administrators to have
an overview of all the created processing tasks, and, if necessary, to delete them. JSON web
tokens (JWTs) are used to authenticate admin users. Users can initiate a login request via the
web interface. If the provided credentials are valid, the backend responds with a signed JWT,
which is stored in the browser’s local storage. This token is transmitted as a Bearer Token
[Jon12] in the “Authorization” header to authenticate requests to the backend server. Logout
functionality, which removes the JWT from the browser’s local storage, is provided.

Lastly, the interface features a landing page that provides a short description of the
platform and a “Getting Started” guide. Beyond this, a comprehensive user guide is available.
This guide explains the platform’s capabilities in more detail and offers instructions to users
for optimal utilisation of the platform. It also includes troubleshooting advice to address
frequently encountered issues.

Furthermore, the processing gateway offers internal API endpoints for facilitating com-
munication with the worker cluster. These endpoints enable the cluster to query for new video
tasks, as well as to update the status and process of existing tasks. The internal API endpoints
are safeguarded via an internal API key, transmitted as a Bearer Token [Jon12].

4.2.2 Worker Cluster

The worker cluster, responsible for processing the actual video tasks, operates within a
Kubernetes9 environment. Kubernetes is a declarative container orchestration framework
designed for deploying and scaling containerised applications. It has a large and rapidly

8https://pandas.pydata.org/
9https://kubernetes.io/

https://pandas.pydata.org/
https://kubernetes.io/
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Figure 4.4: Illustration of selected Kubernetes deployments and workflows in their respective
namespaces in the worker cluster.

growing ecosystem, and it offers a wide variety of services, support, and tools [Kub23].
Kubernetes is also portable, allowing for local deployments as well as for deployments on all
major cloud providers. This is especially useful for the worker cluster, as it can be deployed
both on a local machine for testing purposes, but also on a cloud provider like Amazon Web
Services (AWS) for production deployments.

Certain compute-intensive tasks executed by the worker cluster require graphics process-
ing unit (GPU) resources. Therefore, the worker cluster must be deployed on a GPU-equipped
machine. As such, the Nvidia device plugin10 has been configured to enable Kubernetes
deployments on GPU-equipped machines. This plugin enables the usage of GPU resources
in Kubernetes, allowing containers to request GPU resources. The Nvidia device plugin is
configured as a daemonset, ensuring that each node in the cluster has access to GPU resources.

The heart of the worker cluster is the data processing pipeline (Section 4.3), constructed
based on Argo workflows11. Argo workflows is an open-source container-native workflow
engine for orchestrating parallel jobs on Kubernetes, making it an ideal choice for running
compute-intensive workflows. Especially when deployed on a cloud Kubernetes engine like
AWS Elastic Kubernetes Service, compute resources can scale up or down depending on the
current workload, which enables high throughput while maintaining cost-effectiveness. A
high-level overview of the Kubernetes cluster configuration is illustrated in Figure 4.4.

To initiate new data processing workflows for a video task, a cron job is configured in
the worker cluster to query the processing gateway every 60 seconds. The job queries all
video tasks submitted to the processing gateway by a user and transmutes their processing
state to “Started” in one transaction, thereby avoiding race conditions. A new Argo workflow
that runs the data processing pipeline is then started for each task. The processing options

10https://github.com/NVIDIA/k8s-device-plugin
11https://argoproj.github.io/argo-workflows/

https://github.com/NVIDIA/k8s-device-plugin
https://argoproj.github.io/argo-workflows/
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submitted by the user are passed into the workflow as parameters. Any errors encountered
during this process are reported back to the processing gateway. This pull-only approach
allows deployments of the worker cluster behind firewalls without the necessity of opening
inbound ports.

Monitoring the worker cluster is facilitated by the Argo user interface (UI) and the
Kubernetes dashboard. The Argo UI provides an in-depth overview of both ongoing and past
workflows. It allows for the inspection of specific tasks, their log file and real-time tracking
of workflow statuses. Additionally, the Kubernetes dashboard service is configured to inspect
the Kubernetes cluster, providing a low-level overview of all resources inside the cluster and
conveying useful information about the health of Argo system pods. However, port forwarding
is necessary to access the Argo UI or the Kubernetes dashboard, as these services are not
exposed via an ingress – a Kubernetes resource to expose routes from outside the cluster to
services within the cluster – for security reasons.

4.3 Data Processing Pipeline

The data processing pipeline is composed of multiple steps running inside an Argo workflow.
This architecture was chosen to enable a highly modular processing pipeline design. All
processing steps running in the pipeline are executed in a container, allowing for greater
flexibility. While a data processing workflow is active, a temporary shared workflow volume
is created, which can be accessed by each container running in the pipeline. This volume
is used to share processing artefacts with other steps in the workflow. Argo workflow also
enables artefact upload to a configured S3 provider.

At the start of the pipeline, a video analysis container is run to extract information, such
as frames per second and video duration, from the video file in order to facilitate subsequent
processing steps. A visualisation of the main data processing pipeline steps, along with the
generated artefacts, is provided in Figure 4.5. The processing is mainly based on a master’s
project by Liv Herzer. Following each pipeline step, an update regarding the video task’s
progress is transmitted to the processing gateway. Moreover, while the OpenPose container is
running, the progress of the OpenPose motion extraction is reported at five-second intervals.
Upon completion of the pipeline, the exit handler notifies the processing gateway and either
reports success or relays error messages.
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Figure 4.5: Illustration of the main data processing steps, along with generated artefacts.

