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Übersicht

Stress ist allgegenwärtig im täglichen Leben der meisten Menschen. Die Reaktion des
menschlichen Körpers auf akuten psychosozialen Stress wird hauptsächlich durch das sympa-
thische Nervensystem (SNS) und die Hypothalamus-Hypophysen-Nebennierenrinden-Achse
reguliert. Diese Stressreaktion wird meist anhand von Biomarkern wie Cortisol undα-amylase
bewertet, die im Blut- oder Speichel gemessen werden. Jedoch sind diese Messmethoden
arbeitsintensiv, teuer und erlauben keine kontinuierliche Erfassung der Stressreaktion.

Ein neuer Ansatz für einfachere Erfassung der Stressreaktion ist die sogenannte Präejek-
tionsperiode (PEP). Die PEP beschreibt die Dauer zwischen dem Einsetzen der ventrikulären
Depolarisation und der Öffnung der Aortenklappe. Mehrere Studien haben bewiesen, dass
sich die PEP bei erhöhter SNS-Aktivität verkürzt. Dementsprechend wird die PEP als In-
dikator für SNS-Aktivität und für akuten Stress angesehen. Die Goldstandardmethode um
die PEP zu erfassen erfordert die gleichzeitige Aufzeichnung eines Elektrokardiogramms
(EKG) und eines Impedanzkardiogramms (ICG) und ist dementsprechend nur im Labor
durchführbar. Deswegen wird in dieser Arbeit untersucht, ob die PEP alternativ mithilfe
von kabellos aufgezeichneten Seismokardiographie und EKG Daten erfasst werden kann.
Dazu wurde eine Studie mit zweiundzwanzig Teilnehmern durchgeführt, die verschiedene
stressinduzierende und -reduzierende Aufgaben durchführten. Währenddessen wurden EKG-,
ICG-, SCG-, und Interferometrie-Radar-Daten aufgezeichnet. Anschließend wurden mehrere
Algorithmen für die Extraktion der PEP entwickelt.

Die erzielten Ergebnisse zeigten, dass die nicht möglich war die PEP basierend auf den
Daten der tragbaren Sensoren innerhalb jedes Herzschlags präzise zu erfassen, weil die trag-
baren Sensoren aufgrund ihrer geringen Abtastrate nicht in der Lage waren, den physiologisch
relevanten Bereich PEP ausreichend genau zu erfassen. Der mittlere Fehler für die kabellos
erfassten PEP Werte betrug 29,9 %, was bei einem durchschnittlichen Referenzwert von
138,3 ms etwa 41,4 ms entspricht. Allerdings ermöglichten die entwickelten Algorithmen
es, die verschiedenen stressauslösenden und stressreduzierenden Aufgaben basierend auf
den kabellos erfassten Sensordaten anhand der durschnittlichen gemessenen PEP Werte zu
unterscheiden. Zukünftig könnte eine kontinuierliche unkomplizierte Erfassung der PEP
zusätzlich verbessert werden, indem man die SCG-Sensoren durch Interferometrie-Radar
ersetzt.
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Abstract

Stress has become a pervasive phenomenon in most people’s daily lives. Despite being
a healthy physiological response of the human body, excessive stress can severely impact
physical and mental health. The human body’s reaction to acute psychosocial stress is mainly
modulated by the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal
axis. This stress response is usually assessed based on blood and saliva biomarkers, such as
cortisol and α-amylase. To date, these methods provided a relatively good measure of the
effects of stress on the body and, thus, on health. However, these established measures are
labor-intensive, expensive, and do not allow continuous assessment of the stress response.

A promising approach towards less obtrusive stress assessment might be the so-called
pre-ejection period (PEP). The PEP, which is a short systolic time interval, is defined as
the duration between the onset of ventricular depolarization and the aortic valve opening
(AO). Several studies proved that the PEP shortens with increased sympathetic activity.
Accordingly, PEP can be considered a suitable marker for SNS activity and, thus, acute
stress. The gold standard approach for PEP measurement requires simultaneous recording of
the electrocardiogram (ECG) and impedance cardiography (ICG) signals and, therefore, is
only applicable in laboratory settings. Hence, this thesis explores whether PEP assessment
based on wirelessly recorded seismocardiogram (SCG) and ECG is feasible. Therefore, a
study including twenty-two participants was conducted. The participants performed several
stress-inducing and -reducing tasks while ECG, ICG, SCG, and interferometry radar data was
recorded. An algorithm for reference PEP extraction, as well as for wearable sensor-based
PEP extraction, was implemented.

The obtained results highlight that beat-to-beat PEP assessment was not feasible with
the utilized sensors since the wearable sensors were not able to capture the physiologically
relevant range of the PEP sufficiently accurately due to their low sampling rate. The mean
error for wirelessly acquired PEP was 29.9 %, which corresponds to 41.4 ms for an average
reference PEP of 138.3 ms. However, instead of beat-to-beat PEP assessment, the developed
wearable sensor-based PEP extraction algorithms allow distinguishing the stress-inducing and
the stress-reducing tasks according to the average captured PEP. In the future, continuous
and unobtrusive PEP assessment might be further improved by replacing SCG sensors with
interferometry radar.
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Chapter 1

Introduction

Stress has become a pervasive phenomenon in most people’s daily lives. Despite being a
healthy physiological response of the human body, excessive stress can severely impact both
physical and mental health [OCo21]. Consequently, stress is increasingly acknowledged as a
leading contributor to various chronic diseases in many countries around the world [OCo21;
APA19].

From a physiological point of view, the human body reacts to acute psychosocial stress
by triggering specific neuroendocrine responses, which are mainly modulated by two main
stress response pathways: the sympathetic nervous system (SNS) and the hypothalamic-
pituitary-adrenal (HPA) axis [Ulr09]. Activation of the HPA axis due to stress provokes
the secretion of cortisol into the bloodstream and the saliva. Accordingly, cortisol serves
as a well-characterized and specific marker for HPA axis activation [Fol10]. Additionally,
activation of the SNS initiates the immediate ”fight-or-flight” response via the release of
epinephrine, leading to increased heart rate (HR) and cardiac contraction force, as well as the
secretion of salivary α-amylase (sAA) [McC16; Can53]. A common approach for assessment
of the human stress response is by measuring these neuroendocrine markers using saliva
samples. However, this requires considerable effort on the researchers’ side while also being
obtrusive for the participant [Gra19] and consequently interferes at least to some extent with
natural human behavior [Kaz79]. Furthermore, the use of saliva samples allows neither
continuous nor real-time quantization of the stress response, as saliva samples can be taken at
most every few minutes, and concentration changes of the respective biomarkers occur only
with certain delays [Gra19; Fol10].
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To overcome these issues, the literature often proposes using heart rate variability (HRV)
as a surrogate marker for SNS activity and, therefore, as a potential indicator of psychosocial
stress. This approach offers the advantage that HRV is an easy-to-obtain and non-invasive
electrophysiological parameter and, in addition, can be recorded continuously over extended
time periods. However, the heart rate is modulated by both branches of the autonomic nervous
system, the SNS and the parasympathetic nervous system (PNS), which can both influence
the HRV separately [Kim18]. Consequently, the HRV, which is in fact controlled primarily
by parasympathetic withdrawal rather than sympathetic activation, has limitations regarding
its suitability for assessing the body’s stress response [Kim18; Rey13; Ber94].

Another promising marker for sympathetic activity and, thus, for psychosocial stress,
might be the so-called PEP. In the literature on unobtrusive stress assessment methods, the
suitability of PEP as novel stress marker has been investigated increasingly in recent years
[Dro22; Rah18; Bri14]. The PEP is a short systolic time interval within the cardiac cycle
and is defined as the time period between the onset of the electrical activity of the heart
and the corresponding mechanical activity. Accordingly, the start of the PEP is defined as
the onset of ventricular depolarization, whereas the PEP end is defined as the beginning
of left ventricular blood ejection [New79]. The results of several studies investigating the
relationship between SNS and PEP by pharmacologically modulating SNS activity proved
that PEP shortens with increased sympathetic activity [Dro22; Har67]. Also, PEP remains
unaffected by pharmacologically induced changes in PNS activity [Cac94a]. These findings
highlight that PEP can be utilized as a biomarker for acute stress since it reflects SNS activity
changes [Dro22].

The gold standard approach for PEP measurement requires simultaneous recording of
electrocardiogram (ECG) and impedance cardiography (ICG). The ECG signal is used to
extract the PEP start point as the start of ventricular depolarization, which corresponds to the
onset of the Q-wave. For extraction of the PEP end point, which is equivalent to the aortic
valve opening (AO), the ICG signal is needed [Tav16]. Unfortunately, the acquisition of ICG
signals is rather obtrusive and requires expensive measurement equipment. Furthermore,
extracting the necessary fiducial points from both signals is not trivial, which highlights
the need for novel PEP measurement methods to enable unobtrusive and continuous stress
assessment [Deh19; Lie13].

For these reasons, recent research explored wearable and contactless approaches for PEP
estimation. For example, wearable inertial measurement units (IMUs) were used to extract
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the SCG signal from chest micro-movements. Since the AO can also be estimated from SCG
signals this might be a suitable and more unobtrusive replacement for the ICG. Combined
with a portable ECG device, this provides an option for wearable PEP measurement [Deh19;
Sha19]. A further improvement towards unobtrusive PEP estimation might be the use of
radar. Instead of attaching inertial sensors to the body, the AO can also be estimated from
Doppler radar signals, which are acquired completely contactless [Don22; Wil18; Xia18].

Although researchers explored such novel PEP estimation approaches, these methods have
not yet been evaluated extensively within stress-related scenarios. Hence, further research is
needed to investigate the feasibility of PEP-based assessment of acute psychosocial stress
[Dro22; Wei21].

The goal of this master’s thesis is, therefore, to first investigate how various stress-inducing
and stress-reducing tasks influence the PEP. Besides, three algorithms for different PEP
estimation approaches will be implemented: the ICG-based gold standard method, a wearable
sensor-based method, and a novel method based on interferometry radar and wearable ECG
(ECGW). Accordingly, the feasibility and performance of the newly developed radar-based
PEP estimation approach will be evaluated. Consecutively, this novel approach will be
compared to both the gold standard method and established approaches proposed in literature
which utilize wearable sensors. Therefore, a dataset containing ECG, ICG, IMU, and radar
data is collected while participants perform several stress-inducing and -reducing tasks.
Conclusively, this work hopefully provides insights into novel, easy-to-use methods for
measuring PEP and, thus, for unobtrusive assessment of psychosocial stress.

This thesis is organized as follows: Chapter 2 explains the medical and technical back-
ground necessary for this thesis. In particular, this chapter describes the physiological stress
response of the human body and several biomarkers suitable for its assessment, including PEP.
Chapter 3 presents relevant research in the field of wearable and contactless measurement of
body signals. In Chapter 4, the data acquisition process is outlined, and the methods used for
PEP estimation and evaluation of the implemented algorithms are described. The results are
presented and discussed in Chapter 5, while Chapter 6 concludes the thesis by providing an
outlook.





Chapter 2

Background

2.1 Pre-Ejection Period

2.1.1 Cardiac Cycle

The primary task of the human heart is to supply all vital organs with blood. Figure 2.1
provides an overview of the heart’s anatomy. The heart consists of the right and the left part,
each composed of an atrium and a ventricle separated by a heart valve.These atrioventricular
valves are called the mitral valve in the left part of the heart and the tricuspid valve in the right
part. From a functional point of view, the right and left parts of the heart form two separate
pumping systems. The left part of the heart pumps oxygenated blood through the aortic valve
into the aorta. Then, the blood flows into the systemic circulation of the body. Within the
right system, deoxygenated blood transported to the heart through the inferior and superior
vena cava is pumped through the pulmonary valve into the pulmonary artery, which leads to
the lungs. The blood is oxygenated in the lungs and subsequently flows back to the left part
of the heart through the pulmonary vein. In each cardiac cycle, the heart undergoes a phase
of contraction followed by relaxation, referred to as systole and diastole, respectively. During
the diastole, the ventricles fill with blood, and during the systole, the blood is ejected again
[Mic19; Opi04; Mil90].

