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Übersicht

Der negative Einfluss von chronischem Stress auf die meschliche Gesundheit ist weitreichend
untersucht. Häufig genutzte Messmethoden, wie die Herzrate oder die Herzratenvariabilität
bieten allerdings nicht die Möglichkeit die Einflüsse des sympathischen Nervensystems
isoliert zu messen. In der menschlichen Stressreaktion ist das sympathische Nervensystem für
kurzfristige Anpassungen verantwortlich und trägt zu einem erheblichen Teil zur gesamten
Stressreaktion bei. Eine vielversprechende Methode um die isolierte Messung sympathischer
Aktivität durchzuführen, ist die Pre-Ejection Period (PEP). Dazu muss der Beginn der Q-
Welle im Elektrokardiogramm und der B-Punkt im Impedanzkardiogramm detektiert werden.
Insbesondere die Detektion des B-Punktes stellt sich als besonders herausfordernd dar, da sich
die Ausprägung dieses Punktes zwischen vesrchiedenen Personen und auch innerhalb einer
Person ändern kann. In der Literatur werden einige automatische Detektionsalgorithmen
vorgestellt, deren Genauigkeit allerdings zu hinterfragen ist.

Um diesen Zweifeln entgegenzuwirken wurden in dieser Arbeit drei Algorithmen um den
Startpunkt der Q-Welle zu berechnen, vier Algorithmen zum extrahieren der Position des
B-Punktes und zwei Methoden zur Korrigierung von Ausreißern implementiert. Anschließend
wurden alle Algorithmen zur Berechnung des Beginns der Q-Welle mit allen Algorithmen
zum extrahieren des B-Punktes, sowie mit den Methoden zum Korrigieren der Ausreißer
kombiniert. Um die Algorithmen auf deren Genauigkeit zu überprüfen, wurden im Rahmen
dieser Bachelorarbeit 5086 Herzschläge manuell annotiert und als Referenzwert für weitere
Untersuchungen genutzt.

Die Analyse der Algorithmen zeigte, dass die Ergebnisse früherer Untersuchungen in
dieser Arbeit nicht bestätigt werden konnten. In zugehöriger Literatur hat ein Algorithmus,
basierend auf diversen Entscheidungsregeln und schwellenwertbasierter Auswahl relevanter
Punkte, mit einer anschließenden Ausreißerkorrektur durch ein autoregressives Modell am
besten abgeschnitten. Die im Rahmen dieser Arbeit erzeugten Ergebnisse wiederlegen die
herausstechende Leistung des besagten Algorithmus. Eine weitere Methode basierte, auf der
Detektion des lokalen Minimums in der zweiten Ableitung des Impedanzkardiogrammsignals
und anschließender Ausreißerkorrektur durch ein autoregressives Modell. Beim Vergleich
mit den manuell annotierten Referenzdaten konnte in Kombination mit einer Methode, die zur
Schätzung des Startpunktes der PEP 40ms von der R-Zacke abzieht, der geringste mittlere
Fehler von 15.31 ± 19.20ms erzielt werden.
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Abstract

The negative impact of chronic stress on the individual’s health is well understood. However,
current non-invasive methods for stress measurement, such as heart rate (HR), or heart
rate variability (HRV), cannot reflect the sympathetic drive to the heart in isolation. The
sympathetic nervous system (SNS) is responsible for short term responses and has a major
influence on the human stress response. A promising method to measure sympathetic activity
in isolation is the PEP. This time period starts at the Q-wave onset in the electrocardiogram
(ECG) and ends at the B-point in the impedance cardiogram (ICG). In particular, the detection
of the B-point is challenging since the morphology of this point varies between and even
within individuals. Automatic event detection algorithms, to extract the points necessary
for PEP computation have been proposed in related work. However, previous investigations
indicate that their accuracy is questionable.

To counteract these uncertainties, three methods for Q-wave onset (Q-onset) detection, four
methods to extract the B-point, and two algorithms for outlier correction were implemented
in this work. Subsequently, all algorithms for Q-onset detection were combined with all
algorithms for B-point extraction, and outlier correction. To verify the accuracy of the
implemented algorithms, 5086 cardiac cycles were manually labeled in this work and used as
a reference for further investigations.

The results obtained in this work, could not confirm previous findings. An algorithm
based on multiple decision rules, thresholds, and a subsequent outlier correction with an
autoregressive model to extract the B-point, was proposed to show superior performance in
related work. However, in this work, a PEP computation pipeline using a method based on
subtracting 40ms from the R-peak for Q-onset detection and the local minimum in the second
derivative of the cardiac impedance (dZ2/dt2) signal with subsequent outlier correction,
showed the least mean absolute error (MAE) of 15.31± 19.20ms with respect to the manually
labeled reference data.
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Chapter 1

Introduction

Many situations in our daily lives can cause psychosocial stress. These include traffic jams,
the fear of failure and its consequences, poverty, or environmental factors such as natural
disasters [Doe21]. Although stress helps us to respond to a threat in an appropriate way,
becoming chronically stressed can affect our health negatively [McE17]. Several diseases
like cardiovascular dysfunction, diabetes, and autoimmune syndromes are linked to chronic
stress [Mar15].

When an individual is experiencing acute psychosocial stress, the physical response of the
body is based on two main pathways. Short term responses such as an increase in alertness
are controlled by the SNS. The slower reacting Hypothalamus-pituitary-adrenal (HPA) axis
evokes an intensified and prolonged response to stress [Doe21]. Since the SNS has a major
influence on the human stress response, reliable SNS markers are highly relevant [Dro22].
However, current noninvasive methods such as the measurement of HR, HRV or arterial blood
pressure are unable to reflect sympathetic activity isolated [Dro22; New79]. Therefore, there
is a need for novel stress markers that circumvent this limitation. One promising marker is the
PEP, which is proposed as the best noninvasive method for assessing the sympathetic control
of the heart in related work [Cac94; Dro22]. PEP is defined as the time interval from the start
of ventricular depolarization to the beginning of blood ejection from the ventricle [New79;
For18; Sha19]. Thus, the gold standard approach to detect the events, necessary for PEP
computation is the synchronized measurement of the ECG and the ICG [She90; Lie13].
From the ECG, the start point of PEP can be obtained by detecting the Q-wave onset, which
corresponds to the beginning of ventricular depolarization [Pil23]. The end point of PEP can
be determined indirectly from the ICG, by extracting the B-Point from the signal of the first
derivative of the cardiac impedance (dZ/dt), which indicates the before mentioned beginning
of blood ejection from the ventricle [She90].
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Since both the detection of the Q-wave onset and the detection of the B-Point are sensitive
to noise and prone to artifacts, reliable computation of PEP by automatic algorithms is chal-
lenging [Dro22]. Especially detecting the B-Point is difficult, as respiration, body movements,
and cardiovascular dysfunctions influence the shape of the dZ/dt signal. Hence, different
dZ/dt waveforms between and even within individuals may occur [For18].