4.3.1 OpenPose

OpenPose has been chosen to perform pose estimation, as it delivers some of the highest
accuracy, is simple to use, and is flexible. OpenPose also allows the rendering of a skeleton
overlay video as well as the generation of JavaScript object notation (JSON) keypoint output.
The OpenPose output format is supported by a wide variety of tools. An overview of the
keypoints extracted by OpenPose can be found in Figure 4.6. OpenPose processing is executed
in a custom Docker container, equipped with a precompiled version of OpenPose. The system
initially downloads the raw video, which the user uploaded to S3, to the local container into a
temporary directory. Subsequently, OpenPose is utilised to conduct motion analysis on the
raw video. The task saves the resulting keypoints in JSON format to the shared workflow
volume. Additionally, if the “generateOpenPoseVideo” workflow parameter specifies it, a
video with an overlaid OpenPose skeleton is rendered. The task then uploads the rendered
video to S3 for user access. To expedite OpenPose processing significantly, the OpenPose
processing operates on a GPU. Depending on the number of available GPUs, a semaphore
within the Argo workflow template constrains the number of OpenPose processing tasks that
can run concurrently.
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Figure 4.6: OpenPose BODY_25 body part mapping.

4.3.2 Data Aggregation

This step aggregates keypoint data within a Python-based Docker container. The OpenPose
keypoints, generated in the prior stage, are fetched from the shared workflow volume and
transformed into a single Pandas DataFrame. This DataFrame provides a structured and
intuitive representation of the OpenPose output data, thereby simplifying successive data
analysis or machine learning tasks. The resulting DataFrame is stored as a CSV file on the
shared workflow volume for accessibility in later steps and is also uploaded to the S3 for user
access. The data aggregation algorithm is outlined as follows.
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1. JSON Data Extraction

Each JSON keypoint file in the specified directory is processed such that the frame
number is parsed from the filename and the keypoint data is extracted from the JSON
structure. Files lacking any keypoint data are omitted. Files that contain data for
more than a single detected individual are flagged and the corresponding keypoints are
disregarded (set to NaN).

2. Keypoint Processing

The extracted keypoints are restructured into a two-dimensional array of the shape
(n, 3), representing x, y, and their confidence values respectively. Keypoints with
a confidence score of 0, signifying an uncertainty in detection, have their x and y
coordinates substituted with NaN.

3. DataFrame Construction

The processed keypoints are subsequently transformed into a pandas DataFrame with
a hierarchical column index structure. The columns are orchestrated at two levels: the
first corresponds to the body part, while the second specifies the axis (x-coordinate,
y-coordinate, and confidence score). An extra column is added, containing a flag
indicative of the presence of more than one person in the frame. The DataFrame is
indexed by the frame number.

4. DataFrame Aggregation and Reorganisation

DataFrames for all frames are concatenated into a singular DataFrame and sorted by
frame number and body part. The 25 body part integer indices are then mapped to their
associated human body keypoint labels such as “Nose”, “Neck”, “RightShoulder”, etc.
Subsequently, the column level “channel” is appended to the DataFrame columns. The
column levels of the DataFrame are rearranged to place the “channel” level between
the “body_part” and “axis” levels. Initially, each column’s value for the level channel
is set to “pos”.
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4.3.3 Data Preprocessing

Following the initial aggregation of data, further preprocessing of the DataFrame is carried
out. This stage includes data cleaning, normalisation, and transformation. Upon completion,
the DataFrame is subsequently stored again as a CSV file within the shared workflow volume.

1. Data Interpolation and Filtering

For instances where OpenPose fails to accurately detect the participant’s poses for a
brief period, linear interpolation is applied to estimate missing keypoints. Any data
gaps exceeding half a second in duration are eliminated (set to NaN). Additionally, to
reduce the impact of high-frequency, low-magnitude noise in the OpenPose data, a 6 Hz,
fifth-order, zero-lag, low-pass Butterworth filter is applied. The resulting DataFrame
is denoted as dfinter.

2. Normalisation by Body Height

The interpolated data is then normalised based on the participant’s body height. This
normalisation is essential to compensate for variations in camera orientations across
different trials, thereby ensuring the comparability of measurements. First, the body
height is computed as the 95th percentile of the vertical distance between the keypoints
“Nose” (yupper) and “RightBigToe” (ylower) throughout the data sequence (Equation 4.1).
This calculation method mitigates the effects of occasional erroneous measurements.
Subsequently, every coordinate in the DataFrame is divided by this height factor to
achieve normalisation according to Equation 4.2. In this normalised DataFrame, the
channel is consequently renamed from “pos” to “pos_norm”.

height = quantile(ylower − yupper, q = 0.95) (4.1)

dfnorm =
dfinter
height

(4.2)

3. Relative Position to Neck Calculation

The position of each body part relative to the neck is determined by subtracting
the neck’s coordinates from the coordinates of each body part in the normalised
DataFrame (Equation 4.3).
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dfrel = dfnorm − dfneck (4.3)

Where dfneck denotes the coordinates for the “Neck” body part. The channel attribute
in this DataFrame is renamed from “pos” to “pos_rel2Neck”.

4. Wrist Relative to Elbow Position

The position of each wrist in relation to its corresponding elbow is calculated. This
process is analogous to the previous step, but it specifically targets the “Wrist” body
part relative to the “Elbow” body part for both the “Left” and “Right” sides.

5. Data Concatenation

The resulting DataFrames from the preceding steps (interpolated, normalised, body
parts relative to neck, and wrists relative to elbows) are concatenated column-wise to
form a single DataFrame. The columns of this DataFrame are then restructured using
a hierarchical column structure, with the top level named “data_format”, and the other
levels named “body_part”, “channel”, and “axis”. The newly introduced “data_format”
level is set to “open_pose” for every column.

6. Velocity computation

Velocities for each channel of the concatenated DataFrame are computed. Three kinds
of velocities are computed: the velocities in the x- and y-dimensions, along with a
2-dimensional velocity.