Due to the mechanical activity of the heart, each heartbeat causes small vibrations, which
build two distinct heart sounds. These sounds are usually audible with a stethoscope and
visible in a phonocardiogram (PCG) signal. Both heart sounds are linked to specific events
within the cardiac cycle. The first heart sound S1 occurs at the beginning of ventricular systole
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Figure 2.1: Schematic illustration of the human heart anatomy and the blood flow during the
cardiac cycle [Opb18]

and is generated by the closing of the mitral and tricuspid valves. The second heart sound
originates from the closing of the aortic and pulmonary valves and hence marks the end of
the systole [Mil90].

The rhythmic contraction and relaxation phases of the atria and ventricles are regulated
by electrical signals generated and transmitted by the heart’s conduction system. These
electrical signals arise in the sinoatrial node, which is a collection of specialized cells located
at the right atrium. Subsequently, the signal spreads through the atria, the atrioventricular
node (AV node), and the bundle of His. The bundle of His splits into two branches transmitting
the electric signal via the Purkinje fibers to the left and the right ventricle, where it finally
triggers ventricular contraction. This coordinated sequence of electrical impulses ensures
that the heart beats in a synchronized manner [Opi04].

The transmission of the above-described electrical signal can be measured with elec-
trocardiography and and correspondingly is visualized as an electrocardiogram (ECG). An
exemplary ECG signal of a physiological heartbeat is depicted in Figure 2.2. The spread of
the electric impulse through the atria is represented by the P-wave. The subsequent spike,
referred to as the QRS complex, reflects the rapid ventricular depolarization, whereby the
Q-wave corresponds to the electric impulse spreading through the ventricular septum. The
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Figure 2.2: Schematic illustration of an ECG of a heart in normal sinus rhythm (modified
from [Atk09]) according to Einthoven’s lead II [Ein08]

last component of the electrocardiographic trace, the T-wave, represents the repolarization
of the myocardium. Sometimes, also the U-wave is visible, which is an additional wave
occurring after the T-wave. It is thought to be linked to delayed repolarization of the Purkinje
fibers, yet it is often indiscernible due to its low amplitude [Opi04].

2.1.2 Physiology of the Pre-Ejection Period

The literature defines several time intervals within the cardiac cycle. In particular, systolic
time intervals, like left ventricular ejection time (LVET), total electromechanical systole
(QS2), and pre-ejection period (PEP), are often utilized in clinical practice to assess left
ventricular performance in a non-invasive way. Abnormalities in systolic time intervals
typically indicate the presence of myocardial diseases, coronary artery disease, or arterial
hypertension. Furthermore, the severity of such conditions can be assessed based on these
parameters [Bou90; Wei77].

The PEP is defined as the time interval between the onset of ventricular depolarization
and the onset of left ventricular blood ejection. Accordingly, the PEP’s start corresponds
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to the Q-wave onset in the ECG, whereas the PEP’s end is equivalent to the aortic valve
opening (AO) [New79; Wei77].

From a physiological point of view, the PEP is comprised of two distinct components:
the electromechanical delay and the isovolumetric contraction (IVC) [Tav16; Kro17]. The
electromechanical delay, which corresponds to the duration between the depolarization onset
and the beginning of ventricular contraction, occurs because the electrical signal needs to be
transmitted from the AV node throughout the entire ventricular myocardium. During the IVC,
intraventricular pressure rises until it exceeds the aortic pressure causing the aortic valve to
open and blood to be ejected [Opi04; Mil90]. Accordingly, variation in PEP could theoretically
occur due to variation in one or both of these components. However, the electromechanical
delay is presumed to be fairly constant (around 30 – 40 ms in healthy humans) since it remains
largely unaffected by most physiological and pathophysiological states, except in the case of a
left bundle branch block [Lew77]. Consequently, changes in the PEP are probably caused by
varying duration of the IVC. The IVC, and thus the PEP, primarily reflects cardiac contractility.
However, it can besides be influenced by other cardiovascular variables like preload, which
corresponds to the amount of ventricular filling, and afterload, which corresponds the systemic
vascular resistance, and diastolic blood pressure. Therefore, it is important to take these
variables into account as potential confounding factors when evaluating cardiac contractility
based on PEP [Kro17].

Beyond that, the findings of several researchers indicate that the PEP can additionally
be modulated by changes in sympathetic activity and hence by acute mental stress [Wei21;
Kro17]. This will be discussed in more detail in a subsequent section of this thesis.

2.1.3 Gold Standard Pre-Ejection Period Measurement

Within clinical settings, systolic time intervals are usually assessed based on ECG and
simultaneously acquired ultrasound, whereas the latter is referred to as echocardiography
[Tav16; Ott13]. There are two options to obtain the timing of AO via echocardiography, either
by using the motion mode (M-mode), or by Doppler echocardiography. The M-mode is able
to capture rapid intracardiac motion, such as AO, since it records movements of the examined
tissue with high temporal resolution. Doppler echocardiography visualizes the blood flow
velocity, for instance, in the ascending aorta. Hence, AO can be detected as it corresponds
to a sharp increase in blood flow in this area [Ott13]. However, determining PEP based on
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echocardiography requires trained personnel to perform the labor-intensive data acquisition
and analysis. Moreover, the recordings are typically performed with the patient positioned
supine, which obviously limits possible application scenarios. Therefore, echocardiography
is neither a suitable technique for continuous PEP assessment over longer periods of time nor
for non-clinical settings [Bur13].

Besides using echocardiography, PEP measurements can be obtained from impedance
cardiography (ICG) recordings in combination with synchronized ECG recordings. This
method for conducting PEP measurements does not require specialized training and is appli-
cable in a wider range of use cases, for example, for research purposes in laboratory settings.
Accordingly, it is considered the gold standard approach for PEP measurement [Tav16].

As previously mentioned, the start point of the PEP is defined as the onset of ventricular
depolarization and, consequently, corresponds to the onset of the Q-wave in the ECG signal.
The PEP end point is defined as the aortic valve opening (AO), which can be determined from
the ICG signal [Tav16; She90].

Impedance cardiography is used to assess cardiac mechanical function by measuring
changes in electrical impedance caused by thoracic blood flow. The ICG’s principle is based on
Ohm’s law (2.1), where R is the resistance, U is the voltage, and I is the current. Analogously,
the impedance Z corresponds to the resistance in the case of alternating current Ĩ (2.2).

R =
U

I
(2.1) Z =

U

Ĩ
(2.2)

The ICG device induces an alternating sinusoidal current along the thorax with a constant
magnitude I into the body via electrodes. Simultaneously, the resulting voltage U is recorded
via additional electrodes. The conventional method for ICG acquisition presented by Kubicek
et al. required four tetrapolar band electrodes, but these are nowadays usually replaced by
four disposable spot electrodes for reasons of practicality. A schematic illustration of the
measurement setup is shown in Figure 2.3. As blood functions as a conductor, each heartbeat
and the consecutive increase in blood flow through the aorta leads to a change in thoracic
impedance Z. Since I is known and U is measured the resulting impedance change can
be calculated. [Wol97; She90; Kub70]. In order to investigate systolic time intervals, the
first derivative dZ/dt of the impedance signal is usually utilized since the timing of relevant
cardiac events can be determined from its waveform. The point of AO, often referred to as
the B-point, is equivalent to the onset of the rapid upslope in the dZ/dt signal corresponding
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Figure 2.3: Schematic illustration of the measurement setup for ICG with induced alternating
current I and measured voltage U

to the start of left ventricular blood ejection [Wol97; She90]. Finally, the PEP is the time
interval between the Q-onset and the B-point detected in the ICG dZ/dt signal [She90]. An
example of the PEP derived from ECG and ICG data of a couple of heartbeats can be seen in
Figure 2.4.

However, it is not trivial to reliably detect the B-point and, thus, AO in a fully automated
way without relying on manual corrections. To resolve this issue, the literature proposes
various algorithms for improved B-point extraction, for example, utilizing the second or
third derivative of the impedance signal [Árb17], using autoregressive models for subsequent
refinement of detected B-point positions [For18], or using a weighted time window-based
approach [Mil22]. Although such methods improve automatic B-point detection, ICG signal
analysis is still not straightforward, hence making continuous PEP measurement a challenging
task [Lie13]. Furthermore, measurement equipment is expensive, and the measurement
itself is rather obtrusive due to the number of necessary electrodes and wires. Overall, this
highlights the need for novel methods, as those might facilitate PEP assessment in a broader
range of especially non-clinical application scenarios [Deh19].
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Figure 2.4: PEP extracted from ECG and ICG signals of one person over three consecutive
heartbeats (with PEP start defined as Q-peak to facilitate automatic detection as proposed by
[Ber04], and B-point as PEP end).

2.1.4 Seismocardiography-based Pre-Ejection Period Estimation

Attempting to develop a less obtrusive technique for measuring PEP, several researchers have
proposed seismocardiography as a useful tool for assessing cardiac time intervals [Tav16].
The principle of seismocardiography was first described by Roman M. Baevsky, who intended
to measure precordial movements caused by the mechanical activity of the heart. Initially, it
was used to monitor the health state of astronauts onboard a spacecraft [Bae64]. To acquire a
seismocardiogram (SCG) signal, an accelerometer (ACC) is attached to the chest at the lower
part of the sternum, which records low-frequency vibrations caused by myocardial activity.
Commonly, the dorsoventral component of the ACC signal is considered the SCG signal,
however, the remaining components can also be included. The SCG’s waveform consists
of a systolic and a diastolic profile which both show a characteristic shape. Researchers
assume that this characteristic shape results from certain cardiac events since they induce
myocardial vibrations, which are transmitted through the tissue and become detectable at the
chest wall. Therefore, several studies analyzed the relationship between the SCG waveform
and the occurrence of cardiac events detected with echocardiography and found that certain
fiducial points in the SCG are associated with the opening and closing of the aortic and mitral
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valves [Sør18; Cro94]. Within the systolic part of the SCG waveform, at least in case of
a clear signal, the point of AO corresponds to the peak following the first major minimum
[Deh19; Tav16; Cro94].

As the timing of AO can be determined from the SCG signal, this technique provides an
alternative option to ICG for detecting the PEP end point. By combining this with a wearable
ECG device, PEP assessment could be conducted solely based on wearable sensing techniques
[Deh19]. Figure 2.5 depicts an exemplary SCG waveform, the location of AO within it, and
the resulting PEP.
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Figure 2.5: PEP extracted from ECG and SCG signals of one person over three consecutive
heartbeats (with PEP start defined as Q-peak to facilitate automatic detection as proposed by
[Ber04], and AO extracted from SCG as PEP end).

Accordingly, SCG-based PEP acquisition provides a portable approach for assessing PEP
and thus is applicable in a wider range of settings. Additionally, nowadays, the required
sensors are highly accurate while being very inexpensive. Hence, this technique is considerably
more accessible than the ICG-based approach. Nevertheless, the use of the SCG also has
its drawbacks. For example, automated extraction of fiducial points is not trivial because
the morphology of the signal can considerably vary between individuals or due to slightly
different sensor placement [Zan13].
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2.2 Stress Response Assessment

The physiological response of humans to acute psychosocial stressors, as well as individual
differences in this regard, is a topic researchers have been interested in for several decades.
Numerous variables, ranging from basic vital signs to complex hormone release cascades,
have been investigated with the aim of assessing stress-related processes in the body [Ulr09].
In this context, also the PEP is explored as a potential biomarker for acute stress [Dro22].

2.2.1 Physiology of the Human Stress Response

Stress, which is broadly defined as an actual or anticipated threat to well-being, leads to the
adaption of various biological functions. This adaption is controlled by endocrine mechanisms
and the autonomic nervous system (ANS). Even though the ANS consists of two branches,
the SNS and the PNS, primarily the SNS regulates the stress response [All14; Ulr09; Fol10].

Regarding the endocrine reaction to stress exposure, the main pathway here is the HPA
axis. Its activation results in the release of cortisol into the bloodstream. The cortisol plasma
concentration starts increasing within a few minutes after the beginning of the stressor and
peaks approximately ten minutes after stress cessation. These changes in cortisol levels
can be captured with either blood or saliva samples [Ulr09]. Particularly saliva samples
offer the possibility of a non-invasive quantification of the individual stress response. As
stress-induced cortisol patterns have been studied extensively, cortisol is acknowledged as a
well-characterized HPA-axis marker [Fol10].