Several automatic event detection pipelines for PEP computation are therefore based on
strong simplifications, which are prone to distortions and baseline shifts [She90; She22].
As a result, no common practice has been found in previous work and many publications
lack information on the algorithms used, or the accuracy of the applied algorithms may be
questioned [Árb17].

The goal of this bachelor’s thesis is therefore to compare the performance of different
event detection pipelines according to their accuracy in PEP computation. To determine the
best performing event detection pipeline, data was collected in a study in the context of the
EmpkinS collaborative research center [Emp23]. 40 participants performed the Trier Social
Stress Test (TSST) for acute psychosocial stress induction [Kir93] and the control version of
the Trier Social Stress Test (f-TSST) [Wie13] in randomized order on two consecutive days.
Additionally to self-reports and biomarkers such as alpha-amylase or cortisol, which are gold
standard measures to asses psychosocial stress, ECG and ICG data were recorded during
the (f-)TSST. The captured data was used to compute PEP with different event detection
pipelines and to generate a manually labeled gold standard. Thereby, the B-Points were
marked according to a visual guideline stated by Árbol [Árb17] and examples of difficult-
to-detect B-Points [For18]. Finally, the performance of the implemented event detection
pipelines was evaluated, by comparison with the manually labeled reference data.
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Medical Background

The isolated noninvasive measurement of the sympathetic control of the heart is challenging.
Typical measures, such as HR are often influenced by both vagal and beta-adrenergic acti-
vation [New79]. However, the parasympathetic nervous system (PNS) which is responsible
for vagal activity has a greater influence on HR [Cac94]. To overcome this limitation and to
allow isolated assessment of the SNS, which is responsible for beta-adrenergic activation,
several cardiovascular measurement techniques have been introduced [New79]. Although
the shortening of PEP is coincident with an increase in HR, HR does not affect PEP [Cac94].
This is because PEP, which is a systolic time interval is under the control of cardiac inotropy,
which in turn is influenced by the positive inotropic effect of the SNS [Kro17]. Therefore
PEP is known to be mainly directed by beta-adrenergic influences [Cac94]. To confirm this,
several studies have been conducted using drugs to either stimulate or inhibit beta-adrenergic
receptors and to block either the PNS or SNS to investigate influencing factors on PEP. The
results revealed that the blockade of the PNS does not affect the duration of PEP. In all other
cases, changes in PEP could be identified [Dro22]. Stimulation of beta-adrenergic receptors
induced a decrease of PEP duration [Cac94; Dro22], whereas inhibition of beta-adrenergic
receptors increased PEP [Dro22]. Furthermore, PEP was compared with changes in the
T-wave amplitude, which should also reflect the sympathetic activity of the heart. T-wave
amplitude was only influenced by beta-adrenergic manipulation. PEP, however, was sensitive
to both beta- and alpha2-adrenergic changes [Dro22]. The results of the studies confirm that
PEP is an accurate marker for sympathetic activation of the heart [New79] and outperforms
the method based on changes in T-wave amplitude [Dro22].

PEP can be divided into two components. The electromechanical delay, which represents
the duration from the ECG Q-wave to the beginning of the rising pressure in the left ventricle,
and the isovolumic contraction. This time interval corresponds to the time until the pressure
in the left ventricle is raised to the level that the aortic valve opens [Kro17; New79]. PEP
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is therefore a noninvasive measure of all electrical and mechanical processes prior to the
ejection of blood from the ventricle [New79]. The electromechanical delay is known to be
fairly unaffected even under physiological and pathophysiological changes. This is the reason
why its duration remains in a small range between 30 - 40 ms [Kro17]. Changes in PEP
are therefore primarily caused by the isometric contraction time. Influencing factors are the
contractility of the heart, changes in diastolic blood pressure (DBP), or other factors such as
cardiac preload and afterload[Kro17; Cac94].

The term preload refers to the extent to which the ventricle is filled with blood during
diastole. When the ventricle is packed, the muscle fibers in the myocardium stretch. This
causes a sharp increase in contractility. Consequently, an increasing preload leads to a
decrease in PEP duration [New79; Cac94; Kro17]. The counterpart to cardiac preload
is cardiac afterload, which should produce the opposite effect [Bal18]. Cardiac afterload
describes the resistance to left ventricular contraction [New79]. Therefore, for the aortic valve
to open, the pressure in the left ventricle must exceed the pressure in the aorta. If the pressure
in the aorta increases, more pressure must be built up in the ventricle, leading to a time delay.
As a result, a prolongation of PEP can be obtained for an increase in cardiac afterload [New79].
The fact that cardiac preload and afterload affect PEP independently of the influence of the
SNS can have a disturbing impact on psychophysiological examinations [New79; Kro17].
Other physiological and pathophysiological conditions that either prolong or shorten PEP
have been found in previous studies. Age, negative inotropic agents, or blocking of the left
bundle branch are known to increase the PEP duration [New79]. Factors such as exercise,
psychosocial stress, pathologies of the aortic valve, acute hypoxemia, or the reaction to positive
inotropic agents shorten PEP [New79].
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Related Work

Several algorithms for automatic PEP computation are proposed in related work. To introduce
these methods, the chapter is divided into three parts. In the first two sections, frequently used
methods to detect the Q-wave onset and the B-Point are discussed. The last section presents
guidelines for manual labeling and emphasizes the continuing importance of manually labeled
data for PEP evaluation.

Q-wave onset The Q-wave onset, which corresponds to the start of ventricular depolariza-
tion is well known as the starting point of PEP [She90]. Even if the point is physiologically
the correct choice [Pil23], it is often not practical to use this point for automatic PEP computa-
tion [Ber04]. The fact that the Q-wave is not present in every patient’s ECG, also when trying
different electrode placements, is a major obstacle for using the Q-wave onset as starting
point of PEP [She90; Ber04]. In these cases, other significant points such as the R-wave
onset (R-onset) must be detected [She90; Ber04]. This leads to a between-subject variance,
which severely limits the comparability of PEP [Ber04]. For this reason, several approaches
have been developed to determine the timing of ventricular depolarization independent of the
presence of a Q-wave.

Bernston et al. analyzed the ECG and ICG data of 30 healthy undergraduate students
to compare the influence of the Q-onset and the R-onset as starting point of PEP [Ber04].
The participants could be equally divided into the following categories: those with an easily
detectable Q-wave, those with a weak but scoreable Q-wave, and those with no Q-wave. The
results of the analysis show, that using R-onset as the starting point leads to greater stability
of PEP values across subjects with different Q-wave prominences and reduces the variance of
manually labeled data from multiple raters. For this reason, Bernston et al. recommend using
the R-onset as the starting point of PEP [Ber04].