The 2-dimensional velocity is determined by applying the Euclidean norm to the
difference in position, which is then divided by the elapsed time. This computation
effectively yields the velocity measured in units of pixels per frame. Velocities for the
x and y components are calculated similarly, leveraging the respective differences in
the x and y coordinates of the position.

Finally, all “pos” strings in the original channel names are substituted with “vel” and
are added to the original DataFrame.
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4.3.4 Feature Extraction

Following the preprocessing of data, a variety of features are calculated, similar to previous
work by Abel et al. [Abe22]. Features are computed for individual body parts. Additionally,
several body parts are grouped to reflect movements of specific body areas (Table 4.2). The
calculated features can be divided into two categories: generic features and expert features.

Generic features do not require prior domain knowledge. They include basic statistical
measures such as mean and standard deviation. Signal characteristics like entropy are also
included in generic features (Table 4.3). In contrast, expert features are based on prior
knowledge. They are designed specifically to represent movement patterns that have been
identified in previous studies or observed during data collection.

Table 4.2: Definition of body part groups. {L/R} denotes the left and right sides.

Group Body Parts

Trunk {L/R} Hip, {L/R} Shoulder, Neck
Upper Extremities {L/R} Shoulder, {L/R} Elbow, {L/R} Wrist
Lower Extremities {L/R} Knee, {L/R} Ankle, {L/R} BigToe, {L/R} SmallToe,

{L/R} Heel
Total Body All body parts

Table 4.3: Overview of computed generic features.

Name Short Form

Mean mean
Standard deviation (SD) std
Entropy entropy
Absolute Energy abs_energy
Mean Crossing mean_crossing
Zero Crossing zero_crossing
FFT Aggregated Centroid fft_aggregated_centroid
FFT Aggregated Kurtosis fft_aggregated_kurtosis
FFT Aggregated Skew fft_aggregated_skew
FFT Aggregated Variance fft_aggregated_variance
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4.4 Deployment

The openTSST platform is deployed on servers operated by the Machine Learning and Data
Analytics Lab. The deployment is accessible at https://mad-opentsst.aibe.uni-erlangen.de.
A MinIO12 S3 server with a private bucket for the openTSST deployment is utilised to store
raw video files and processing artefacts. It is accessible exclusively within the university’s
private network. Consequently, users are required to connect to the university’s virtual private
network (VPN) to utilise the openTSST platform. The platform’s processing gateway is
deployed on a web server using a docker-compose setup. This setup includes a PostgreSQL
database to store persistent processing task information and the Next.js server. Additionally,
the worker cluster is deployed on a workstation equipped with an Nvidia Titan Xp GPU, as it
is responsible for executing computationally intensive tasks. Similar to the MinIO server, the
worker cluster is located within the university’s private network.

12https://github.com/minio/minio

https://mad-opentsst.aibe.uni-erlangen.de
https://github.com/minio/minio
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Evaluation

To demonstrate the openTSST platform’s capabilities, a proof-of-concept analysis was per-
formed on a previously recorded study [Roo19]. Participants were asked to take part in the
TSST on two consecutive test days.

5.1 Study Population

A total of 160 participants, comprised of 108 females and 52 males, participated in this study.
Table 5.1 presents a summary of the participants’ demographic and anthropometric data.
Participants were recruited via print and multi-media advertising. An online survey tool was
utilised for the screening of potential participants. To be considered eligible for the study,
participants had to meet the following criteria: age between 18 and 35 years, Body Mass Index
between 18 and 30 kg/m2, non-smoking, not dependent on alcohol or illicit drugs, absence of
medication use, and no major psychiatric disorders or symptoms evident during the screening.
As compensation for participation in the study, participants received 45 EUR for their time.

Table 5.1: Demographic and anthropometric data of the participants. Mean ± SD.

Age [years] Weight [kg] Height [cm] BMI [kg/m2]

Female 25.14 ± 7.03 62.34 ± 8.56 167.55 ± 5.87 22.17 ± 2.49
Male 25.81 ± 5.85 76.25 ± 10.71 181.73 ± 7.72 23.04 ± 2.53

Total 25.36 ± 6.66 66.86 ± 11.35 172.16 ± 9.31 22.45 ± 2.53
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5.2 Procedures

Participants were scheduled to visit the laboratory on two consecutive test days. In order to
control for the impact of circadian cortisol rhythm, the study was conducted between the hours
of 14:00 and 18:00. Upon arrival, baseline saliva samples were collected. After a rest period
of 45 minutes, an additional saliva sample was collected and participants were introduced to
the TSST [Kir93], which is recognised as the gold standard method for inducing psychosocial
stress in a laboratory setting [Dic04]. During the TSST, participants are escorted into a
testing room where they are met with a committee composed of one male and one female
member. This committee serves as the audience for evaluating the participant’s performance.
The TSST comprises two main tasks: public speaking and a verbal arithmetic task. Initially,
participants are given five minutes to prepare a speech to persuade the committee members
that they are the ideal candidate for their dream job. Subsequently, participants are instructed
to deliver this five-minute speech in front of the committee. Notably, the committee refrains
from providing any form of verbal or nonverbal encouragement or feedback during the TSST,
which enhances the stressfulness of the situation. Following the speech, participants are asked
to participate in a serial subtraction task for an additional five minutes. They are instructed to
subtract a specific number from a given starting number (17 from 2043 on day 1 and 13 from
2011 on day 2) as accurately and swiftly as possible. If participants make an error, they are
instructed to start over from the beginning. Both the speech and arithmetic portions of the
TSST were video-recorded. Furthermore, saliva samples were collected at +1, +10, +20, +30,
+45, and +60 minutes after the TSST [Roo19]. The procedure of a single test day is illustrated
in Figure 5.1.