In contrast to the relatively slow cortisol response, the SNS response to a stressor occurs
immediately within seconds [Ulr09]. This reaction of the body is commonly referred to as
the ”fight-or-flight” response and is characterized by, among other things, increased HR and
blood pressure, increased blood flow to the skeletal muscles, release of glucose from the liver,
activation of sweat glands, and the dilation of the airways. After cessation of the stressor, the
body tries to regain homeostasis [Can53; McC16]. Well-established markers for SNS activity
are plasma norepinephrine and epinephrine. Accordingly, assessing SNS activity based on
these markers is a rather invasive approach since it requires taking blood samples [Tho12].
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2.2.2 Biomarker for Autonomic vs. Sympathetic Activity

Several non-invasive approaches attempting to quantify activity changes in the SNS have been
proposed in the literature. However, it is important to note that although the SNS and the PNS
together comprise the ANS, they are nevertheless two anatomically and functionally distinct
structures. These two branches of the ANS innervate most organ systems and tissues in the
body and ensure precise regulation of their activity. Consequently, both ANS branches are
crucial for maintaining homeostasis [McC07]. However, especially concerning stress-induced
modulation of SNS activity, it is essential to distinguish whether a biomarker exclusively
reflects SNS activity or is also influenced by vagal activity and thus should be considered an
ANS marker [Kim18; Ber94; Nat09].

A marker that has been proposed as a surrogate marker for SNS activity changes, particu-
larly in the context of stress, is sAA since it seems to reflect changes in plasma norepinephrine
[Tho12]. Similarly to cortisol, sAA can be measured via saliva samples, which is considered
a non-invasive method. However, it still requires disrupting the natural behavior of the person
being measured, at least to some extent. Furthermore, it is neither possible to capture the
sAA concentration continuously since saliva samples can only be acquired every couple of
minutes nor to capture changes in real-time since sAA levels only increase with a certain
delay [Gra19; Fol10]. Besides, research indicates that actually both parts of the ANS, the
sympathetic and parasympathetic mechanisms, modulate the release of sAA. Moreover, the
correlations between sAA and known cardiac sympathetic markers are relatively small, which
leads to the assumption that sAA is not a suitable marker for SNS activity changes [Nat09].

Moreover, the literature mentions the T-wave amplitude as potentially being associated
with SNS activity. However, it was found that excitation or inhibition of the SNS induced
through specific medication does not consistently alter the T-wave amplitude. Consequently,
the T-wave amplitude is not assumed to be a reliable parameter for sympathetic activity
[Sch83; Dro22].

Another biomarker frequently mentioned in literature as an indicator of psychosocial
stress is HRV, which is very easy to obtain and also non-invasive. However, the question
arises whether HRV is actually a reliable parameter for indicating acute psychosocial stress.
Although the heart, and thus the HRV, is mainly controlled by the ANS, the SNS and PNS
branches both influence the HRV separately [Kim18]. Because of their opposing functions,
it is often assumed that SNS and PNS activity are reciprocally coupled, i.e. SNS activation
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inevitably leads to PNS withdrawal. In the case of orthostatic stress, this reciprocal behavior
is observed: sympathetic control of the heart increases while simultaneously parasympathetic
control decreases. In contrast, SNS and PNS do not necessarily act reciprocally during
exposure to psychosocial stress [Ber94]. Studies involving pharmacological blockades of
either sympathetic or parasympathetic innervation of the heart observed various combinations
of SNS and PNS activity and withdrawal. Additionally, this differs between individuals.
Hence, sympathetic and parasympathetic activity changes can occur reciprocally, coactively,
or completely independently, given that the stress response of the two autonomic branches is
apparently uncorrelated [Cac94a; Ber94]. Besides, research shows that the high-frequency
HRV power spectrum is mainly affected by parasympathetic activity [Rey13; Ber94; Kim18;
Tho19; Cac94a], while the low frequency component is modulated by both SNS and PNS
[Bic17].

In accordance with these considerations, it becomes clear that HRV, which is, in fact,
primarily altered by parasympathetic withdrawal, should not be utilized to make inferences
about an individual’s stress response [Kim18; Rey13; New79]. Consequently, current research
still seems to lack a non-invasive, easily measurable biomarker that is modulated exclusively
by the SNS, remains unaffected by PNS activity changes, and hence can be used to assess
SNS activity changes and thus the response to psychosocial stress [Nat09].

2.2.3 Pre-Ejection Period as Biomarker for Sympathetic Activity

The PEP might be a promising solution to the above-mentioned deficiency of suitable non-
invasive SNS biomarkers [Dro22; Bri14; New79].

Some researchers assume that the PEP can provide valuable insights into SNS activity.
Within several studies where participants received specific medication to ”artificially” modu-
late SNS or PNS activity, changes in PEP were also observed. Firstly, it has been repeatedly
shown that pharmacologically induced stimulation of β-adrenoceptors by epinephrine or
isoproterenol, which corresponds to an increase in SNS activity, leads to shortened PEP
[Dro22; Har67]. Similarly, the administration of the α2-antagonist yohimbine, which leads to
an SNS activity increase as well, also results in shortened PEP [Dro22]. In contrast, PEP is
prolonged by the administration of the β-antagonist metoprolol, as well as by the α2-agonist
dexmedetomidine, as both lead to sympathetic withdrawal [Cac94a; Dro22]. Furthermore,
it has been observed that during blockade of parasympathetic control induced by atropine
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sulfate, PEP remains unchanged [Cac94a]. The results of these studies confirm the assump-
tion that sympathetic activity modulates PEP, i.e. PEP is shortened when SNS activity is
increased, and remains unaffected by varied PNS activity. Therefore, PEP can be considered
a sensitive and specific marker for SNS activity changes, which are, for example, caused by
acute psychosocial stress [Cac94a; Dro22; Wei21; Bri14].



Chapter 3

Related Work

The measurement of body signals provides valuable insights into various physiological
processes of the human body. Particularly, the development of measurement techniques based
on wearable or contactless sensing technology is an ongoing research topic, as this enables
continuous assessment of body signals while minimizing interference with people’s natural
behavior [The23; Nou22; Keb20; Kaz79]. Correspondingly, researchers aim to find novel
and unobtrusive methods to facilitate the continuous assessment of an individual’s response
to acute psychosocial stress [Tho19; Kim18].

Contactless Measurement of Body Signals
In contrast to traditional or wearable sensor-based measurement approaches, contactless
methods allow for a more comfortable assessment of body signals since neither electrodes nor
sensors are required to be attached to the skin [Wil18]. Further advantages are that contactless
approaches are more practical for long-term data collection and that movement constraints
due to wires are eliminated. The literature proposes various techniques, for example, using
lasers, radio frequency (RF) signals, or infrared (IR) images, to assess a wide range of body
signals like motion, emotions, or vital signs [The23; Nou22; Keb20].

Adib et al. proposed a system that uses RF signals reflected off a person’s body to track
their location in 3D space across multiple rooms and to roughly detect movements of body
parts [Adi14]. In the work of Tan et al., WiFi-based sensing was used to monitor a person’s
daily activities inside their home to gather health data and detect emergency situations.
Therefore, they tracked whole-body motion and limb movements [Tan15]. In their research
on contactless activity recognition, Maitre et al. utilized data recorded with ultra-wideband
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radars to classify 15 different activities of daily life [Mai21]. Moreover, analyzing a person’s
gait can provide valuable insights into their health state, especially regarding the progression
of neurodegenerative diseases. Botros et al. developed a system that measures distance with
rotating IR lasers and enables contactless and hence less obtrusive assessment standard gait
parameters [Bot21]. Li et al., who also presented a novel gait analysis approach, used a
radar sensor network consisting of a frequency-modulated continuous-wave radar and three
ultra-wideband pulse radars to classify various gait patterns [Li21]. Furthermore, Seifert et al.
investigated contactless gait analysis using Doppler radar and were able to extract clinically
relevant kinematic and spatiotemporal gait parameters from radar data. They concluded that
radar-based gait analysis offers an unobtrusive and privacy-preserving method for monitoring
patients in their homes [Sei21].

Besides motion-related body signals, also sleep monitoring can yield helpful information
about an individual’s health. Since it is relevant to keep the sensory system as unobtrusive
as possible to maintain sleeping comfort and increase acceptance, contactless options are
preferable here. Yue et al. proposed an RF-based system that realizes continuous monitoring of
the sleep posture of patients without reducing sleeping comfort [Yue20]. Moreover, Martinez
et al. developed a system for respiration monitoring during sleep based on near-IR imaging
[Mar12]. Similarly, Yang et al. also researched contactless options for respiration monitoring
with the aim of diagnosing Parkinson’s disease and tracking its progression based on the
acquired data. They extracted respiratory signals from radio waves and hence managed to
assess the health status of patients in a contactless way [Yan22]. Another novel approach for
unobtrusive sleep monitoring in infants was investigated by Wang et al., who managed to
extract breathing and position information from white noise emitted by a smart speaker and
reflected off the infant’s body [Wan19].

In addition to respiratory signals, the continuous detection of other vital signs, like HR,
plays a crucial role in health assessment and monitoring. In order to obtain such measurements,
contactless approaches based on technologies like lasers or radar are desirable as they are
relatively comfortable for the individual being measured [Keb20; Wil18].

Morbiducci et al., Koegelenberg et al., and Bai et al. showed that chest wall vibrations
caused by cardiac activity could be detected with laser-based Doppler interferometry. They
were able to recover the heart sounds from the recorded signals and thus estimate the HR
[Koe14; Bai12; Mor07]. Such laser-based approaches provide the advantage of having a high
distance resolution and focusing precisely on the desired measurement spot. However, the
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laser beam needs to be reflected directly from the skin since it cannot penetrate clothing,
which limits the use of this approach in non-clinical settings [Wil18].

In contrast, radar signals have the ability to penetrate through clothing and similar ma-
terials, which makes this technology applicable in a broader range of scenarios [Wil18].
For example, in palliative care, it is essential to maintain the independence and mobility of
patients and, thus, their quality of life. Therefore, Shi et al. presented a contactless system
that uses a six-port continuous wave radar to monitor respiration and HR. They achieved a
97.6 % correlation between the HR and respiratory curve extracted from the radar signal and
the respective reference signals [Shi18]. Furthermore, as Shi et al. presented in their work,
HR and HRV could be inferred from the data recorded by a 24 GHz Six-Port-based radar
system and processed with a long short-term memory (LSTM) network performing heart
sound segmentation. HR and HRV were detected reliably with relative errors of around 5 %
[Shi21].

Through all of these contributions, it becomes clear that contactless measurement of
various body signals, especially radar-based monitoring of respiration and HR, offers great
potential for numerous medical use cases.

Wearable Sensing Techniques for Pre-Ejection Period Estimation
Apart from HR measurement, researchers also addressed novel approaches for estimating
more sophisticated cardiac parameters, like cardiac time intervals, including PEP. Various
options for wearable sensing methods for estimating cardiac timings were investigated in the
scientific literature. Some these methods involved ballistocardiogram (BCG) [Ash16; Jav16]
or forcecardiogram (FCG) recordings [Cen22], whereas the majority was based on PCG or
SCG signals [San22].

Klum et al. presented a method for wearable PEP estimation utilizing PCG data [Klu20].
The PCG signal, which is acquired with a stethoscope and a microphone, is the recording of
heart sounds and murmurs occurring due to blood flow and the opening and closure of heart
valves [Deh19; Lea52]. Klum et al. stated that PEP could be roughly estimated based on PCG
signals combined with simultaneously recorded ECG data. They reported a PEP estimation
error of 21 % compared to the ICG-based reference [Klu20]. However, it is questionable
whether the PCG is an appropriate choice to determine PEP, as the PCG signal does not
actually contain any information about the timing of AO. Although the time interval between
mitral valve closure (MC) and AO is very short, the first heart sound S1 in the PCG signal is
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caused by MC, not by AO. Consequently, the accurate PEP end point cannot be determined
from the PCG signal [Deh19; Tav16].