Subtracting a fixed time interval from the R-peak provides an alternative method for
estimating the location of the Q-wave onset [Lie13]. Previous work has shown that the
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QR interval can be assumed to be nearly constant since it shows minimum change during
physiological and psychological stress [Kro17; Pil23]. Therefore, a constant QR interval of
48 ms was used to estimate the Q-wave onset in previous work [Wil96; Bry08]. Since the
validity of this method was not systematically assessed, Van Lien et al. conducted two studies
to verify whether the proposed QR interval is appropriate. In total 132 healthy undergraduate
students participated in the studies and were exposed to physical and psychological stressors
in a laboratory and ambulatory setting. The results of the studies show that a QR interval
of 40 ms is at least a good estimate for the Q-wave onset, even though it cannot replace its
accurate detection [Lie13]. Furthermore, the findings of the studies are distinctive to the
previously proposed QR interval of 48 ms, which turns out to be a poor estimate [Lie13].

R-peak detection is even simpler than the detection of the Q-onset and leads to the complete
elimination of detection errors due to ambiguous Q-waves [See16]. To investigate the influence
of using the RB interval instead of the QB interval for PEP computation, a study with 408
undergraduate students was conducted. To get even better insights into the composition of
PEP Seery et al. evaluated the impact of the QR interval on total PEP additionally. The study
revealed that the RB interval is responsible for 90% of the variance of PEP, while the QR
interval is only responsible for a part of 10%. If we move away from absolute levels and look
at PEP changes, the RB interval is responsible for an even greater part of 98%, whereas the
QR interval contributes only 2%. The results show that the RB interval is a good estimate
of PEP, especially when looking at PEP changes, which is the more significant marker in
psychology [Ber04; See16]. The fact that the R-peak is easy to extract and therefore more
reliable than the detection of the Q-onset is a clear advantage of this method [Lie13; Kor18].
This simplicity may explain the frequent use of the R-peak for PEP computation [Kro17;
Bal18; Kor18; Dro22; She22].

B-point Accurate automatic detection of the B-point is known to be difficult due to the
high inter- and intra-subject variability in the dZ/dt waveform [Árb17; For18]. Thus, manual
labeling, which is a very time-consuming process is still required to determine the correct
B-point [For18]. Therefore, the systematic assessment of the performance of common B-point
detection algorithms is highly relevant [Árb17].

Debski et al. investigated the B-point detection accuracy of algorithms based on the
inflection point of the second derivative and the maximum peak of the third derivative using
manually labeled reference data. A study with 21 healthy college students revealed the similar
performance of the two algorithms. However, Debski et al. recommend which algorithm
should be applied for which dZ/dt waveform. Accordingly, for signals with a visible inflection
point, the method based on the second derivative is suggested. For signals where no inflection
point is recognizable, the algorithm based on the third derivative is more applicable [Deb93].
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Putting the Initial Systolic Time Interval (ISTI) in a quadratic equation has been proposed
to estimate the B-point relative to the R-peak in related work [Loz07; Mei07]. The advantage
of this method is that the B-point can be estimated from the R-peak and the maximum of the
dZ/dt signal, which are the most prominent points in the ECG and dZ/dt waveforms [Lie13].
To verify the validity of this method, Van Lien et al. conducted two studies as mentioned in the
previous section. Compared with previous findings, Van Lien et al. found different parameters
for the regression equation in both studies. Also, the high agreement of the estimated RB
interval with the variance of the true RB interval of 95% obtained in prior studies could not be
confirmed by Van Lien et al. with an agreement of 79% and 81%, respectively. Nevertheless,
the ISTI may be useful to assist in the detection of the actual B-Point [Lie13].

In another study, Árbol et al. investigated the performance of frequently used detection
methods based on cycle-by-cycle isoelectric crossings, the maxima of the second derivative,
and the maxima of the third derivative, by comparing their results with a manually labeled
gold standard. Additionally, Árbol et al. performed literature research regarding the usage of
automatic B-Point detection algorithms. Since only the algorithm based on the third derivative
has shown acceptable results and 78% of the articles do not specify, which algorithm they
used, Árbol et al. criticize the accuracy of the already obtained results, as well as the missing
ability of reproduction [Árb17].

Various algorithms, which have been used to detect the B-Point were relying on fixed
rules. To improve the performance of these algorithms, ensemble averaging is often per-
formed [For18]. However, using this method reduces the temporal resolution, and difficulties
in the detection of the B-Point may persist [Lie13; For18].

Forouzanfar et al. developed a novel automatic algorithm for beat-to-beat B-Point extrac-
tion to circumvent this limitation. Therefore, the B-Point detection pipeline consists of several
steps, such as limiting the search interval and a threshold-based point selection. Furthermore,
an autoregressive model is included for outlier correction. These steps make the algorithm
less prone to noise and artifacts. Other commonly used B-Point detection algorithms based on
the zero crossing of the dZ/dt signal, the reversal point of the dZ/dt signal, and the maximum
of the third derivative of the ICG signal were also implemented. In a study with 20 healthy
participants, the accuracy of the implemented algorithms compared with a manually labeled
gold standard was evaluated. As a result, the superior performance of the novel automatic
algorithm was revealed, as it showed the lowest deviation from the reference data [For18].

Finally, Sheikh et al. developed a novel data-driven machine learning approach to de-
termine the location of the B-Point. In a study with 189 participants, the novel algorithm
was compared with five state-of-the-art B-Point detection algorithms. The results of this
study showed, that the machine learning approach outperformed the commonly used detection
algorithms, which were either based on fixed rules (zero crossing, second derivative rule,
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and third derivative rule [Árb17]) or data-driven approaches (linear and quadratic regression
equation [Loz07]). Furthermore, the varying performance of the proposed algorithm in
different conditions such as neutral or stress was found. Sheikh et al. explained this finding
by the general limitation of data-driven algorithms that training and test data must contain all
possible expressions [She22].

Manual Labeling Automatic B-Point detection algorithms are known to be prone to noise
and artifacts [Dro22]. Hence, generating reliable results is not possible by often used state-
of-the-art algorithms [Árb17]. As manual labeling is still the gold standard to pinpoint the
accurate B-Point location and is of great importance to assess the performance of several
B-Point detection algorithms, some guidelines for manual labeling have been elaborated in
related work [Lie13; For18].