TSST

Prep Talk Math

-1 +1 +10 +20 +30 +45 +60baseline

Figure 5.1: Overview of the study procedure of a single test day.



5.3. MEASUREMENTS 31

5.3 Measurements

5.3.1 Saliva Markers

The response of the HPA axis was assessed using salivary cortisol concentrations. Salivary
samples were collected using Salivettes (Sarstedt, Nümbrecht, Germany) and preserved for
subsequent evaluation at -30 °C post-laboratory sessions. The salivary samples were then
centrifuged at 2000g for ten minutes at 20 °C and cortisol concentrations were evaluated
in duplicate using a chemiluminescence immunoassay (CLIA, IBL International, Hamburg,
Germany). The intra-assay and inter-assay CVs were below 10% [Roo19].

5.3.2 Video Recordings

In accordance with the TSST protocol, video data was captured during the speech and
arithmetic phases of the TSST procedure. The data was recorded with a sampling rate of
30 Hz and stored as MP4 files. The recordings were trimmed to only include the relevant
test duration. The framing of video captures was aligned to fully encapsulate the upper body
including the hip of the participant. Lower extremities were not visible in the recordings.
Individuals were positioned in front of a white wall with their respective participant number
visible in the background.
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5.4 Data Processing

5.4.1 Saliva Features

To evaluate the activity of the HPA axis, four saliva features were calculated from the raw
cortisol samples. In the following, ti denotes the time at each measurement point, while Si

represents the cortisol level at the corresponding point. The initial saliva sample (S0) was
excluded from further analysis, as its primary purpose was for baseline comparisons and
potential participant exclusion from the study. The raw samples (S1-S7) were then processed
to compute four features: AUCG, AUCI , ∆cmax, and a14.

AUCG and AUCI are variations of the area under the curve (AUC), as proposed by
Pruessner et al. [Pru03]. The AUCG, which denotes the area under the curve with respect to
the ground, was calculated as follows:

AUCG =
6∑

i=1

(Si+1 + Si) · (ti+1 − ti)

2
(5.1)

Additionally, the AUCI , representing the area under the curve with respect to the increase,
was computed as follows:

AUCI =
6∑

i=1

(Si+1 + Si) · (ti+1 − ti)

2
− S1 · (t7 − t1) (5.2)

Furthermore, the maximum increase in cortisol (∆cmax) was quantified as the difference
between the peak cortisol level following the TSST and the cortisol level recorded prior to
the TSST (S1):

∆cmax = max{S2, ..., S7} − S1 (5.3)

Finally, a14, the slope of the cortisol level from S1 to S4, was calculated as:

a14 =
S4 − S1

t4 − t1
(5.4)
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5.4.2 Motion Features

Motion features were computed as described in Section 4.3. Given that the available video
data solely depicts the upper body, the normalisation strategy described in Step 2 was revised
to normalise between the body parts “Nose” and “MidHip”. Measures from the lower body
parts were consequently disregarded.

5.5 Statistics

Initially, a statistical analysis was conducted to confirm the cortisol habituation effect. Subse-
quent to this, the extracted motion features underwent statistical evaluations to determine if
the habituation effect was discernible in the motion features as well.

A test for normal distribution via the Shapiro-Wilk test unveiled nonconformity for certain
features. Thus, Wilcoxon signed-rank tests were executed on all features, with the condition
as a between-variable, as all participants were subjected to both conditions (day 1 and day 2).
The statistical analysis was performed using the Python package biopsykit [Ric21], based on
pingouin [Val18]. The significance level was set at α = 0.05 and effect sizes were reported
as Hedge’s g. In an attempt to correct for the multiple comparisons problem, Bonferroni
corrections were employed across all tests. All figures and tables utilise the following notation
to denote statistical significance: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.





Chapter 6

Results

This chapter presents the results obtained from the analysis of salivary measures and motion
features. From the initial cohort of N = 160 participants, a total of 51 were eliminated due
to the absence of video recordings from one of the test days or both test days. Additionally,
misalignments in camera framing led to computational errors in the feature extraction, resulting
in the additional exclusion of 29 participants. Consequently, the participant count for the
subsequent statistical analysis was reduced to N = 80, comprised of 49 females and 31 males.

6.1 Saliva Measures

Exposure to the TSST on the first day precipitated an approximate doubling of cortisol levels
subsequent to the TSST, as seen in Figure 6.1. In particular, an increase of 97% in mean
cortisol levels was noted when comparing the measurement taken immediately prior to the
start of the TSST (S1) with the peak measurement (S3) collected 10 minutes after the TSST.
The second day showed a comparatively modest 56% increase in mean cortisol levels from
S1 to S3, suggesting that cortisol response habituation had occurred. These findings are in
agreement with the prior analysis conducted on this study by Roos et al. [Roo19].

Furthermore, the statistical analysis of the calculated cortisol features revealed a significant
difference across all computed features between first and second TSST exposure. The results
of this statistical analysis are presented in Table 6.1. The largest effect sizes were identified
for AUCG, with an effect size of g = 0.489, and a14, with an effect size of g = 0.408. All
computed cortisol features for each day are plotted in Figure 6.2.
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Figure 6.1: Cortisol response to the TSST: Mean ± Standard error of cortisol samples across
all participants for each test day.
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Figure 6.2: Cortisol response to the TSST: Mean ± Standard error of cortisol features across
all participants for each test day.
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Table 6.1: Statistical analysis of cortisol feature analysis.