The most common approach for wearable PEP estimation is to extract the AO times and
thus the PEP end point from SCG recordings, while the PEP start point is extracted from
ECGW. Dehkordi et al. compared the accuracy of SCG-based beat-to-beat extraction of
cardiac timings, including PEP, to manually annotated multimodal echocardiography as the
reference method. They exclusively used the dorsoventral component of the ACC signal to
estimate PEP and reported an average error of 12.8 %. However, they suggested that these
results might be improved by additionally utilizing the craniocaudal and the left-to-right
component of the ACC signal, as well as rotational information from a gyroscope (GYRO)
since chest wall vibrations induced by cardiac activity are not limited to only the dorsoventral
direction [Deh19]. Since the SCG signal is known to show considerable variation, Ashouri et
al. investigated the effects of different sensor placements on the performance of their PEP
estimation model. Variations in the SCG waveform occur either when sensors are placed
slightly differently or due to variations between different individuals. They obtained the
best PEP results by combining the information of two sensors, one placed at the sternum
and one below the left clavicle, yielding a root mean square error (RMSE) of 11.6 ± 0.4 ms
compared to the ICG-based reference. Interestingly, they achieved a more accurate estimate
of PEP with sensors placed below the left (RMSE = 13.4 ± 0.4 ms) or right clavicle (RMSE
= 13.2 ± 0.4 ms) than with the conventional placement on the sternum (RMSE = 16.4 ±
0.7 ms) [Ash18]. Moreover, Tavakolian et al. examined SCG-based PEP and stroke volume
estimation in their work. They compared their results to reference values derived from both
ultrasound Doppler and ICG and concluded that PEP estimation using SCG is a promising
non-invasive approach [Tav10].

Contactless Sensing Techniques for Pre-Ejection Period Estimation
Although PEP estimation can be accomplished entirely with wearable sensors, it requires
attaching several sensors directly to the person’s skin [Don22; Xia18]. A further step towards
realizing unobtrusive PEP measurement would be to replace such sensors with contactless
options wherever possible. For example, this could be achieved by capturing the timing of
AO with radar-based sensing technology [Shi21; Ha20]. Correspondingly, some researchers
reported using this approach for PEP assessment.
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The work of Buxi et al. highlights the feasibility of radar-based PEP estimation. Their
approach for estimating AO was not entirely contactless since they used a 2.45 GHz system
combined with body-contact antennas. However, the acquisition of such radar signals is also
possible in a contactless manner. They reported a Pearson correlation coefficient of 0.72
(p < 0.0001) between radar-based PEP and reference PEP measured with ECG and ICG
[Bux17]. Xia et al., who investigated contactless SCG measurement via 5.8 GHz microwave
Doppler radar signals, found a high morphological correlation of the second derivative of
the radar displacement signal and the dorsoventral SCG signal. Furthermore, they managed
to estimate AO timings with an RMSE of < 2 ms compared to the SCG-derived reference.
However, the corresponding study only included 8 participants, all of whom were male. Also,
their method lacks comparison with a sophisticated ground truth like ICG or echocardiography
[Xia18]. Pour Ebrahim et al. measured the PEP using simultaneously recorded ECG and
continuous wave radar signals. The data set they acquired included 40 participants and three
different postures: sitting, standing, and supine. Even though they reported reasonable PEP
values, they did not evaluate the accuracy of their radar-based approach compared to a gold
standard method [Pou20]. The contribution of Dong et al. described an approach to estimate
PEP solely from data acquired with a 24 GHz digital dc-tuning Doppler radar and reported an
RMSE of 8.6 ms corresponding to a mean absolute percentage error of 6.35 % for estimated
PEP. The presented work has some shortcomings, though. Firstly, the analyzed data were
only obtained from a single person. Secondly, they defined PEP as the time between ECG
Q-onset and the beginning of the rise in aortic pressure recorded with an invasive sensor,
which seems reasonable since the aortic pressure rises because the aortic valve opens but
nevertheless does not correspond to the standard PEP definition [Don22].

In conclusion, these findings demonstrate that PEP estimation is feasible using wearable
sensors. Furthermore, combining wearable and contactless sensing technologies seems to
be a promising method to measure the PEP as unobtrusive as possible. However, neither of
these novel PEP estimation approaches has yet been used with the objective of assessing an
individual’s stress response in a continuous and real-time manner.





Chapter 4

Methods

4.1 Data Acquisition

To evaluate the performance of the wearable PEP estimation approach (SCG + ECGW), as
well as of the radar-based approach (radar + ECGW), a study was conducted at the Machine
Learning and Data Analytics Lab. The acquired dataset included 22 young, healthy adults.
The participants were asked to perform several stress-inducing and -reducing tasks while
conventional ECG, ICG, wearable ECG, SCG, and radar data were concurrently recorded.
Written informed consent was obtained from all participants before testing.

4.1.1 Study Protocol

The study protocol created for this work consisted of six active phases, each lasting for three
minutes, in which the participants completed different tasks. Passive baseline phases of two
minutes duration were incorporated at the beginning and the end of the recording, as well
as between the active phases. Accordingly, the total recording duration was 32 minutes per
participant. The six active phases included three tasks designed to provoke a stress response
in the participants, whereas the other three tasks were intended to reduce stress and support
relaxation. Stress-inducing and stress-reducing tasks were alternated. An overview of the
study protocol is given in Figure 4.1. The respective tasks are described in more detail in the
following section.
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Baseline 1 

(2 min)

Stroop 

(3 min)

Baseline 2 

(2 min)

Cold face

(3 min)

Baseline 3 

(2 min)

Math 

(3 min)

Reading

(3 min)

Baseline 5

(2 min)

Cold pressor

(3 min)

Baseline 6

(2 min)

Video

(3 min)

Baseline 7

(2 min)

Baseline 4

(2 min)

Figure 4.1: Study protocol consisting of six stress-inducing or -reducing tasks with baseline
phases before the first task, after the last task, and between tasks.

Task 1: Stroop Test
The Stroop Test, which is a mental stress test and also referred to as the Stroop Color Word
test, was first described by John R. Stroop. In the original test, the participant is asked to read
100 words out loud as fast as possible. The words presented are color words but are written in
a font color that does not match the respective word, for example, the word ”red” is written in
blue font. Due to this incongruence, it takes the brain longer to process the information and
verbalize the correct word [Str35]. The mental overstimulation caused by cognitive conflict
and the additional time pressure was found to trigger stress. Researchers observed increased
concentrations of plasma epinephrine, urinary epinephrine, and plasma norepinephrine, all of
which indicate increased SNS activity [Hos97; Tul89].

Accordingly, in the study conducted, an online version of the Stroop Test, where partici-
pants need to state the correct word via a button on the keyboard, is completed by the subjects
with the aim of triggering increased sympathetic activity [Sto17; Sto10].

Task 2: Cold Face Test
When a cold stimulus is applied to the face, the PNS is activated, which is often referred to
as the diving reflex and is usually provoked by immersion of the face in cold water [Lin09].
More precisely, cooling the eye and forehead region causes the excitation of the ophthalmic
and maxillary branches of the trigeminal nerve. As a result, the vagus nerve, which is the
central part of the PNS, is stimulated through the trigeminal-vagal reflex arc [Lem15]. In
order to trigger the diving reflex and, thus, PNS activation in a more practical way, Khurana
et al. proposed to cool the relevant facial areas by applying a cold stimulus instead of water
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immersion. This approach is referred to as the Cold Face Test [Khu80]. Several studies have
proven that the Cold face Test induces bradycardia, which is an indicator for heightened PNS
activity [Ric22; Khu06; Hea90].

Correspondingly, the Cold Face Test is used within the conducted study as one of the
relaxing phases as it is expected to increase PNS activity. A cooling mask (Dr. Winkler
GmbH, Ainring-Mitterfelden, Germany) covering the majority of the facial area was applied
for a duration of three minutes. The mask had a temperature of approximately 0 ◦C.

Task 3: Math Test
Mental stress, for example, provoked by demanding arithmetic tasks, is known to induce
sympathetic activation as well as HPA axis activation [Rei04; Kir93]. Therefore, a mental
arithmetic task is a part of the well-known Trier Social Stress Test described by Kirschbaum et
al., which is a procedure that reliably induces stress in individuals [Kir93]. When performing
this stress test, or mental arithmetic tasks in general, a subsequent increase of epinephrine and
norepinephrine in the blood plasma was observed, which indicates heightened SNS activity
[Tho12; Rei04].

Thus, a mental arithmetic task was included in the study as a stress-inducing phase. Within
this phase, the study participants were asked to solve several mental arithmetic problems
using an interactive computer program. Besides the arithmetic task, the program displayed
several evaluative elements, such as a timeline, to additionally create time pressure. Also, the
difficulty of the tasks was adjusted to the performance of the user, in order to make the tasks
more challenging if necessary. These evaluative elements further increased the participant’s
stress level [Ric23].

Task 4: Reading
Motion artifacts are a common problem regarding the acquisition of cardiac parameters with
wearable and contactless recording techniques, as these are typically used with the aim of
allowing the participant’s to behave fairly naturally and to ideally not restrict movement.
Various types of motion artifacts can occur, for example, caused by walking, limb movements,
or speaking [Her22; Keb20; Kum16].

In the case of the study conducted in this thesis, the participants’ movement was partly
restricted since data acquisition was performed in a sitting position, hence motion artifacts
were mostly prevented. Consequently, only the robustness of the investigated PEP estimation
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approaches against artifacts caused by speaking could be examined. For this purpose, a
speaking phase was included in the study protocol in which participants were asked to read a
text aloud. Besides, the speaking phase was also intended to have a relaxing effect on the
participant.

Task 5: Cold Pressor Test:
The so-called Cold Pressor Test is a procedure widely used in medical settings to assess
cardiovascular reactivity, as well as pain tolerance. During the Cold Pressor Test, a person’s
hand or foot is immersed in ice-cold water for a short period, typically two or three minutes.
Researchers observed elevated blood pressure as a response to this procedure [Lov75]. In
line with this, it was found that the Cold Pressor Test triggers the release of epinephrine and
norepinephrine, which causes arteriolar vasoconstriction and thus elevates blood pressure.
Based on the observed rise in epinephrine and norepinephrine concentration in the plasma, it
can be inferred that the Cold Pressor Test leads to an increase in SNS activity [Vel97; War83].

Accordingly, a Cold Pressor Test was carried out with the participants of the study, which
served as the third stress-inducing phase. The participants were instructed to immerse their
right hand into approximately 0 ◦C cold water for the duration of three minutes or as long as
possible. When the pain or discomfort got unbearable, the participant was allowed to remove
their hand.

Task 6: Video
As the final relaxation phase of the study, the participants were shown a video of natural
sceneries accompanied by calming music. Viewing soothing videos was reported to signifi-
cantly decrease the concentration of sAA which indicates decreased ANS activity [Tak04].
Moreover, listening to relaxing music was found to decrease sAA levels as well, and thus to
potentially have a stress-reducing effect [Lin15].

4.1.2 Measurements

As the objective of this work was to perform PEP measurement using different approaches,
multiple kinds of data were recorded while the participants performed the previously outlined
tasks.
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Reference PEP Measurement (PEPREF)
To be able to evaluate the feasibility and the performance of the implemented PEP estimation
techniques, reference signals were obtained. Following the gold standard PEP-measurement
method, reference data consisting of ECG and ICG were recorded conventionally with elec-
trodes attached to the skin and connected to the measurement device via cables. For this
purpose, a BIOPAC device (BIOPAC Systems, Inc., CA 93117, USA) with an ECG100C and
a NICO100C module for ECG and ICG recording, respectively, as well as the corresponding
AcqKnowledge® software (BIOPAC Systems, Inc., CA 93117, USA) was utilized.

The ECG recording was performed according to Einthoven’s Lead II configuration [Ein08],
thus three electrodes were attached at the right clavicle, and at the right and left lower thorax
[Bio21a; Bio19].

For the acquisition of the ICG data, eight electrodes are attached in pairs along the right
and left mid-axillary lines, two each at the right and left side of the neck, and two each
at the right and left side of the lower thorax [Bio21b; Deh19]. The ICG module of the
BIOPAC device injects a small sinusoidal current of 400 µA through the thoracic region of
the body. The module records the impedance magnitude (range 0–100Ω), additionally the
AcqKnowledge® software internally calculates the dZ/dt signal (range ± 2Ω/s/V).