Nagel et al. proposed, that physiological changes of the dZ/dt waveform and distorting
influences such as noise, reduce the precision and reliability of extracted B-Points [Nag89].
To counteract this limitation Sherwood et al. proposed guidelines for visual B-Point detection.
According to the definition of Sherwood et al., the B-Point corresponds to the beginning of
the rapid rise to the maximum peak of the dZ/dt signal and typically lies close to the zero-line
of the dZ/dt signal [She90]. As part of a study to assess the performance of different B-Point
detection algorithms, Árbol et al. developed a visual guideline to provide objective instruction
for B-Point detection. The proposed decision tree is based on the previous work of Nagel et
al. and Sherwood et al. and includes various morphologies of the dZ/dt signal [Árb17].
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Methods

To investigate the effects of psychosocial stress on several health-related parameters such
as respiratory rate, HR, or PEP, a study was conducted at the Machine Learning and Data
Analytics Lab from December 2022 to May 2023. The participants were asked to perform the
TSST and f-TSST in randomized order on two consecutive days. In order to obtain a balanced
dataset, the order of the TSST and f-TSST was alternated weekly. In addition, the participants
were divided into a standing and sitting group.

4.1 Study Population

Further information regarding the 15 participants (9 female and 6 male), which have been
selected for the analysis in this work is provided in the following paragraph. The demographic
and anthropometric data of the subjects are listed in Table 4.1. Participants were recruited via

Table 4.1: Demographic and anthropometric data of the participants; Mean ± SD
Age [years] Height [cm] Weight [kg] BMI [kg m−2]

Female 24.11 ± 2.51 168.33 ± 5.50 59.44 ± 6.06 20.92 ± 1.14
Male 21.50 ± 1.61 180.83 ± 5.43 76.50 ± 10.69 23.35 ± 2.79

Total 23.07 ± 2.54 173.33 ± 8.21 66.27 ± 11.73 21.89 ± 2.30

mail distribution lists, social media, flyer notices, and in person. Eligibility for the study was
assessed in advance using a screening questionnaire. In the process, those who met at least
one of the following conditions were excluded: age below 18 or above 50 years, non-German
native language, a BMI lower than 18 or higher than 30, physical or mental illnesses of any
kind, medication intake, smoking, drug use, adiposity, and experience with a comparable
stress test. As an expense allowance, the participants either received 50 € or could choose
5 Versuchspersonenstunden as compensation, if they were psychology students.
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4.2 Stress Induction

For psychosocial stress induction, the TSST was used [Kir93]. Due to the combination of
social evaluation, a mental arithmetic task, and the unpredictability of the upcoming event,
the TSST is known to be an effective stressor that leads to a significant activation of the
HPA axis [All17]. Therefore, the TSST is the gold standard approach for psychosocial stress
induction in a laboratory setting [All17]. To obtain a control condition, a modified version of
the f-TSST was carried out [Wie13]. Depending on the order of conditions, the f-TSST was
performed either the day before or the day after the TSST.

4.2.1 Trier Social Stress Test (TSST)

The TSST protocol can be divided into three main parts, each lasting 5 minutes. The first part
is the preparation phase, in which the participant was asked by the study leader to take notes
about their personality and to fill out a questionnaire. After the preparation phase, the subject
was interviewed by a panel of two persons, female and male, wearing white lab coats. The
panel was trained not to show any emotions and to communicate with the participant only in
pre-defined phrases. Furthermore, the participant was limited to talk about his personality
and was asked to maintain constant eye contact. In addition, communication was only allowed
with the panel member of the opposite sex. In the last part of the TSST, the participant was
asked to subtract 17 from 2043 repeatedly and move on as quickly and accurately as possible
until failure. When an error occurred, the participant was informed by the opposite-sex panel
member and advised to start again at 2043. To ensure that the recording from the sensors is
as free of artifacts as possible, several pauses were inserted into the TSST protocol, during
which the participant was asked not to move and to remain silent. The timeline of the TSST
is summarised in Figure 4.1.

Figure 4.1: Timeline of the (f-)TSST
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4.2.2 Friendly Trier Social Stress Test(f-TSST)

The temporal structure of the f-TSST was the same as in the TSST (see Figure 4.1). The
difference between the f-TSST and the TSST was the objective appearance of the two-person
panel, as they changed into casual clothes. Furthermore, both panel members were allowed to
communicate with the participant and were encouraged to respond positively to the subject.
The mental arithmetic task was also simplified since the subjects had to alternate adding ten
and twenty. When an error occurred, the panel politely informed the participant and allowed
them to continue calculating at the same point. In general, the task of the panel was to show
interest in the participant’s presentation, to be friendly, and to avoid unpleasant situations
without going beyond the time frame of the study protocol.

4.3 Measurements

4.3.1 Electrocardiography (ECG)

The ECG allows fast and noninvasive measurement of the electrical activity of the heart with
the help of electrodes, placed on the surface of the skin [Hla05; Raf21]. The results of the
measurement are presented in the form of a characteristic waveform, showing the variation in
the measured voltage [Hla05; AL-15]. In order to receive the electrical activity of the heart
from multiple directions, the electrodes can be placed in different positions on the human
body [AL-15]. In clinical practice, twelve different electrode configurations are typically used,
which are also called leads. This provides spatial information about the electrical activity of
the heart [Sam15]. The ECG leads can be divided into two main groups. The so-called limb
leads, which consist of three bipolar and three unipolar leads [AL-15], allow the electrical
activity of the heart to be displayed from a frontal perspective [Sam15]. The remaining six
electrode configurations are the so-called precordial or chest leads [AL-15], which provide
information on the heart’s electrical activity in the transverse plane [Sam15].

Depending on the chosen lead configuration, the ECG produces different characteristic
waveforms [AL-15]. The significant valleys and peaks in the obtained waveform can be
divided into six parts: the P, Q, R, S, T, and U wave [AL-15]. For PEP computation, the
Q-wave and the R-peak are highly relevant. Both events are a part of the QRS complex, that
accounts for the greatest portion of the amplitude in the ECG waveform [McS03]. The Q-wave
onset is the starting point of the QRS complex and corresponds to the start of ventricular
depolarization [Hla05]. The R-peak is the most prominent point in the ECG waveform and
therefore most reliable to detect [See16]. An overview of the ECG waveform with its most
prominent events is provided in Figure 4.2.
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Figure 4.2: Overview of the significant events in the ECG waveform.

Since the usage of the Q-wave onset for PEP computation is questionable [See16], reliable
detection of the R-peak is of high importance. To do so, the lead II configuration was used
in this study [She90]. Accordingly, one electrode was placed on the right clavicle and one
electrode on each of the left and right lowest ribs of the participant. Data were acquired using
the Biopac MP160 system and the AcqKnowledge software package [Bio23]. The sampling
rate was set to 1000 Hz.