W p Hedges’ g
Saliva Feature

AUCG 408 <0.001∗∗∗ 0.489
AUCI 671 <0.001∗∗∗ 0.355
∆cmax 665 <0.001∗∗∗ 0.384
a14 521 <0.001∗∗∗ 0.408

6.2 Motion Features

Due to computational errors and insufficient data, 13 expert features have been disregarded
from the analysis. This section presents the results derived from the remaining 224 motion
features, comprising 172 generic and 52 expert features. Given the number of features, only
a selected subset of results is presented in this section. A comprehensive overview of the
statistical analysis results encompassing all features can be found in Appendix B.

6.2.1 Generic Features

From the 172 generic features, no significant differences were found between data from day
one and day two. Various generic features quantify the hand movement during the TSST,
including the mean vel_norm for both the left and right wrists. As depicted in Figure 6.3,
there was no statistically significant increase in hand movement from day one to day two in the
form of increased mean normalised velocity. Additionally, an increase in the mean velocity of
body part groups, such as the Upper Extremities and Trunk – a potential indicator of freezing
behaviour on the first day – was also not found. There were no considerable variations between
the two test days to suggest freezing behaviour. The comprehensive statistical evaluation of
the calculated generic features is available in Table B.1.
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Figure 6.3: Plot of selected generic motion features.

6.2.2 Expert Features

The statistical analysis did not identify any statistically significant differences between the data
from the two days for any of the expert features. A complete overview of the statistical results
for all expert features is provided in Table B.2. Static periods observed during the TSST,
which can be an indicator of freezing behaviour, did not show longer mean and maximum
durations. An example of the static periods feature for the Upper Extremities is illustrated
in Figure 6.4. The static periods identified during the first day did not show significantly
prolonged mean and maximum durations when compared to the second day.
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Figure 6.4: Plot of selected expert motion features.



Chapter 7

Discussion

7.1 Study Evaluation

Roos et al. conducted a study to investigate the effect of stress habituation on repeated acute
psychosocial stress [Roo19]. In this thesis, this investigation was extended by analysing
whether habituation could be observed in freezing-related motion parameters. Consistent
with the finds of Roos et al., salivary measurements demonstrated habituation effects across
all computed parameters derived from the raw cortisol values; however, there was no notable
habituation effect in the freezing-related motion features. This suggests that, although repeated
participation in the TSST leads to a habituation effect on cortisol secretion, it may not similarly
influence motion-related behaviours. It is plausible that the intrinsic stressfulness of the TSST
continues to trigger defensive freezing, even after multiple exposures.

Prior research by Abel et al. and Richer et al. explored defensive freezing behaviours
during acute psychosocial stress [Abe22; Ric23]. As a comparative baseline, they employed
the f-TSST [Wie13]. Their results show a considerable increase in defensive freezing motion
parameters when participants were exposed to the TSST compared to the f-TSST. In contrast
to these studies, both test days of the current evaluation only utilised the TSST, so no such
baseline was available.

A limitation of the study evaluation is the restricted field of view of the captured videos,
encompassing only the participants’ upper body. Although a comprehensive set of motion
features covering the upper bodies was computed, some features were inevitably omitted due
to this constraint. In contrast, previous research had motion data covering the entire body.
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Nevertheless, the lack of motion habituation presents an interesting area for exploration.
Future research should investigate motion habituation in the context of repeated acute psy-
chosocial stress further.

7.2 openTSST Platform

One main goal of the openTSST platform was to improve accessibility to video-based motion
analysis during acute psychosocial stress. Incorporating motion-based stress analysis along
with traditional stress markers can provide a more holistic assessment of the human response
to acute stress. The platform presented in this thesis successfully demonstrates end-to-end
motion parameter extraction during acute psychosocial stress.

Compared to optical or IMU-based motion capture techniques, the video-based approach
is cost-effective and simple to set up. No specialised hardware is required and video recordings
are already part of the TSST protocol. The accuracy of video-based motion analysis has also
reached remarkable accuracy and is thus sufficient for motion parameter extraction. Moreover,
since no markers are needed, there is no interference with natural human behaviour, unlike
other methods. Nonetheless, the complex operation of video-based pose estimation tools can
be a barrier to broader adoption. These tools demand technical expertise and a GPU-equipped
machine for efficient processing. The openTSST platform bridges this gap, simplifying the
user experience and handling pose estimation behind the scenes using its GPU-equipped
worker cluster.

Additionally, the unprocessed OpenPose output does not yield any direct value to the
researcher. Advanced data processing and feature extraction are required for meaningful
psychosocial stress analysis. This is a complex process, requiring substantial technical
knowledge, as the pose estimation data processing is performed using complex Python scripts.
Executing these scripts requires a local Python environment with multiple installed packages
and adaptation to the available data, making the setup time-consuming. To lower these barriers,
openTSST provides researchers with a user-friendly, web-based interface that facilitates motion
parameter extraction from videos, concealing technical details. The platform achieves this
by utilising its custom cloud-based processing pipeline. All necessary tools reside there,
allowing for fully automated processing. Researchers receive the aggregated OpenPose pose
estimation output, converted into a CSV file for subsequent tasks, in addition to the extracted
motion features. All the results are downloadable via the web platform.
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As research into motion behaviour during acute stress is constantly evolving, the platform
features a highly modular data processing pipeline design, ensuring adaptability to emerging
research needs. It provides a robust foundation for motion feature extraction, adapting to
align with the needs of future studies.

One limitation of the current processing pipeline is that it computes a predefined set
of motion features. Two aspects of this are potentially suboptimal. First, most features are
based on normalised data. The DataFrame is normalised to participants’ body heights using
specific body keypoints. Video content capturing only the upper body might result in a
failed normalisation. Second, the expert features that are computed require a configured
threshold. Although preconfigured, the threshold may not be optimal for all recorded input
data as it might vary based on the recordings. Moreover, the openTSST platform’s present
deployment restricts its operation to within the university’s own virtual private network.
Before a public rollout, it is essential to address legal aspects, such as the inclusion of an
imprint and General Data Protection Regulation (GDPR) compliance. Potential abusive
usage also requires consideration, and appropriate technical measures, such as robust firewall
protections, should be implemented.