Both the ECG and the ICG data are recorded with a sampling rate of 1000 Hz [Bio21a;
Bio21b]. Figure 4.2 shows the electrode placement for ECG and ICG recordings.

PEP Measurement using wearable sensors (PEPW)
To realize PEP assessment without requiring wired connections, two wearable sensors (Porta-
biles NilsPod, Portabiles GmbH, Erlangen, Germany) were used. To capture the PEP start
point, a portable ECG sensor is affixed to the participant’s thorax with a chest strap approxi-
mately at the lower pectoral level. Hence, a 1-channel ECG was recorded according to Lead I
of Einthoven’s triangle [Ein08].

Additionally, the participants were equipped with a second sensor, which was attached
approximately at the center of the sternum. In order to achieve minimal attenuation when
recording the chest’s micro-vibrations, the sensor was attached in direct skin contact using
an adhesive foil. The sternum sensor, as well as the ECG sensor, recorded 6-d IMU data
consisting of 3-d acceleration (range ± 16 g) and 3-d angular rate (range ± 2000 ◦/s). The
thereby acquired ACC signals built the SCG data and were used to extract the PEP endpoint.
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Figure 4.2: Placement of ECG (dark blue) and ICG (light blue) electrodes required for
reference PEP measurement, and wearable sensors (green) required for PEP estimation

Sensor data were logged onto each sensor’s internal storage with a sampling rate of 256 Hz
and transmitted to a computer for further processing. Also, both sensors were synchronized
wirelessly, therefore subsequent synchronization is not necessary [Rot18]. The placement of
these wearable sensors is shown in Figure 4.2.

PEP Measurement using radar and wearable ECG (PEPRAD)
For the radar-based PEP estimation approach, radar data was collected with two radar nodes
developed by the subproject A04 of the EmpkinS collaborative research center [Emp23].

These radar nodes were installed in front (frontal) of and behind (dorsal) the participant,
respectively, in order to compare the results of both positions. The frontal radar was pointed to
the lower pectoral area of the participant, while it was ensured that it was pointed in between
the two chest-worn sensors to avoid obstructing the path of the radar waves. The dorsal radar
was targeted at the lower back. Since the back of the chair used for the study was made of
fabric, the radar signal penetrated through it unhindered. Moreover, both radar sensors were
aligned parallel to the body surface in order to best capture the signal reflected back from
the body. A schematic illustration of the radar setup can be seen in Figure 4.3. The results
of a preceding research work, which dealt with the ideal positioning of radars for heart rate
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Figure 4.3: Positioning of the frontal and dorsal radar sensor nodes (orange)

monitoring, indicated that the best results might be achieved with the dorsal radar [Her22].
Accordingly, this was also expected in the study carried out here, but nevertheless, the frontal
positioning was also included.

The in-phase (I) and quadrature (Q) components of the radar signal were recorded with a
sampling rate of 1953 Hz. As the radar signal only contains information corresponding to the
PEP endpoint, the wearable ECG data is utilized additionally to capture the PEP start point.

4.1.3 Data Cleaning and Preprocessing

Data Cleaning
The recorded dataset initially consisted of 22 participants with 32 minutes of recording each.
The dataset can be thought of as three subsets corresponding to the three approaches for PEP
extraction: the reference subset (ECG + ICG), the wearable sensor subset (SCG + ECGW),
and the radar subset (radar + ECGW).

Regarding the reference data, no problems occurred during data acquisition, resulting
in valid reference data from 22 persons. However, it was necessary to exclude the data of
several participants from each of the two remaining subsets. Unfortunately, the wireless ECG
sensor did not record any data for one participant, therefore this participant was excluded from
the wearable sensor subset, as well as the radar subset. Additionally, a second participant
needed to be excluded from the wearable and radar subsets because the sensor attached to the
sternum lost connection during the data acquisition. The synchronization of all recorded data
types was carried out using a dedicated synchronization signal transmitted to all recording
devices, which will be discussed in more detail below. However, the transmission of this
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synchronization signal to the radar device did not function properly for eight participants,
therefore the synchronization of the respective radar data is impossible. Since variations of
the PEP value in the range of milliseconds should be recorded, precise synchronization of the
data is crucial. Consequently, the data of these 8 participants needed to be excluded from the
radar subset.

Consequently, the wearable sensor subset contained the data of 20 persons, whereas the
radar subset contained the data of only 12 persons. The reference subset included the data
of all 22 participants. Although the demographic and anthropomorphic data hardly varied
between the subsets, an overview of this information split up for each subset is given in Table
4.1.

Although the radar data was obtained during the study, it was decided that further evalua-
tion of this data exceeded the scope of this work. Thus, it is not considered in the following
parts of this thesis. However, it still remains part of the corresponding dataset in order to
enable further analysis in the future.

Table 4.1: Demographic and anthropometric data of the participants of the main dataset
(reference dataset) and two subsets (wearable sensor subset and radar subset); Mean ± SD

# f / m Age [years] Height [cm] Weight [kg]

Reference subset
(ECG + ICG) 22 11 / 11 24.9 ± 2.2 178.0 ± 9.2 73.2 ± 9.4

Wearable sensor subset
(SCG + ECGW) 20 10 / 10 24.6 ± 2.1 178.1 ± 9.3 73.3 ± 9.6

Radar subset
(radar + ECGW) 12 6 / 6 24.6 ± 2.5 176.8 ± 9.2 72.8 ± 11.3

Synchronization
For all implemented pep estimation methods, the start point and the end point of the PEP
need to be extracted from separate signals, since the PEP start point and the PEP end point
correspond to an electrical and a mechanical event, respectively. Additionally, the PEP is a
relatively short cardiac interval of only approximately 100 ms [Hou05]. Accordingly, the PEP
itself and its changes should ideally be measured accurately, at least to the millisecond. In
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order to achieve such precise results, accurate synchronization of the used signals is crucial
[Deh19].

Within the dataset acquired for this thesis, the ECG and ICG reference data are already
recorded synchronously by the BIOPAC device [Bio22]. Similarly, the data acquired by the
ECGW sensor and by the IMU sensor attached to the sternum were also already synchronized
wirelessly during the recording process [Rot18]. consequently, the global synchronization of
the reference data, the wearable data, and the radar data still had to be realized.

This was accomplished by utilizing a custom-built synchronization board, which was
developed within the EmpkinS project [Emp23]. All data recording devices were linked to
the synchronization board via a wired connection. Obviously, in the case of the wearable
sensors, such a cable connection was to be avoided to ensure that this approach nevertheless
remained wireless. Therefore, an additional third sensor, which operated synchronously with
the other two wearable sensors, was connected to the synchronization board. As this third
sensor can just be stationary and does not need to be attached to the body, the wearable sensor
data could also be included in the global synchronization, yet still remaining wireless. After
the recording was started, the synchronization board transmitted a specific synchronization
signal simultaneously to all connected devices. Each measurement device recorded this
synchronization signal via a separate channel to allow for straightforward extraction and to
prevent corruption of the actual data. Different shapes for the synchronization signal can
be selected manually, depending on the use case. Here, a single peak was utilized. In a
subsequent processing step, the biopsykit package [Ric21] is used to precisely align the time
axes of all signals according to this synchronization peak. This procedure facilitated the
precise temporal alignment of all acquired data.

Data Preprocessing
In addition to global synchronization of the acquired data, further preprocessing steps were
required before the fiducial points needed for PEP estimation could be extracted. Firstly,
filtering of the signals was performed in order to reduce noise and artifacts. For this purpose,
suitable filters, as well as filter parameters, were selected for each type of signal. Secondly,
since this work aimed for beat-to-beat PEP estimation, the reference and the wearable ECG
data were segmented into single heartbeats. These preprocessing steps are outlined in more
detail hereafter.
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Both ECG signals, the reference ECG recorded with the BIOPAC, and the wirelessly
recorded ECGW, were cleaned using the neurokit python library [Mak21]. Since ECG signals
are often corrupted by low-frequency baseline wander and high-frequency electromyographic
noise, a bandpass filter is usually applied to remove or at least reduce such noise. Moreover,
in most cases, powerline interference occurs, which should also be removed before further
processing [Mir21]. The neurokit library cleans the ECG signal by applying a finite impulse
response filter with a Hamming window in forward and backward direction [Mak21].

For ICG preprocessing, the literature proposes several options, including Savitzky-Golay,
elliptic, and Butterworth filters, as well as Daubechies wavelets [Ben17]. For this thesis,
filtering was performed with a 4th order Butterworth bandpass filter with 0.5 Hz and 25 Hz as
low and high cutoff frequencies, respectively, which was applied forward and reverse [For19].

The initial step of the SCG preprocessing procedure implemented within this work, is the
calibration of the IMU data that was recorded by both wearable sensors data. Therefore, a so-
called Ferraris calibration is performed using the python library imucal [Küd22; Fer94]. The
sensors’ axes build a right-handed coordinate system and were defined as follows: the sensor’s
x-axis corresponds to the body’s left-to-right axis, the sensor’s y-axis corresponds to the
body’s craniocaudal axis, and the sensor’s z-axis corresponds to the body’s dorsoventral axis
[Ahm19]. The axis configuration is depicted in Figure 4.4. Within most studies reported in the
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Figure 4.4: Axes configuration of the wearable sensors

literature, the chest’s dorsoventral acceleration, which is equivalent to the ACC’s z-component
for the configuration employed in this work, is considered to be the SCG signal. However, for
the AO extraction algorithm presented by Ahmaniemi et al., which was also implemented
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within this thesis, all three ACC components of the IMU data were used [Ahm19]. Although
the GYRO data acquired by the IMUs is not included in SCG-based cardiac assessment, it is
thought to also contain insightful information about cardiac timings [Deh19; Sha19; Jaf17].
However, this aspect was not investigated within the scope of this thesis, since the relation
of AO timing and the GYRO waveform was so far not explored extensively in the related
literature [Deh20].

In order to facilitate fiducial point extraction from the SCG waveform, the according ACC
signals are filtered to reduce noise and artifacts caused, for example, by body movement. The
filtering is carried out with a forward-reverse application of a Butterworth bandpass filter
with 5 Hz and 40 Hz low and high cutoff, which was proposed by Di Rienzo et al. [Di 17].

Prior to fiducial point extraction, all signals were segmented into single heartbeats as the
goal of this thesis was to perform PEP assessment on a beat-to-beat level. The heartbeats were
defined based on the ECG signal. Firstly, the R-peaks were detected using the neurokit library
[Mak21], and RR-intervals to the respective preceding heartbeat were calculated. Then, the
start of each heartbeat was set at a certain distance before the R-peak, which was defined as
35 % of the RR-interval with respect to the preceding heartbeat. The end of each heartbeat
was defined as the start of the next one, therefore it corresponds to 65 % of the RR-interval
with respect to the successive heartbeat after the current R-peak. Thus, it is ensured that the
heartbeats directly follow each other. This procedure is similar to the heartbeat segmentation
provided by the neurokit library. However, the approach implemented in neurokit introduced
a fixed heartbeat duration by setting the heartbeat borders at 35 % of the mean RR-interval
before the R-peak [Mak21]. This can produce overlapping heartbeats, as well as gaps between
heartbeats. The data recorded for this thesis are suspected of having varying HR, which
presumably results in highly overlapping heartbeats in parts of the signal. To avoid such
overlaps, the heartbeat borders were set adaptively with regard to the current HR.

4.2 Fiducial Point Detection

As mentioned previously, to be able to extract the PEP, it is necessary to detect the fiducial
points corresponding to PEP start and end in the respective signals. As the delineation and
analysis of ECG signals is arguably the most commonly performed task in biomedical signal
analysis, the according techniques and algorithms were extensively explored. Hence, a variety
of signal processing packages are publicly available, such as the neurokit library. Thus, the
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ECG fiducial point detection is based on the functionalities provided by this library. Contrarily,
there are currently no algorithms realizing ICG and SCG waveform analysis that could be
considered standardly applied or adequately researched. Consequently, some algorithms for
the detection of the required fiducial points in these signals were implemented within this
thesis. The algorithms were mainly based on certain selected approaches proposed in the
literature, with some slight modifications made.