4.3.2 Impedance cardiography (ICG)

PEP is the summation of all electrical and mechanical processes prior to the ejection of blood
from the ventricle [New79]. However, the ECG provides information about the electrical
activity of the heart, but not about the mechanical activity [Nag89]. To obtain the missing
information the ICG can be used to measure systolic time intervals, including PEP [She90].
By applying a high-frequency alternating current to the thorax, a characteristic waveform
is created in the first derivative of the ICG signal, which is influenced by the cardiac cy-
cle [Lab70]. The measured impedance changes of the thorax are therefore caused by volumet-
ric changes [Lab70; She90].

The measuring principle of the ICG is based on Ohm’s law [She90; Man18].

V = Z ∗ I
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A constant alternating current field I directed along the thorax, is applied [She90]. Further-
more, electrodes measuring the voltage difference V of the thorax are attached [Man18].
Therefore, a change in impedance Z can be measured as a function of blood flow since blood
is conductive [She90; Man18]. This is due to the proportionality between the measured
voltage and the impedance of the thorax [Cyb12]. Thus, impedance changes in the ICG reflect
blood flow in the aorta since it is equally directed regarding the current field [She90].

A frequently used method to measure the ICG is based on the use of 8 spot electrodes [She90].
Therefore, four electrodes are placed on the neck and four electrodes are placed on the lower
part of the chest. Accordingly, one of the voltage electrodes is placed on each side just above
the clavicle. In addition, one voltage electrode is placed laterally on each side at the height of
the xiphoid process. The current electrodes are placed in parallel on the neck 5 cm above
and on the chest 5 cm below the voltage electrodes [She90]. This electrode placement was
also used in this study. As with the ECG, the Biopac MP160 system and the AcqKnowledge
software package were used for data acquisition [Bio23]. An overview of the electrode
placement is given in Figure 4.3.

Figure 4.3: Overview of the electrode placement for the ICG measurement.

Just as with the ECG, the ICG also produces a characteristic waveform [Lab70]. The
relevant points for PEP computation are the A-, B-, and C-points respectively. The A-point,
whose typical shape is caused by the contraction of the atrium, represents the beginning of
electromechanical systole [Man18]. This point corresponds to the most significant minimum
prior to the C-point [For18]. The start of blood ejection from the left ventricle, which
indicates the end of PEP corresponds to the B-point [She90]. At this point, the dZ/dt signal
begins to rise to its maximum [She90]. After the aortic valve is opened and the maximum



14 CHAPTER 4. METHODS

blood flow through the aorta is reached, the C-point occurs [She90]. This point reflects
ventricular contraction and represents the maximum in the dZ/dt waveform [She90; Man18].
Although there are characteristic points in the waveform, their appearance can differ. In
particular, the morphology of the B-point can vary greatly between individuals and even
within individuals [She90; For18]. Some common B-point morphologies, as well as the A-
and C-points of the dZ/dt signal, are therefore shown in Figure 4.4.
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Figure 4.4: Overview of different B-point morphologies within subjects (rows) and between
subjects (columns).
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4.4 Reference Data

To obtain the accuracy of the implemented algorithms, a reference dataset was generated.
The recorded ICG and ECG data of 15 participants was used to label subsections from each
of the following phases: Pause 1, Prep, Talk, Math, and Pause 5. Ten seconds in each of the
Pause 1 and Pause 5 phases were labeled. In the remaining phases, 30 seconds were labeled.
The Talk and Math phases also include a 30 second speaking break, which was not labeled
separately, but was combined with the phases just mentioned, to form an overall phase. In
order to obtain a variation in the manually labeled subsections, the starting points were chosen
randomly within the borders of the corresponding phases. In total 5086 cardiac cycles were
labeled using the MaD GUI [Oll22]. This is a Python package that allows multiple signals to
be displayed simultaneously, to load pre-annotated data, and to generate individual labels.

Q-wave onset

In this study, not every participant showed a clearly recognizable Q-wave. Consequently, it
was impossible to mark the Q-wave onset without variance between study participants. This
observation is consistent with experience in related work, where the visibility of the Q-wave
is known to be an issue [She90]. Following the results of a study conducted by Berntson et al.,
the detection of the R-onset is the more reliable approach to detect the start of PEP [Ber04].
The R-onset is described as the sharp rise in slope before the R-peak. In the presence of
a Q-wave, this point coincides with the tip of the Q-wave [See16]. After trying different
ECG cleaning approaches, it was found that using the biosppy method of the neurokit2
package reveals the clearest Q-waves. To pre-label the data, the ECG delineate method of
the neurokit2 python package was used, which is capable of detecting the components of
the QRS complex [Mak21]. To avoid the occurrence of errors and to ensure the reliable and
consistent detection of the R-onset, the pre-labeled data was visually inspected afterward.

B-Point

The B-point can occur in various morphologies, complicating pinpointing the correct B-
point [She90; For18]. To cover this variety and to mark the B-points as accurately as
possible, a visual decision tree published by Árbol et al. was used to label the B-points
in this study [Árb17]. Additionally, the examples of hard-to-detect B-points proposed by
Forouzanfar et al. were used [For18]. To further simplify the labeling process, the ECG and
ICG signals were loaded into the MaD Gui simultaneously. Thus, the R-peak could be used
as an additional feature to narrow down the search interval for B-point detection, which is
done in the same way in related work [For18].
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When reliable extraction of the R-onset or the B-point was not possible due to artifacts or
waveforms, that did not match any description, these points were marked as artifacts. This
was needed to prevent falsification of the reference data and thus false results when comparing
the algorithms.

4.5 Automatic Event Detection

4.5.1 Preprocessing

In order to detect the events necessary for PEP computation, interfering factors had to be
removed from the ECG and ICG data. The ECG is often influenced by baseline drifts,
electromyogram noise, and power-line interference [Chr04]. To remove these distorting
effects, the biosppy method from the neurokit2 was applied to clean the ECG [Mak21].
In this method a finite impulse response (FIR) bandpass filter with a filter order of 0.3 ∗
sampling_rate was used. The lower and higher cutoff frequencies were set to 3 Hz and 45
Hz, respectively [Car15]. The ICG signal is also often disturbed by high-frequency noise,
baseline drifts, and artifacts [For18]. To counteract this, a 4-th order Butterworth bandpass
filter with cutoff frequencies of 0.5 Hz and 25 Hz was applied in forward and backward
directions in accordance with related work [For19].

Furthermore, in order to enable a beat-to-beat PEP computation, a heartbeat segmentation
was carried out. Sternemann developed a method using the neurokit2 Python package to
perform the heartbeat segmentation [Ste23; Mak21]. This results in the position of the R-peak
and the start and end points of the corresponding heartbeat. To determine the heartbeat’s start
and end points, the RR intervals with the preceding and following R-peaks were calculated.
Therefore, the current heartbeat’s start point was 65% of the distance from the previous
R-peak, and the end point was set to 65% of the following RR interval after the current
R-peak [Ste23].