Nevertheless, the openTSST platform serves as a robust foundation for video-based motion
parameter extraction during acute psychosocial stress, holding the potential to increase the
adoption of body posture and movement information to assess acute stress reactions.





Chapter 8

Conclusion & Outlook

This Bachelor’s thesis presents openTSST , a web-based platform designed for large-scale,
video-based motion analysis during acute psychosocial stress. While the TSST is the gold
standard for inducing acute psychosocial stress in a laboratory setting, analyses of these tests
have historically focused on traditional stress markers such as cortisol and inflammatory
markers. Available at https://mad-opentsst.aibe.uni-erlangen.de, the platform empowers
researchers to extend their analyses of TSST studies by including body posture and move-
ment features without requiring extensive technical proficiency. Built on a highly modular
architecture, the openTSST platform is designed to handle high computational loads and
can accommodate a growing number of researchers. The platform is also capable of being
adapted and expanded to address evolving research needs.

openTSST addresses the traditional challenges of cost, time, and technical proficiency
typically required in the analysis of psychosocial stress through motion parameters. In
contrast to the cumbersome nature of optical or IMU-based motion capture, video-based
motion capture is a more cost-effective and less time-consuming option. As video recording
is already a part of the TSST protocol, there is no need for additional equipment. This
allows openTSST to not only be able to analyse current and upcoming studies but also to be
able to analyse studies previously conducted where video data are available. By facilitating
large-scale, affordable, and easy-to-use motion-based analysis of acute psychosocial stress,
openTSST holds the potential to significantly accelerate the adoption of motion-based stress
analysis in the field.

https://mad-opentsst.aibe.uni-erlangen.de
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The capabilities of the openTSST platform were demonstrated by extending a previous
study by Roos et al., which examined the effect of stress habituation on repeated acute
psychosocial stress [Roo19]. The analysis was extended beyond self-report and saliva markers
to assess whether habituation effects could also be observed in freezing-related motion
parameters. Video recordings from the original study were processed using openTSST to
extract motion features. However, the statistical analysis did not reveal the expected habituation
effect in the extracted motion features, as it did with the saliva markers. These findings
underscore the need for further research into the effects of motion habituation in the TSST
across successive test days.

The highly modular design of openTSST serves as a robust foundation for future advance-
ments in the field of video-based motion analysis of acute psychosocial stress. Future research
could focus on refining and expanding the platform’s data processing pipeline. Its flexible
architecture provides an ideal basis for such enhancements, including but not limited to the im-
plementation of more sophisticated data processing techniques or the integration of additional
motion feature extraction algorithms. Moreover, the platform could be extended to feature
different types of analyses besides just motion-based analysis. For instance, incorporating
facial expression and voice analysis using tools such as OpenFace1 and OpenDBM2 could be
valuable extensions. Another promising inclusion would be remote photoplethysmography, a
technique that can detect blood volume changes from observations of a person’s face or skin.
By bundling all these methods together, the platform could evolve into an all-in-one solution
for contactless stress analysis.

1https://github.com/TadasBaltrusaitis/OpenFace
2https://github.com/AiCure/open_dbm

https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/AiCure/open_dbm
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Additional Figures

Figure A.1: openTSST processing task submission interface.
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Figure A.2: openTSST video segmentation popup.
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Figure A.3: openTSST processing task result overview.
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Table B.1: Statistical results of all generic features.

W p Hedges’ g
Body Part Channel Metric

Left Elbow pos_norm SD 1189 >0.999 0.105
Entropy 1423 >0.999 0.119

pos_norm_rel2neck FFT Centroid 1509 >0.999 0.031
FFT Skewness 1562 >0.999 -0.115
SD 1013 0.812 0.247
Entropy 1503 >0.999 0.101
FFT Kurtosis 1533 >0.999 -0.128
FFT Variance 1585 >0.999 -0.002

vel_norm Abs. Energy 1533 >0.999 -0.119
Mean 1557 >0.999 -0.105
Mean Crossings 1435.500 >0.999 -0.068

vel_norm_rel2neck Abs. Energy 1313 >0.999 -0.234
Mean 1547 >0.999 -0.111
SD 1326 >0.999 -0.232
Mean Crossings 1605 >0.999 0.007

vel_norm_rel2neck_2d FFT Centroid 1504 >0.999 0.063
FFT Skewness 1292 >0.999 0.157
FFT Kurtosis 1386 >0.999 -0.109
FFT Variance 1463 >0.999 0.064

Left Wrist pos_norm SD 1197 >0.999 0.144
Entropy 1352 >0.999 0.064

pos_norm_rel2leftelbow FFT Centroid 1452 >0.999 0.085
FFT Skewness 1591 >0.999 0.002
SD 1089 >0.999 0.199
Entropy 1548 >0.999 -0.052
FFT Kurtosis 1616 >0.999 0.052
FFT Variance 1374 >0.999 0.103

pos_norm_rel2neck FFT Centroid 1456 >0.999 0.120
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FFT Skewness 1398 >0.999 -0.133
SD 997 0.634 0.245
Entropy 1580 >0.999 -0.046
FFT Kurtosis 1458 >0.999 -0.093
FFT Variance 1455 >0.999 0.114