4.2.1 Detection of ECG Q-Peaks

According to the physiological definition, the PEP start point is equivalent to the onset of
ventricular depolarization and thus to the onset of the Q-wave in the ECG signal [Wei77].
However, automatic detection of the Q-onset is a challenging task. The Q-wave is, in many
cases, not sufficiently pronounced within the ECG signal to be able to reliably detect its
onset [Ber04]. Particularly, when the ECG is recorded according to Einthoven’s Lead II
configuration, a distinct Q-wave might not be visible. This is due to the fact that the Q-
wave corresponds to the depolarization of the interventricular septum, which propagates
approximately perpendicular to the Lead II axis and is therefore hardly or not at all captured. In
addition, the electrical axis of the heart varies between individuals, which further complicates
the detection of the Q-onset. Accordingly, it is often reported in the literature that the PEP
start was set at the R-onset or the R-peak minus a certain fixed threshold instead in order to
sustain reliable detection across individuals [For18; Lie13; Ber04]. In line with this, within
the scope of this thesis, the PEP start was defined to be the Q-peak, which is commonly
considered to be equivalent to the R-onset.

For detection of the Q-peak, it is necessary to first detect the R-peaks within the ECG
signal to subsequently find one Q-peak per heartbeat. As the R-peaks were already extracted
for the heartbeat segmentation, it was unnecessary to implement this step here. Then, the
remaining fiducial points, including the Q-peak, were detected with an ECG delineation
algorithm provided by the neurokit library, which detects signal waves and peaks based on
discrete wavelet transforms [Mak21; Mar04]. Using this approach, the Q-peaks were extracted
from the reference ECG signal, as well as from the wirelessly recorded ECGW signal.
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4.2.2 Detection of ICG B- and C-Points

To determine the timing of the PEP endpoint, it is required to locate the point of AO within
each heartbeat. This event corresponds to the so-called B-point within the ICG signal, as
mentioned previously. The literature proposes several algorithms for B-point detection in
the ICG derivative signal (dZ/dt), however, most of them are associated with three main
approaches. Some locate the B-point directly within the dZ/dt signal, whereas others utilize
the second (dZ2/dt2) or third derivative (dZ3/dt3) of the ICG signal. Arbol et al., who
compared these three methods within their work, reported that their third derivative-based
algorithm performed best for B-point detection [Árb17]. Thus, this method for B-point
detection was selected and implemented for this thesis.

Since the B-point does not correspond to a peak or minimum of the ICG signal, its
detection is not straightforward. The B-point is defined as the onset of the rapid upslope
of the signal towards its maximum, which is referred to as the C-point. Thus, the B-point
corresponds to a slope change [She90]. To be able to correctly locate the B-point within the
ICG signal, usually a search window is defined. The end of this search window is set at the
C-point, whereas the start of the window is chosen diversely in the literature, for example,
at 300 ms or 150 ms before the C-point [Árb17], or at the R-peak [Lab70]. For the B-point
detection algorithm presented here, the search window was defined as the 150 ms preceding
the C-point.

In general, the C-point is easily detectable in most cases, since it corresponds to the global
maximum of each heartbeat ICG signal [Árb17; She90]. However, for the data acquired
within this work, the C-point was initially not correctly detected in some heartbeats of several
participants, most likely due to disturbances in the signal leading to a mismatch of the global
ICG maximum and the C-point within the respective heartbeat. Consequently, also the
subsequent B-point detection was error-prone since it is reliant on correct C-point locations.
From a physiological perspective, the C-point corresponds to the peak aortic blood flow
following the AO, hence the C-point should definitively occur after the R-peak while still
being relatively close to it [She90]. A correction procedure was implemented to avoid falsely
detected C-points and thus facilitate correct B-point detection. Initially, the most prominent
ICG signal peaks were detected. Then, for heartbeats with more than one possible C-point,
the respective resulting R-C-distance for each of these C-candidates was compared with the
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average R-C-distance of the three preceding heartbeats. Finally, the C-candidate providing
the least deviation from this average R-C-distance was selected.

The subsequent B-point detection was straightforward. Following the technique proposed
by Arbol et al., the third derivative dZ3/dt3 of the ICG signal was calculated within the
search window for each heartbeat. The third derivative describes the intensity of the slope
change in the ICG dZ/dt signal, therefore the maximum of the third derivative marks the
most rapid slope change, which is equivalent to the B-point. The search window ensures that
other randomly occurring sharp slope changes do not result in wrongly detected B-points
[Árb17]. An example of the detected fiducial points and the corresponding PEP is depicted
in Figure 4.5.
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Figure 4.5: Extraction of the PEP reference from ECG and ICG signals with the B-point
being set to the maximum of the ICG’s 3rd derivative
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4.2.3 Detection of Aortic Valve Opening in SCG

For PEP measurement based on wearable ECG and SCG data, the PEP start point is extracted
from the ECGW using the same approach as for the reference PEP, whereas the PEP endpoint,
which corresponds to AO [Cro94], needs to be determined from the SCG waveform. The
literature proposes several techniques to achieve this, two of which are implemented within
this thesis. The first algorithm, which mostly follows the method proposed by Di Rienzo et
al., detects the AO point in the dorsoventral component of the ACC signal [Di 17]. Contrarily,
the second algorithm estimates the AO event from the complete triaxial ACC data [Ahm19].
In order to test different sensor placements, these algorithms were applied to the SCG data
acquired by the sensor attached to the sternum, as well as to the one attached in the lower
pectoral area, which simultaneously recorded the ECGW.

In the dorsoventrally recorded SCG signal, the AO corresponds to a peak in the part of the
signal associated with the systolic activity of the heart. Accordingly, for the first implemented
AO detection algorithm, a search window of 200 ms starting at the R-peak was defined within
each heartbeat as this part is considered to be the systolic portion of the signal. However,
since the SCG waveform can vary considerably between individuals, the AO point is not
necessarily equivalent to the global maximum within the systolic oscillations of the SCG
signal. Consequently, some constraints needed to be introduced in order to select the correct
peak and thus determine the correct AO timing. Instead of directly aiming to find the AO point,
the point of isovolumetric contraction (IVC) is detected previously. Then the AO is selected
afterward by taking the position of the IVC point into account. As the IVC corresponds to the
first major minimum occurring consecutively to the R-peak and is clearly pronounced in most
cases, it can generally be detected very easily. However, since wrongly detected IVC points
might exist nevertheless, for instance, due to signal artifacts, an amplitude-based threshold
tICV (see Equation 4.1) is introduced to discard minima occurring in smaller reflections.

yICV ≤ ywindow − tIV C with tIV C = 0.5 ∗ |ymin − ywindow| (4.1)

The SCG signal amplitudes of the respective points are described by y, and signal baseline
amplitude within the search window is described by ywindow. The threshold ensures that
the chosen IVC is located sufficiently far beneath the signal baseline. Subsequently, for
the AO, the first maximum following the IVC is selected. Similarly to the first threshold, a
second amplitude-based threshold tAO (see Equation 4.2) is defined in order to avoid wrongly
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selecting the AO point due to small reflections following closely after the IVC.

yAO ≥ yICV + tAO with tAO = 0.7 ∗ |yICV − ywindow| (4.2)

The second threshold ensures that the AO point is located sufficiently high above the IVC.
Introducing these thresholds reduces errors regarding the AO detection. Especially the second
threshold tAO is important since the signal peak associated with AO sometimes is still beneath
the baseline of the signal, thus it should be avoided, for example, to rely on fixed amplitude
thresholds [Di 17]. This algorithm is called the DV-ACC algorithm in the remainder of this
thesis. Figure 4.6 exemplary depicts the AO and IVC points detected by using this algorithm,
as well as the corresponding PEP.
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Figure 4.6: Extraction of the PEP from ECGW and dorsoventral SCG signals

The second SCG-based AO detection algorithm explored within this thesis was proposed
by Ahmaniemi et al. and used the signal envelope to estimate the timing of AO within each
heartbeat. The same search window as in the first algorithm was applied, which consists
of the 200 ms following the R-peak. As a first step, the L2-norm of the three ACC signal
components was calculated. Then, the resulting signal was highpass filtered with a cutoff
frequency of 20 Hz. Afterward, the Hilbert envelope was constructed. This envelope was
then squared and lowpass filtered again with a cutoff frequency of 20 Hz. For both filtering
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steps, a 4th-order Butterworth filter was applied. Finally, the AO point was set according to
the global maximum within the search interval of the envelope signal. This approach only
approximates the timing of AO since it does not select its position according to the actual
SCG waveform. However, this method is expected to be less affected by the variance of
SCG waveforms across individuals [Ahm19]. This algorithm is referred to as the ENV-MAX
algorithm in the following sections of this thesis. An overview of the processed signals and
the detected fiducial points resulting from the application of this algorithm can be seen in
Figure 4.7.
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Figure 4.7: Extraction of the PEP from the ECGW signal and the squared and lowpass filtered
Hilbert envelope of the highpass filtered SCG signal norm (envelope is scaled up for better
visibility)

4.3 Pre-Ejection Period Calculation

Obviously, determining the PEP value for each heartbeat is straightforward since it is given
by the time difference between the start and endpoints. However, the PEP was calculated
using start end endpoints extracted from different signals. In some heartbeats, the algorithms
detecting the fiducial points were not able to locate any event considered correct with respect
to the introduced constraints. For these cases, the algorithms marked the respective heartbeat
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as invalid. Consequently, when either no valid start or no endpoint was present for a heart-
beat, also the resulting PEP was marked as invalid. For the evaluation of the different PEP
measurement approaches, only valid heartbeats were considered.

Firstly, the reference PEP values (PEPREF) were determined from the conventional ECG
and ICG recordings. Furthermore, PEP values were calculated using the ECGW and the SCG
signal obtained by the wearable sensors. These are referred to as PEPW in the remaining
chapters. For this wearable sensor-based PEP assessment method, separate PEP results were
calculated for the SCG data acquired with the two differently placed IMU sensors, as well as
for the two different AO extraction algorithms. As previously mentioned, the estimation of
PEP using the radar data was unfortunately not possible within the scope of this thesis. An
overview of the resulting types of PEP values and their respective description used in the
following Results Chapter 5 is given in Table 4.2.
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Table 4.2: Description of the different PEP extraction methods and their respective start and
end points

Description Start point End point

PEPREF Reference PEP ECG Q-peak ICG B-point

PEPW, sternum
DV-ACC

PEP extracted from
wearable sensor data

(sternum sensor)
ECGW Q-peak

SCG AO
detected using

dorsoventral ACC

PEPW, lower pectoral
DV-ACC

PEP extracted from
wearable sensor data

(lower pectoral sensor)
ECGW Q-peak

SCG AO
detected using

dorsoventral ACC

PEPW, sternum
ENV-MAX

PEP extracted from
wearable sensor data

(sternum sensor)
ECGW Q-peak

SCG AO
detected using

envelope max method

PEPW, lower pectoral
ENV-MAX

PEP extracted from
wearable sensor data

(lower pectoral sensor)
ECGW Q-peak

SCG AO
detected using

envelope max method





Chapter 5

Results & Discussion

This section of the thesis presents the results and critically discusses them with respect to the
related literature. All results were obtained based on the participants included in the wearable
sensor subset combined with the respective reference data. Consequently, the used dataset
was comprised of 20 participants.

5.1 Fiducial Point Detection Algorithms

One goal of this thesis was to implement several algorithms realizing the detection of the
respective fiducial points in each type of signal. Within this work, the PEP values extracted
from the dataset recorded with the BIOPAC using the implemented detection algorithms for
Q-peak and B-point are considered to be the reference. As neither additional ground truth
data was generated by manual labeling, nor a manual correction of the fiducial points detected
by the algorithms was performed, it is not possible to actually evaluate the performance of
the single algorithms. However, it is at least possible to examine how often each algorithm
was able to produce results that were assumed to be valid or invalid.