4.5.2 Q-wave onset

Various methods for calculating the Q-wave onset have been discussed in related work. In this
thesis, three typically used detection algorithms were implemented. One uses the R-peak, in
another approach a constant time interval is subtracted from the R-peak, and the last method
uses the Q-peak to estimate the Q-wave onset. In the following section, the implementation
of the algorithms is explained in detail.
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R-Peak

Detecting the R-peak is not usually a major challenge, as it is the most significant point in
the ECG waveform [See16]. This is why other work has suggested the R-peak as the starting
point of PEP since it almost eliminates the variance between subjects [See16]. As mentioned
above, the R-peaks were already calculated for heartbeat segmentation, since it was only
necessary to read out the heartbeat data-frame, to obtain the R-peaks per heartbeat.

R-Peak - constant QR interval

The second approach is also based on the detection of the R-peak, which is extracted in
the same way as described in the previous section. In addition, 40ms were subtracted from
each R-peak location to estimate the time of the Q-wave onset. The duration of 40ms was
chosen in accordance with the results of previous investigations [Lie13]. Accordingly, using
a constant time interval is valid due to the low variability of the QR interval, even under
different physical and psychological conditions [Kro17; Pil23]. The theoretical basis of the
algorithm is visualized in Figure 4.5.
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Figure 4.5: Estimation of the Q-onset by subtracting 40 ms from the R-peak location.

Q-Peak

The last method for estimating the Q-wave onset is based on the detection of the Q-peak.
Bernston et al. recommend using the R-onset, which corresponds to the Q-peak in the presence
of a Q-wave, for detecting the Q-wave onset since this method works independently of the
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occurrence of a Q-wave and thus reduces the risk of between subject variance [Ber04]. To
obtain the Q-peak a method implemented by Sternemann was used in this work [Ste23].
Thereby, the Q-peak location was extracted by the ECG delineate method from the neurokit2
library, which performs a discrete wavelet transform (DWT) to detect the significant events in
the ECG waveform [Mak21].

4.5.3 B-Point

For B-point detection, four algorithms were used in this work. In addition to plain B-point
extraction, outlier correction algorithms were also implemented, which will be introduced in
more detail later. In all B-point extraction algorithms, a parameter that can be used to specify
whether or not outliers are to be corrected afterward was implemented. This parameter had
an influence in the cases where no B-points could be detected. In addition, the C-point was
passed to each of the detection algorithms, as it serves as the right boundary for B-point
determination. The procedure to extract the C-point is therefore described first.

C-Point

As many B-point detection algorithms are based on the extracted C-points, their detection
is crucial to avoid falsification of the obtained B-points. The C-point, which represents
the time of maximal blood flow through the aorta, corresponds to the global maximum
of the dZ/dt signal for each heartbeat [She90]. This allows easy automatic detection in
most cases. However, Sternemann observed, that the detection of the C-point in a data set
with physiologically similar expected responses to this study, was prone to error [Ste23].
Therefore, an adapted C-Point extraction algorithm was developed based on a peak detection
method of the scipy library [Vir20]. When multiple peaks were found in one heartbeat, the
average distance of the three previous C-points to the corresponding R-peaks was calculated.
Afterward, the peak with the smallest deviation from the average distance was selected as the
C-point [Ste23].

Reversal point of the dZ2/dt2 signal

The first B-Point detection algorithm is based on pinpointing the reversal point in the dZ2/dt2

signal [Deb93]. This point corresponds to an inflection point in the dZ/dt signal, which is one
possible B-point morphology [Árb17]. In order to find this point, local minima in the dZ2/dt2

signal between the R-peak and the C-point were extracted. When multiple minima occurred,
the one closest to the C-point was chosen. When outlier correction was performed, the B-point
was set to the beginning of the search interval, which corresponded to the R-peak, in cases
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where no local minimum could be detected in the dZ2/dt2 signal. The relationship between
the selected local minima in the dZ2/dt2 signal and the detected B-points is illustrated in
Figure 4.6.
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Figure 4.6: B-point detection based on the reversal point of the dZ2/dt2 signal.

Maximum of the third derivative of the cardiac impedance (dZ3/dt3) signal

Another B-point detection algorithm, based on the calculation of higher derivatives, was
developed by Arbol et al.. Thereby, the local maximum in the dZ3/dt3 signal is detected since
this point corresponds to the point with the greatest change in slope in the dZ/dt signal, which
is another possible B-point morphology. To ensure the most accurate detection and robustness
to interfering factors, the search area for the local maximum is limited to a certain time
interval before the C-point [Árb17]. In this work, it was possible to use an implementation of
this algorithm by Sternemann. Following the literature, the time interval was set to 150 ms in
this work [Ste23]. An illustration of the described algorithm is provided in Figure 4.7.
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Figure 4.7: B-point detection based on the maximum in the dZ3/dt3 signal.

Maximal Distance from a straight line to the dZ/dt signal

Detecting significant events in the dZ2/dt2 or dZ3/dt3 signal is the basis of many frequently
used B-point detection algorithms [Árb17]. However, Drost et al. developed a method to
detect B-points, based on the dZ/dt signal only. Therefore, a straight line was drawn from the
C-point to the point that occurred 150 ms before the C-point in the dZ/dt signal. Following,
the point, which showed the maximal vertical distance between the straight line and the dZ/dt
signal was chosen as the B-point [Dro22]. The principle of the algorithm is illustrated in
Figure 4.8.

Algorithm based on multiple decision rules

Finally, a novel automatic algorithm, developed by Forouzanfar et al., was implemented.
In addition, to plain B-point detection, an outlier correction step using an autoregressive
model was performed [For18]. Since the outlier correction algorithm was also applied to the
other B-point detection algorithms, it is explained in section 4.5.4 and section 4.5.5. Unlike
other commonly used algorithms, the proposed approach is not based on a fixed rule [For18].
Instead, Forouzanfar et al. used several steps to limit the search area and multiple decision
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Figure 4.8: Calculation of the maximal vertical distance between the dZ/dt signal and a
straight line between the C-point and the point 150ms prior to the C-point to estimate the
B-point location.