vel SD 1293 >0.999 0.183
vel_norm Abs. Energy 1421 >0.999 0.068

Mean 1572 >0.999 0.051
Mean Crossings 1339 >0.999 -0.136

vel_norm_rel2leftelbow Abs. Energy 1600 >0.999 0.022
Mean 1544 >0.999 0.034
SD 1515 >0.999 0.080
Mean Crossings 1374 >0.999 -0.151

vel_norm_rel2leftelbow_2d FFT Centroid 1554 >0.999 -0.003
FFT Skewness 1115 >0.999 0.302
Zero Crossings 1235.500 >0.999 -0.212
FFT Kurtosis 1581 >0.999 -0.094
FFT Variance 1547 >0.999 -0.002

vel_norm_rel2neck Abs. Energy 1525 >0.999 0.004
Mean 1537 >0.999 0.042
SD 1597 >0.999 0.018
Mean Crossings 1450 >0.999 -0.104

vel_norm_rel2neck_2d FFT Centroid 1498 >0.999 0.021
FFT Skewness 1167 >0.999 0.228
Zero Crossings 1233.500 >0.999 -0.212
FFT Kurtosis 1587 >0.999 -0.073
FFT Variance 1520 >0.999 0.023

Neck pos_norm SD 1317 >0.999 -0.240
vel SD 1504 >0.999 -0.103
vel_norm Mean 1515 >0.999 -0.100

Mean Crossings 1581 >0.999 0.038

Nose pos_norm SD 1586 >0.999 -0.154
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Entropy 1299 >0.999 0.198
pos_norm_rel2neck FFT Centroid 1517 >0.999 0.064

FFT Skewness 1567 >0.999 0.014
SD 1080 >0.999 0.223
Entropy 1336 >0.999 0.153
FFT Kurtosis 1534 >0.999 0.032
FFT Variance 1529 >0.999 0.054

vel SD 1607 >0.999 -0.144
vel_norm Abs. Energy 1600 >0.999 -0.288

Mean 1607 >0.999 -0.049
Mean Crossings 1559 >0.999 0.076

vel_norm_rel2neck Abs. Energy 1572 >0.999 -0.129
Mean 1573 >0.999 -0.038
SD 1608 >0.999 -0.088
Mean Crossings 1579 >0.999 0.059

vel_norm_rel2neck_2d FFT Centroid 1454 >0.999 0.121
FFT Skewness 1508 >0.999 -0.001
Zero Crossings 1112.500 >0.999 -0.258
FFT Kurtosis 1411 >0.999 0.019
FFT Variance 1370 >0.999 0.120

Right Elbow pos_norm SD 1527 >0.999 -0.063
Entropy 1570 >0.999 0.053

pos_norm_rel2neck FFT Centroid 1564 >0.999 -0.013
FFT Skewness 1401 >0.999 -0.140
SD 889 0.103 0.263
Entropy 1616 >0.999 0.043
FFT Kurtosis 1335 >0.999 -0.187
FFT Variance 1529 >0.999 0.001

vel SD 1407 >0.999 -0.156
vel_norm Abs. Energy 1384 >0.999 -0.193

Mean 1499 >0.999 -0.132
Mean Crossings 1541.500 >0.999 0.010
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vel_norm_rel2neck Abs. Energy 1237 >0.999 -0.214
Mean 1445 >0.999 -0.133
SD 1206 >0.999 -0.287
Mean Crossings 1572.500 >0.999 0.064

vel_norm_rel2neck_2d FFT Centroid 1482 >0.999 0.077
FFT Skewness 1473 >0.999 0.034
FFT Kurtosis 1570 >0.999 -0.049
FFT Variance 1461 >0.999 0.066

Right Wrist pos_norm SD 1368 >0.999 0.038
Entropy 1525 >0.999 0.095

pos_norm_rel2neck FFT Centroid 1473 >0.999 0.004
FFT Skewness 1538 >0.999 -0.163
SD 1126 >0.999 0.178
Entropy 1534 >0.999 0.052
FFT Kurtosis 1483 >0.999 -0.219
FFT Variance 1467 >0.999 0.007

pos_norm_rel2rightelbow FFT Centroid 1392 >0.999 0.011
FFT Skewness 1488 >0.999 -0.069
SD 1403 >0.999 0.130
Entropy 1505 >0.999 0.076
FFT Kurtosis 1435 >0.999 -0.104
FFT Variance 1420 >0.999 0.003

vel SD 1602 >0.999 -0.055
vel_norm Abs. Energy 1584 >0.999 -0.154

Mean 1461 >0.999 -0.138
Mean Crossings 1567 >0.999 0.044

vel_norm_rel2neck Abs. Energy 1588 >0.999 -0.188
Mean 1437 >0.999 -0.135
SD 1562 >0.999 -0.198
Mean Crossings 1543.500 >0.999 0.076

vel_norm_rel2neck_2d FFT Centroid 1402 >0.999 0.090
FFT Skewness 1475 >0.999 0.072
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Zero Crossings 1113 >0.999 -0.268
FFT Kurtosis 1489 >0.999 -0.153
FFT Variance 1395 >0.999 0.109

vel_norm_rel2rightelbow Abs. Energy 1596 >0.999 -0.153
Mean 1556 >0.999 -0.127
SD 1613 >0.999 -0.136
Mean Crossings 1513 >0.999 0.062

vel_norm_rel2rightelbow_2d FFT Centroid 1464 >0.999 0.067
FFT Skewness 1428 >0.999 0.128
Zero Crossings 1081.500 >0.999 -0.268
FFT Kurtosis 1426 >0.999 -0.136
FFT Variance 1434 >0.999 0.075