5.1.1 Q-peak & B-point Detection in the Reference Dataset

Table 5.1 provides an overview of the mean absolute number and percentage of missed
fiducial points per algorithm per participant for the algorithms used to extract the reference
PEP (PEPREF). The corresponding detailed results per participant can be found in Appendix
A. The average total number of detected heartbeats per participant was approximately 2344
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Table 5.1: Mean absolute number and percentage of missed fiducial points per participant
for PEPREF algorithms

No Q No B No C
# Heartbeats # % # % # %

2343.545 0.091 0.003 4.636 0.231 4.636 0.231

heartbeats, which corresponds to a mean HR of 73.25 beats per minute (bpm) for 32 minutes
of recording. In only very few cases, in fact, in only for two heartbeats of a single participant,
no Q-peak could be detected. This was to be expected, as the algorithm used for Q-peak
detection provided by the neurokit library was reported to be able to detect the Q-peak in
> 99.9 % of the cases [Mar04].

Regarding the B-point, no valid event was found in approximately 5 heartbeats (0.231 %)
per person. After further inspection, it was found that the vast majority of these missed
B-points were caused by missing C-points, as the B-point detection algorithm did not attempt
to determine the B-point if no valid C-point was present in the respective heartbeat. This even
exceeded the B-detection performance achieved by Arbol et al. for their third derivative-based
B-point detection algorithm, which was used as the foundation for the algorithm implemented
here. They reported 3.6 % of missed B-points [Árb17]. Presumably, the number of missed
B-points is decreased by the implemented C-point correction procedure.

5.1.2 Q-peak & AO-point Detection in the Wearable Sensor Dataset

For the data recorded by the wearable sensors, the average number of segmented heartbeats
per person was approximately 2385. This deviation from the number of heartbeats detected
from the conventionally recorded ECG signal can probably be explained by the fact that the
ECGW signal contains more motion artifacts than the signal acquired using electrodes, which
could affect the heartbeat segmentation. The Q-peak detection algorithm failed for only very
few heartbeats. The percentage of missed Q-peaks per person (0.002 %) is similar to the
reference data.

Regarding the SCG data, no valid AO points could be detected on average in 0.164 % of
the heartbeats using the DV-ACC algorithm and the data obtained with the sensor placed at
the sternum. In contrast, for the second sensor attached in the lower pectoral area, the number
of heartbeats, where no AO could be detected, was around seven times higher (1.105 %). A



5.1. FIDUCIAL POINT DETECTION ALGORITHMS 45

possible explanation for this higher rate of missed AO points might be that the respective
sensor, which simultaneously recorded ECGW and IMU data, was attached to the person’s
chest by an elastic strap, whereas the sensor located at the sternum was attached with direct skin
contact. Consequently, the mechanical coupling of the sternum sensor was probably better,
resulting in less damping of the relevant micro-oscillations. Therefore, the SCG waveform
might have been captured more precisely, enabling better AO detection. Furthermore, the
sensor placement is presumably also a relevant factor. The SCG waveform is known to vary
in shape when the sensor is not positioned at the sternum, which is the commonly used sensor
placement [San20]. Moreover, the majority of waveform delineation techniques described
in the literature are tailored to signal shapes being observed using this sensor configuration
[Di 17; Ahm19; Ash18]. Accordingly, it is to be expected that the AO detection algorithm
implemented here more robustly detects AO points in the signal recorded by the sternum
sensor. Fittingly, Ashouri et al., who investigated the effects of different sensor placements
for SCG-based PEP assessment, reported a higher RMSE for the PEP values obtained using
an SCG sensor placed at the lower chest region compared to the conventional positioning
[Ash18]. These findings indicate that the AO detection might be compromised when the
sensor placement is altered. The described results can also be found in Table 5.2. Additionally,
a more detailed version is included in Appendix A.

Table 5.2: Mean absolute number and percentage of missed fiducial points per participant
for wearable sensor-based PEP (PEPW) Q-peak and DV-ACC AO detection algorithms (S =
sternum sensor; LP = lower pectoral sensor)

No Q No AO (S DV-ACC) No AO (LP DV-ACC)
# Heartbeats # % # % # %

2384.600 0.050 0.002 3.800 0.164 27.200 1.105

Besides performing the AO-point detection with the DV-ACC algorithm, the AO timings
were also estimated using the ENV-MAX algorithm. However, as this algorithm simply
assigns the AO point to the argmax of the constructed envelope, heartbeats with missing
AO-point can not occur. Hence, the average percentage of heartbeats where no fiducial point
was detected is 0 %. That is why this algorithm is not listed in the corresponding tables.

To further investigate the implemented PEP measurement approaches, all heartbeats for
which at least one of all used algorithms was not able to detect either the PEP start, the
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end, or both, were discarded. Finally, a PEP result was obtained for 43573 heartbeats of 20
participants in total. Accordingly, for each participant, on average, 2178.65 heartbeats with a
valid PEP value were obtained. In total, the average PEP detection ratio across participants
was approximately 98.46 %, meaning that for 98.46 % of all heartbeats of one participant, it
is possible to produce PEP results with all of the implemented algorithms.

Nevertheless, it should be noticed that, although in most heartbeats, all necessary fiducial
points could be extracted and, thus, the PEP could be calculated, it still is not guaranteed that
these points have the physiologically correct location. However, based on manual exemplary
verification of the resulting fiducial points, it is assumed that the detected points mark the
correct location of the respective event in the vast majority of the cases.

5.2 PEP during Stress-inducing and -reducing Tasks

One of the questions which should be answered by this thesis was whether the measured PEP
actually changed during the stress-inducing and -reducing tasks performed throughout the
study. Therefore, the reference PEP results were examined and the findings are described in
this section of the thesis.

The reference PEP results, which were obtained from the conventional ECG and ICG
recordings, do not show any major change between the different phases at first glance. This
also becomes apparent in Figure 5.1 (a). The average mean PEPREF across all participants
was 138.30 ms. The mean standard deviation (SD) was ± 14.64 ms. The corresponding
results per participant can be found in Appendix A.3. These values indicate, that the observed
beat-to-beat PEP is highly variable. In order to investigate the reason for this observed wide
PEP range, the PEP results of each individual study participant were examined. Figure 5.2
depicts the obtained PEPREF results separately for all study participants. It becomes apparent
that the range of measured PEP values is highly dependent on the individual. Correspondingly,
also the SD of the mean PEP per person, which is ± 17.08 ms supports this finding. This
highlights that the mean PEP varies considerably between individuals, which is in line with
the literature [Kro17; Cac94b].

Furthermore, it is worth noticing that whether the PEP level changes according to the
stress-inducing and -reducing tasks is also highly dependent on the individual. For example,
for participants 4 and 6, it is clearly visible, that the average PEP during the Stroop and the
Math task is lower than for the Cold Face and the Video task. This fits the expectation that
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Figure 5.1: Boxplots of PEPREF per phase for all participants (a) and responders (b)

tasks perceived as stressful induce a decrease in PEP compared to tasks that do not induce
stress or even support relaxation. Correspondingly, the related literature also reports decreased
PEP while participants performed certain tasks known to provoke stress and, thus, an SNS
activity increase. For instance, Krohova et al. reported a decreased PEP induced by a mental
arithmetic task [Kro17]. Also, Rahman et al. reported a decrease in PEP duration while study
participants performed a Stroop Test [Rah18].

It is a well-established fact that individuals exhibit varying degrees of perceived stress in
response to stressful situations, and, additionally, the individual physiological response to
stressors also differs [Rus19; Oba17; Hel12]. It was, therefore, to be expected that the stress
response to the different tasks indicated by the PEP change would differ between participants.
As a sufficient variation in PEP was not present for all study participants, it was decided to
split the dataset into a stress-responder and a non-responder group, to be able to investigate
the results obtained from the responder group further. Since the Stroop was assumed to cause
the highest SNS activation and hence the most decrease in PEP values, while the Video task
was assumed to best support relaxation, these two tasks were picked to evaluate if a person
should be assigned to either the responder or the non-responder group. For this purpose, the
difference of the mean PEP during these study phases was calculated for each participant. The
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Figure 5.2: PEPREF for all participants
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corresponding results can be found in Table 5.3. Subsequently, the participants where a PEP
difference of > 15 ms was observed, were assigned to the responder group. Consequently,
the chosen participants are participants 4, 6, 10, 12, and 14, which are also highlighted
in the table. The mean PEP values associated with the Stroop and Video phases for each
participant assigned to the responder group can be found in Table 5.4, and a plot illustrating
this information is given in Figure 5.3.
The mean PEP difference between the Stroop and the Video phase for the responder group

was 30.65 ms. The difference of PEP values of the responders between these two phases is
considerably higher than the mean SD (14.64 ms) of the entire observed PEP values across
all participants and phases. This indicates, that the stress-inducing phases actually provoked
a change in SNS activity and thus in PEP, at least for some of the participants.

Table 5.3: Table describing the difference of mean PEPREF between Stroop and Video phase;
responders are highlighted

Participant Diff. of Mean PEP [ms]
(Stroop & Video)

vp-02 1.273033
vp-03 10.114091
vp-04 32.860753
vp-05 5.594777
vp-06 38.119165
vp-07 8.340439
vp-08 -0.116690
vp-09 13.052690
vp-10 19.508767
vp-11 9.786782
vp-12 40.461950
vp-14 22.300714
vp-15 9.887272
vp-16 10.702683
vp-17 6.115909
vp-18 -2.596354
vp-19 9.799550
vp-20 2.429456
vp-21 7.914423
vp-22 11.279952
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Table 5.4: Table describing the difference of mean PEPREF between Stroop and Video phase
for responders

Participant Mean PEP [ms]
Stroop Phase

Mean PEP [ms]
Video Phase

vp-04 113.15 146.01
vp-06 76.14 114.26
vp-10 128.68 148.19
vp-12 91.05 131.51
vp-14 151.35 173.65

Summary 112.07 142.72

Conclusively, it can be stated that the study procedure applied in the study conducted
for this thesis is actually, in general, suitable to induce a physiological stress response in
individuals. As outlined in this section, a SNS activity increase could be observed in a group
of participants indicated through a decreased average PEP value during the stress-inducing
phase.
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Figure 5.3: Boxplot of PEPREF in Stroop and Video phase (responders)
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5.3 Validity of the Wearable Sensor-based Approach

Moreover, this work aimed to evaluate whether it is possible to measure the PEP on a beat-
to-beat level using wearable sensors. In this section, the validity of wearable sensor-based
approaches is discussed in general. Exemplary, the PEPW, sternum

DV-ACC results obtained with the
wearable ECG sensor in combination with the SCG data recorded by the sensor attached at
the sternum are examined and compared to the reference data PEPREF.

It should be noted that the feasibility of beat-to-beat PEP assessment based on wearable
sensor data has only been examined in very few cases reported in the related literature [Deh19].
Instead, in most of the cases, the PEP results are median filtered over the complete duration
of the respective study phase, or at least over one minute [Sha19; Ash18; Ahm19]. Thus, to
be able to better compare the obtained results to the relevant literature, it was decided to also
apply a median filter to the obtained results. In order to nevertheless preserve physiological
PEP changes within a certain period of time, a smaller window (11 heartbeats) was chosen.

The agreement of the median filtered results for the PEPREF method and the PEPW, sternum
DV-ACC

approach is illustrated in the Bland-Altman plot in Figure 5.4. Accordingly, it can be stated
that no sufficient agreement of both methods is achieved. The mean error of the PEPW, sternum

DV-ACC

method is approximately 41.41 ms. Similar results are observed for the remaining wearable
sensor-based approaches. These findings indicate that accurate PEP assessment using the
techniques examined within this work on a beat-to-beat level and also for smaller median
filtered time intervals is impossible.