rules were introduced to locate the correct B-point [For18]. To reduce the search interval,
the A-point, which represents the most significant minimum before the C-point, was first
detected within one-third of the beat-to-beat interval, prior to the C-point [For18]. In this
work, the beat-to-beat interval was defined as the distance between the current C-point and the
previous C-point. To further reduce the search range, all monotonically increasing segments
in the previously extracted interval were detected. Unlike Forouzanfar et al. explanation,
the segment starting below half the C-point amplitude and ending above two-thirds of the
C-point amplitude was selected [For18]. This change was made since otherwise no monotonic
segment could be detected in cases without inflection or reversal point between the A- and
C-point. According to related work, the C-point amplitude was therefore defined as the
distance from the zero line at the location of the C-point [She90]. To finally locate the B-point,
the first third of the most significant monotonic segment was searched for zero crossings in
the dZ3/dt3 signal and for local maxima in the dZ2/dt2 signal. The zero crossings, that
correspond to a too-large slope in the dZ/dt signal have been neglected. Therefore, a threshold
was set to 10 ∗ H/fs, and zero crossings with a higher dZ2/dt2 value were omitted. In
order to use only the significant local maxima, all those whose values of the dZ3/dt3 signal
were less than 4 ∗ H/fs, have been abandoned [For18]. The height H has been defined
as the difference in amplitude between the A-point and the C-point and fs corresponds to
the sampling rate [For18]. As a last step, the zero crossing, or the local maximum of the
dZ3/dt3 with the smallest distance to the C-point, was defined as the B-point. The first point
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of the detected monotonically increasing segment was chosen if neither of the two points
existed [For18]. When outlier correction was performed, the B-point was set to the R-peak in
cases where no monotonic segment could be found to achieve beat-to-beat PEP computation.

4.5.4 B-Point Outlier Detection

To detect those points that were too far or too close to their neighbors in either time or
amplitude, B-point outlier detection was performed, based on the work of Forouzanfar et
al. [For18]. According to this, the B-point time data had to be stationarized before the
outliers could be detected. To obtain the stationarized data, the B-point time data baseline
was calculated and subtracted from the original B-point time data [For18]. To compute the
B-point time data baseline, a 4-th order Butterworth low-pass filter with a cutoff frequency
of 0.1 Hz was applied to the B-Point time data, in forward and backward direction [For18].
Due to the lack of description of the procedure, it was assumed that the sampling rate of the
B-point time data is 1 Hz, which means that the B-points are equally sampled. Furthermore,
the B-point time data was obtained by calculating the difference between the C-points and the
corresponding B-points. To finally detect the outliers, the median and the median absolute
deviation of the stationarized B-point time data were calculated. Subsequently, the B-points
that were three times as far away from the median as the median absolute deviation were
marked as outliers [For18].

4.5.5 B-Point Outlier Correction

After the outliers were detected, they still had to be corrected. Therefore, two outlier correction
methods were implemented in this work. The first approach belongs to the outlier detection
algorithm published by Forouzanfar et al. and is based on an autoregressive model and the
other method uses interpolation to correct the obtained outliers.

Autoregressive Model

Autoregressive models are often used to estimate the future course of time series data. Appli-
cations include predicting economic dynamics or the evolution of the COVID-19 pandemic, to
name two examples [Lüt05; Mal20]. However, Forouzanfar et al. used this method to correct
the B-point outliers by performing autoregressive model prediction in forward and backward
direction [For18]. The corrected B-points were then calculated as the average of the forward
and backward predictions [For18]. An Autoregressive Integrated Moving Average (ARIMA)
model from the statsmodels library was used to implement the autoregressive model in this
work [Sea10]. To stay in line with Forouzanfar et al. the integration (I) and moving average
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(MA) components were set to zero, so that only the autoregressive model was obtained. To
calculate the parameters and the order of the forward and backward autoregressive mod-
els, Burg’s method and minimization of the Akaike information criterion (AIC) were used
respectively [Aka69; Kay88; For18]. Finally, the baseline was added back to the B-point
time data [For18]. Then outliers were searched again, and if any were found, the outlier
correction procedure was repeated. The process was completed when no more outliers were
detected. [For18].

Linear Interpolation

As an alternative approach to correct the B-point outliers, linear interpolation was chosen
for its simplicity and efficiency [Lep17; Kul21]. Using this technique, a straight line is fitted
between the two neighboring values to estimate the outlier [Lep17]. In this study, linear
interpolation was performed using the interpolate method of the pandas library [tea20].
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Results & Discussion

To investigate whether PEP is capable of reflecting changes in the individual’s stress level
induced through the (f-)TSST and to compare the performance of several event detection
pipelines for automatic PEP computation, the Q-onsets and B-points of 5086 cardiac cycles
were manually labeled in this work. This chapter provides an overview of the obtained results
and discusses them with respect to related work.

5.1 Effects of the TSST on PEP duration

In order to determine whether PEP is an appropriate marker to reflect changes in the individ-
ual’s stress level, the variation of the manually labeled reference data through the (f-)TSST
timeline is investigated in the following section. In total 5086 cardiac cycles were manually
labeled in this work. The mean and standard deviation of PEP were 88.49ms and 25.10ms,
respectively. Minimum and maximum values of the manually labeled reference data were
26ms and 266ms. In addition, the mean and standard deviation of the f-TSST and TSST
were calculated separately. For the f-TSST, a mean of 92.62ms with a standard deviation of
25.39ms was observed for 2393 labeled cardiac cycles. The mean PEP in the TSST amounted
to 84.81ms with a standard deviation of 24.25ms. This was obtained from the remaining
2693 labeled cardiac cycles. All of the mean PEP values are within the physiologically normal
range, which includes a PEP duration between 70 ms and 175 ms [Árb17]. An overview of
the received PEP parameters is given in Table 5.1. Furthermore, the obtained differences can
also be seen in Figure 5.1 since there is a visible difference between the f-TSST and TSST
condition.

In addition, the mean and standard deviation of the phases of the (f-)TSST were calculated
separately. Both, TSST and f-TSST, showed a decrease of mean PEP values between Prep
and Pause 1. Minimum PEP durations of 77.44ms for the TSST and 78.66ms for the f-TSST
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Table 5.1: Obtained parameters of the manually labeled reference PEP data.
Cardiac cycles PEP Mean ± SD PEP min PEP max

Total 5086 88.49 ± 25.10 26.00 266.00
f-TSST 2393 92.62 ± 25.39 26.00 180.00
TSST 2693 84.81 ± 24.25 27.00 266.00

Figure 5.1: Overview of the reference PEP values grouped by condition.

were obtained in Pause 1. In the following, PEP increased in both conditions until they
reached their maximum values in Pause 5. The maximum values were 99.19ms in the TSST
and 111.30ms in the f-TSST. Accordingly, the mean PEP values, even when broken down to
phases, were within the physiological limits [Árb17]. Detailed information of the obtained
PEP parameters is provided in Table 5.2. The observed trend of the mean PEP is illustrated
in Figure 5.2.