Trunk pos_norm SD 1359 >0.999 -0.189
Entropy 1389 >0.999 0.027

pos_norm_rel2neck FFT Centroid 1460 >0.999 0.004
FFT Skewness 1419 >0.999 -0.046
SD 1424 >0.999 0.133
Entropy 1539 >0.999 -0.054
FFT Kurtosis 1428 >0.999 0.013
FFT Variance 1472 >0.999 -0.018

vel SD 1598 >0.999 -0.080
vel_norm Abs. Energy 1591 >0.999 -0.082

Mean 1590 >0.999 0.006
vel_norm_rel2neck Abs. Energy 1497 >0.999 -0.166

Mean 1585 >0.999 0.053
SD 1547 >0.999 -0.166

vel_norm_rel2neck_2d FFT Centroid 1471 >0.999 0.083
FFT Skewness 1550 >0.999 -0.092
FFT Kurtosis 1475 >0.999 0.118
FFT Variance 1461 >0.999 0.060

Upper Extremities pos_norm SD 1555 >0.999 -0.087
Entropy 1458 >0.999 0.108
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pos_norm_rel2neck FFT Centroid 1455 >0.999 0.026
FFT Skewness 1423 >0.999 -0.174
SD 1135 >0.999 0.216
Entropy 1506 >0.999 0.080
FFT Kurtosis 1402 >0.999 -0.215
FFT Variance 1396 >0.999 0.025

vel SD 1582 >0.999 -0.067
vel_norm Abs. Energy 1613 >0.999 -0.117

Mean 1484 >0.999 -0.102
vel_norm_rel2neck Abs. Energy 1366 >0.999 -0.175

Mean 1475 >0.999 -0.100
SD 1375 >0.999 -0.216

vel_norm_rel2neck_2d FFT Centroid 1509 >0.999 0.078
FFT Skewness 1354 >0.999 0.125
FFT Kurtosis 1528 >0.999 -0.047
FFT Variance 1524 >0.999 0.069
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Table B.2: Statistical results of all static periods expert features.

W p Hedges’ g
Body Part Channel Metric

Left Wrist vel_norm_rel2leftelbow Counts per Minute 1509 >0.999 -0.119
Mean Duration (s) 1129 >0.999 -0.228
Ratio (%) 1528 >0.999 -0.119
Std. Duration (s) 1065.500 >0.999 -0.002

Left Wrist & Right Wrist Static Periods Counts per Minute 1283 >0.999 0.163
Mean Duration (s) 1577.500 >0.999 -0.043
Ratio (%) 1356 >0.999 0.130
Std. Duration (s) 1426 >0.999 0.048

vel_norm_rel2neck Counts per Minute 1466 >0.999 0.091
Mean Duration (s) 1394.500 >0.999 -0.006
Ratio (%) 1494 >0.999 0.050
Std. Duration (s) 1337 >0.999 -0.042

Mid Hip vel_norm Counts per Minute 1409 >0.999 -0.105
Mean Duration (s) 829 >0.999 -0.379
Ratio (%) 1279 >0.999 -0.158
Std. Duration (s) 793 >0.999 -0.254

vel_norm_rel2neck Counts per Minute 1363 >0.999 -0.122
Mean Duration (s) 660 >0.999 -0.358
Ratio (%) 1244 >0.999 -0.197
Std. Duration (s) 606 >0.999 -0.277

Nose vel_norm Counts per Minute 1605 >0.999 -0.011
Max. Duration (s) 1190 >0.999 0.055
Mean Duration (s) 1293 >0.999 0.112
Ratio (%) 1511 >0.999 0.024
Std. Duration (s) 1316 >0.999 0.119

vel_norm_rel2neck Counts per Minute 1588 >0.999 -0.044
Mean Duration (s) 1415.500 >0.999 -0.143
Ratio (%) 1585 >0.999 -0.029
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Std. Duration (s) 1230.500 >0.999 -0.206

Right Wrist vel_norm_rel2rightelbow Counts per Minute 1416 >0.999 -0.248
Mean Duration (s) 1143 >0.999 -0.256
Ratio (%) 1395 >0.999 -0.270

Std. Duration (s) 1129 >0.999 -0.256
Trunk vel_norm Counts per Minute 1525 >0.999 -0.060

Max. Duration (s) 1039 >0.999 -0.100
Mean Duration (s) 1468 >0.999 -0.105
Ratio (%) 1548 >0.999 -0.082
Std. Duration (s) 1434 >0.999 -0.051

vel_norm_rel2neck Counts per Minute 1532 >0.999 -0.087
Mean Duration (s) 1371 >0.999 -0.139
Ratio (%) 1548 >0.999 -0.100
Std. Duration (s) 1453 >0.999 -0.131

Upper Extremities vel_norm Counts per Minute 1275 >0.999 0.183
Max. Duration (s) 1042 >0.999 0.024
Mean Duration (s) 1287 >0.999 0.091
Ratio (%) 1251 >0.999 0.160
Std. Duration (s) 1251 >0.999 0.077

vel_norm_rel2neck Counts per Minute 1593 >0.999 0.055
Max. Duration (s) 1045 >0.999 0.031
Mean Duration (s) 1190 >0.999 0.199
Ratio (%) 1160 >0.999 0.203
Std. Duration (s) 1158 >0.999 0.131
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Acronyms

TSST Trier Social Stress Test

f-TSST friendly Trier Social Stress Test

GPU graphics processing unit

S3 simple storage service

VPN virtual private network

JSON JavaScript object notation

SD standard deviation

IMU inertial measurement unit

JWT JSON web token

UI user interface

CNN convolutional neural network

FACS facial action coding system

ORM object-relational mapping

SNS sympathetic nervous system
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HPA hypothalamic-pituitary-adrenal

COCO common objects in context

MPII Max Planck Institute for Informatics

AWS Amazon Web Services

GDPR General Data Protection Regulation

API application programming interface
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