However, this outcome can be explained as follows. The observed physiological range
of the PEPREF is 138.30 ± 14.64 ms. Since the mean measurement error of the PEPW, sternum

DV-ACC

method is around 40 ms and thus considerably larger than the SD range of the PEPREF, it
becomes apparent that the wearable-sensor based method is not able to sufficiently capture
the occurring variance in PEP. The reason for this is probably the limited time resolution of
the utilized wearable sensors, as these are only recorded with a sampling frequency of 256 Hz.
Consequently, the smallest time difference the sensors were able to capture was around 4 ms.
Thus, in case the respective AO point of a heartbeat is missed even by only a few samples,
this might already introduce an error in the range of > 10 ms for each of the two necessary
fiducial points, which consequently would introduce even larger errors in the PEP results. As
this issue is also present for the other implemented wearable sensor-based PEP measurement
approaches, the corresponding results are not discussed in more detail here.
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Figure 5.4: Bland-Altman Plot of PEPREF and PEPW, sternum
DV-ACC

However, regarding other wireless PEP assessment approaches described in the literature,
the same issue arises, even though it might not always be apparent. For example, in the
work of Dehkordi et al., beat-to-beat PEP estimation from SCG, data was presented. They
reported a mean percentage error of 12.8 % compared to echocardiography-based ground
truth. Although they did not report the range of occurring PEP values, it is presumably
smaller than the one observed in the study conducted for this work since the data acquisition
was performed with the participants in supine rest. Consequently, a measurement error of
12.8 % would most likely not allow accurate PEP measurement with respect to the observed
physiological range of the PEP [Deh19]. Similarly, Shandhi et al., who examined SCG-based
PEP estimation, reported a RMSE of 12.63 ms for their best-performing approach, while also
not specifying the observed variation of PEP. Thus, the method developed by them probably
is also not able to capture a physiologically relevant range accurately [Sha19]. Accordingly,
the same shortcomings of the wearable sensor-based methods investigated within this thesis
are in line with the related literature.
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In order to overcome these issues, it is necessary to obtain the required signals with
measurement equipment providing a higher time resolution in order to allow sufficiently
accurate capturing of the physiologically relevant PEP range.

5.4 Detection of Stress States using Wearable Sensor-based
PEP

Instead of aiming for beat-to-beat PEP assessment, another potential use case of the imple-
mented wearable sensor-based PEP estimation techniques might be the detection of stress
states in individuals. Within the group of stress responders, the performance of the wearable
sensor-based PEP measurement methods was further investigated. Therefore, the obtained
results of the Stroop phase and the Video phase were compared with respect to the different
implemented approaches.

Figure 5.5 depicts the respective results for the PEPW, sternum
DV-ACC , PEPW, lower pectoral

DV-ACC , PEPW, sternum
ENV-MAX,

as well as the PEPREF method. The corresponding effect sizes according to Cohen’s d are
given by d = 1.17 for PEPREF, d = 0.26 for PEPW, sternum

DV-ACC , d = 0.98 for PEPW, lower pectoral
DV-ACC , and

d = 0.11 for PEPW, sternum
ENV-MAX. The associated results can be found in Appendix A.4, A.5, A.6,

as well as in Table 5.4. The PEPW, lower pectoral
ENV-MAX method is not described here as its results were

considerably worse. The described effect sizes highlight that the PEP estimation accuracy
achieved by exclusively utilizing wearable sensors is sufficient to distinguish the phases
associated with stress and relaxation, at least for some of the approaches. The wireless
approach using the data acquired with the sensor with the lower pectoral positioning in
combination with the PEPW, sternum

DV-ACC extraction technique was able to best capture the occurring
PEP variation.

Unfortunately, none of the investigated wearable sensor-based PEP measurement ap-
proaches were sufficiently accurate to capture the PEP on a beat-to-beat level, which was
primarily due to the limited precision of the utilized sensors. However, the results presented
in this thesis indicate, that distinguishing between situations where an individual experiences
stress and situations where the individual is rather relaxed is feasible using only wireless
sensors.
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Conclusion and Outlook

Although beat-to-beat PEP assessment using only wearable sensors could not be accomplished
within this work, several helpful insights regarding wearable sensor-based PEP assessment
could be gained.

In general, the implemented fiducial point extraction algorithms are presumed to identify
the correct location of the respective events within the cardiac cycle. This assumption is
based on two aspects. Firstly, the number of heartbeats where no fiducial point satisfying
the respective conditions could be detected was very limited. Secondly, the detected fiducial
points were manually checked by visual inspection and they were detected correctly for
the vast majority of heartbeats. Nevertheless, comparing the extracted fiducial points to,
for example, an expert-annotated ground truth would be beneficial in order to evaluate the
performance of the implemented algorithms properly.

The main issue within this work was the limited time resolution of the utilized wearable
sensors, which considerably impacted the PEP measurement accuracy. To overcome this,
it is advisable to use sensors operating at a much higher sampling frequency than 1000 Hz.
Thereby, it would be possible to capture the range of occurring PEP values more accurately.

However, use cases actually requiring a beat-to-beat PEP might be limited with respect to
sympathetic and, thus, stress assessment, since situations during which individuals experience
stress usually last for at least some minutes. Accordingly, the obtained results show that
differentiation of situations perceived as stressful and not stressful is possible using the
wearable sensor-based PEP measurement approaches. Hence, depending on the use case, it
might be sufficient to obtain averaged PEP results for a certain period of time. Correspondingly,



56 CHAPTER 6. CONCLUSION AND OUTLOOK

the in this work developed, as well as further PEP assessment approaches are investigated
within the EmpkinS D03 subproject. Within the project, a study collecting the same types of
data as the study presented here is conducted. However, during this study, a more sophisticated
stress test (Trier Social Stress Test [Kir93]) is performed, which probably provokes higher
variation in PEP values. As also cortisol and sAA is measured during this study, the developed
PEP estimation approaches can be evaluated with respect to well-established stress markers
indicating the SNS activity.

Unfortunately, realizing PEP measurements using the interferometry radar data exceeded
the scope of this thesis. However, this aspect should be investigated further in the future.

Conclusively, it can be stated that, even though accurate wearable sensor-based PEP
measurement on a beat-to-beat level is not possible based on the obtained data, the developed
PEP estimation algorithms enabled distinguishing stress-inducing and stress-reducing tasks.



Appendix A

Additional Tables

Table A.1: Missing fiducial points for PEPW

No Q No AO (S DV-ACC) No AO (LP DV-ACC)
Participant # Heartbeats # % # % # %

vp-02 1937 0 0.000 1 0.052 3 0.155
vp-03 2492 0 0.000 2 0.080 2 0.080
vp-04 2272 0 0.000 0 0.000 0 0.000
vp-05 1944 0 0.000 0 0.000 0 0.000
vp-06 3161 0 0.000 0 0.000 1 0.032
vp-07 2560 0 0.000 15 0.586 396 15.469
vp-08 2880 0 0.000 5 0.174 16 0.556
vp-09 2821 0 0.000 0 0.000 4 0.142
vp-10 2164 0 0.000 0 0.000 3 0.139
vp-11 2584 0 0.000 2 0.077 1 0.039
vp-12 2769 1 0.036 7 0.253 18 0.650
vp-14 2853 0 0.000 2 0.070 7 0.245
vp-15 1669 0 0.000 7 0.419 17 1.019
vp-16 2387 0 0.000 5 0.209 5 0.209
vp-17 2039 0 0.000 9 0.441 40 1.962
vp-18 2157 0 0.000 1 0.046 15 0.695
vp-19 2323 0 0.000 8 0.344 6 0.258
vp-20 2134 0 0.000 2 0.094 6 0.281
vp-21 2183 0 0.000 6 0.275 3 0.137
vp-22 2363 0 0.000 4 0.169 1 0.042
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Table A.2: Missing fiducial points for PEPREF

No Q No B No C
Participant # Heartbeats # % # % # %

vp-01 2517 0 0.000 5 0.199 5 0.199
vp-02 1944 0 0.000 13 0.669 13 0.669
vp-03 2492 0 0.000 0 0.000 0 0.000
vp-04 2272 0 0.000 1 0.044 1 0.044
vp-05 1949 0 0.000 5 0.257 5 0.257
vp-06 3165 0 0.000 0 0.000 0 0.000
vp-07 2557 0 0.000 2 0.078 2 0.078
vp-08 2882 0 0.000 1 0.035 1 0.035
vp-09 2821 0 0.000 1 0.035 1 0.035
vp-10 2163 0 0.000 1 0.046 1 0.046
vp-11 2577 0 0.000 0 0.000 0 0.000
vp-12 2770 2 0.072 1 0.036 1 0.036
vp-13 1331 0 0.000 1 0.075 1 0.075
vp-14 2854 0 0.000 10 0.350 10 0.350
vp-15 1704 0 0.000 28 1.643 28 1.643
vp-16 2393 0 0.000 2 0.084 2 0.084
vp-17 2007 0 0.000 26 1.295 26 1.295
vp-18 2156 0 0.000 3 0.139 3 0.139
vp-19 2323 0 0.000 0 0.000 0 0.000
vp-20 2134 0 0.000 0 0.000 0 0.000
vp-21 2184 0 0.000 2 0.092 2 0.092
vp-22 2363 0 0.000 0 0.000 0 0.000
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Table A.3: PEPREF results; Mean and SD

Participant Mean [ms] ± SD [ms]

vp-02 144.148768 11.222184
vp-03 139.157380 14.385585
vp-04 126.775952 19.457067
vp-05 145.456157 12.798078
vp-06 89.405742 15.808425
vp-07 123.534596 19.431377
vp-08 146.911234 6.944942
vp-09 134.072973 6.306040
vp-10 138.532982 14.858280
vp-11 130.924925 5.204640
vp-12 116.050951 30.180977
vp-14 161.004798 34.561162
vp-15 144.991860 20.157209
vp-16 164.796651 14.514026
vp-17 143.000000 13.264553
vp-18 154.525394 11.083571
vp-19 147.819739 8.480333
vp-20 143.500439 10.566251
vp-21 149.755383 9.884354
vp-22 121.730435 13.645172

Summary 138.304818 ± 17.08 14.637711

Table A.4: PEPW, sternum
DV-ACC results (responder)

Participant Mean PEP [ms]
Stroop Phase

Mean PEP [ms]
Video Phase

vp-04 71.943396 78.257310
vp-06 74.754342 88.574766
vp-10 85.547511 90.380682
vp-12 76.199248 83.367965
vp-14 112.691176 97.092105

Summary 84.227135 87.534566
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Table A.5: PEPW, lower pectoral
DV-ACC results (responder)

Participant Mean PEP [ms]
Stroop Phase

Mean PEP [ms]
Video Phase

vp-04 84.924528 102.649123
vp-06 70.287841 102.830986
vp-10 81.203620 97.215909
vp-12 90.293233 95.100000
vp-14 120.213235 134.890351

Summary 89.384492 106.537274

Table A.6: PEPW, sternum
ENV-MAX results (responder)

Participant Mean PEP [ms]
Stroop Phase

Mean PEP [ms]
Video Phase

vp-04 58.660377 64.923977
vp-06 58.640199 74.163551
vp-10 92.045249 79.869318
vp-12 64.398496 65.311688
vp-14 112.518382 113.894737

Summary 77.252541 79.632654
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Acronyms

SNS sympathetic nervous system

PNS parasympathetic nervous system

ANS autonomic nervous system

HPA hypothalamic-pituitary-adrenal

sAA salivary α-amylase

AA α-amylase

ECG electrocardiogram

ECGW wearable ECG

ICG impedance cardiography

PCG phonocardiogram

SCG seismocardiogram

BCG ballistocardiogram

IMU inertial measurement unit

FCG forcecardiogram
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M-mode motion mode

ACC accelerometer

GYRO gyroscope

PEP pre-ejection period

PEPREF reference PEP

PEPW wearable sensor-based PEP

PEPRAD radar-based PEP

PEPW, sternum
DV-ACC wearable sensor-based PEP (sternum sensor, DV-ACC algorithm)

PEPW, lower pectoral
DV-ACC wearable sensor-based PEP (lower pectoral sensor, DV-ACC algorithm)

PEPW, sternum
ENV-MAX wearable sensor-based PEP (sternum sensor, ENV-MAX algorithm)

PEPW, lower pectoral
ENV-MAX wearable sensor-based PEP (lower pectoral sensor, ENV-MAX algorithm)

LVET left ventricular ejection time

QS2 total electromechanical systole

IVC isovolumetric contraction

HR heart rate

HRV heart rate variability

AO aortic valve opening

MC mitral valve closure

AV node atrioventricular node

bpm beats per minute

RF radio frequency

IR infrared
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LSTM long short-term memory

RMSE root mean square error

SD standard deviation
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