Discussion

The clearly discernible 8.43% drop in mean PEP duration from the f-TSST to the TSST
suggests, that PEP is capable of reflecting the difference in the participant’s stress levels,
caused by psychosocial stress induction. The difference between the f-TSST and TSST could
also be obtained on the phase level, except for Pause 1. In this phase, mean PEP duration
is only slightly different between the f-TSST and TSST. A possible explanation for this
observation is that during Pause 1 the participants were unaware of the upcoming stress test
procedure. In addition, they have either no knowledge of the (f-)TSST procedure when it was
the first day, or possibly negative experiences if they performed the TSST on the previous
day. The sharp increase of PEP in Pause 5 suggests that participants relax in this phase. This



5.1. EFFECTS OF THE TSST ON PEP DURATION 27

Table 5.2: Overview of PEP per phases and condition; Mean ± SD
Cardiac cycles PEP Mean ± SD

Condition Phase

f-TSST Prep 621 87.94 ± 24.43
Pause 1 225 78.66 ± 20.49
Talk 712 93.66 ± 24.73
Math 635 95.11 ± 25.78
Pause 5 200 111.30 ± 21.31

TSST Prep 692 81.77 ± 21.45
Pause 1 231 77.44 ± 24.42
Talk 787 85.68 ± 28.28
Math 769 84.86 ± 20.59
Pause 5 214 99.19 ± 22.72

Figure 5.2: Overview of the reference PEP values grouped by phases.

is because they are told beforehand that the test is about to end after this break. The large
standard deviation of over 20ms observed in both conditions and in all phases is an indicator
of a large variance in the response of the individuals to the psychosocial stress induction. The
results of this investigation reveal that PEP is capable of reflecting changes in the human
stress level not only between the f-TSST and TSST but also on the phase level.
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5.2 PEP Estimation

Furthermore, the performance of the implemented PEP computation pipelines was investigated.
In total, three Q-onset detection, four B-point detection, and two outlier correction algorithms
were implemented in this work. This resulted in 36 possible event detection pipelines. An
overview of how the PEP computation pipelines were assembled by the individual components
is illustrated in Table 5.3.

Table 5.3: Overview of the individual algorithms used to assemble the 36 PEP computation
pipelines.

Q-wave onset B-point Outlier correction
R-peak Reversal point of the dZ2/dt2 signal Without outlier correction

R-peak - 40ms Maximum of the dZ3/dt3 signal Linear interpolation

Q-peak

Maximal vertical distance from the dZ/dt
signal to a straight line between the

C-point and the point 150ms
prior to the C-Point

Autoregressive model

Algorithm based on multiple
decision rules and thresholds

To compare the performance of the obtained PEP computation pipelines, the MAE, mean
error (ME), and the median (Md) of each pipeline were calculated against the manually labeled
reference data. The algorithm combination of a constant time interval of 40ms, the reversal
point of the dZ2/dt2 signal and no outlier correction showed the best performance. The MAE
was 14.58ms with a standard deviation (SD) of 19.30ms respectively. However, PEP values
were only obtained for 4696 out of 5086 cardiac cycles. Since the aim of this Bachelor’s thesis
was the beat-to-beat PEP computation, this pipeline cannot be used for this purpose. The PEP
computation pipeline, which showed the second-best performance was the before mentioned
approach with an autoregressive model for outlier correction. The MAE of 15.31ms with a
SD of 19.20ms showed the minimal difference to the best approach. Regarding the detection
rate, the use of the autoregressive model resulted in a strong improvement in performance.
Accordingly, PEP values were obtained in 5081 out of 5086 cardiac cycles. This corresponds
to an error rate of 0.00098%. A higher detection rate could not be reached with other PEP
computation pipelines.

Another interesting observation is the decent performance of the PEP computation pipeline
based on the R-peak, the third derivative, and outlier correction with interpolation. The MAE
was 16.30ms with a SD of 12.79ms and a detection rate of 5080 out of 5086 cardiac cycles.
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This is surprising, since most algorithms that use the R-peak but not the third derivative
showed poor performance. The result suggests that the method based on the third derivative
compensates for the late occurrence of the R-peak compared to the other algorithms. This
theory is supported by the poor performance of the third derivative method in combination
with the Q-peak method and the approach subtracting 40ms from the R-peak. To verify the
assumption, that an overestimation of the B-point location through the third derivative method
compensates for the late occurrence of the R-peak further investigations are carried out in
section 5.2.2. The PEP computation pipelines using the B-point detection method, based on
multiple decision rules and outlier correction with an autoregressive model, which showed
superior performance in prior investigations did not perform well in this work [For18]. A
MAE of 19.51ms and a SD of 20.13ms are supporting this observation. Detailed information
about the performance of all possible PEP computation pipelines is provided in Table 5.4.
Looking at the influence of the outlier correction methods on the MAE of PEP, variations in
the performance can be observed. Even between the same B-point detection methods, the
outlier correction may lead to either an improvement or a deterioration of the mean absolute
error depending on the choice of the R-onset detection method. This leads to the assumption
that the performance of the entire PEP computation pipeline and the choice of the B-point
detection algorithm is strongly dependent on whether the automatic R-onset detection method
under or over-estimates its occurrence. To verify this assumption, further investigations were
carried out regarding the accuracy of the algorithms for calculating the start and end points
of PEP.



30 CHAPTER 5. RESULTS & DISCUSSION

Table 5.4: Overview of the performance of all automatic PEP computation pipelines. The
table contains information about the amount of detected PEP values, ME, MAE, and Md of
each PEP computation pipeline.

Cardiac Cycles MAE ± SD ME ± SD Md
Q-onset B-point Correction

Q-peak Multiple conditions — 5006 24.00 ± 26.52 -19.27 ± 30.13 -8.0
Autoregression 5072 21.93 ± 23.11 -15.55 ± 27.81 -7.0
Interpolation 5072 21.43 ± 22.90 -14.50 ± 27.81 -7.0

Second derivative — 4696 17.32 ± 17.60 -2.68 ± 24.55 -9.0
Autoregression 5081 17.17 ± 17.50 -0.25 ± 24.52 -7.0
Interpolation 5081 17.80 ± 18.18 2.29 ± 25.34 -6.0

Straight line — 5081 17.55 ± 16.75 12.20 ± 20.96 11.0
Autoregression 5081 17.94 ± 16.23 15.42 ± 18.63 12.0
Interpolation 5081 18.36 ± 16.65 16.35 ± 18.63 12.0

Third derivative — 5080 26.22 ± 19.56 21.43 ± 24.72 18.0
Autoregression 5080 27.99 ± 19.27 26.99 ± 20.65 23.0
Interpolation 5080 28.83 ± 19.60 27.98 ± 20.79 24.0

R-peak Multiple conditions — 5006 53.62 ± 28.40 -53.46 ± 28.71 -44.0
Autoregression 5072 50.23 ± 25.34 -49.73 ± 26.29 -43.0
Interpolation 5072 49.34 ± 25.09 -48.68 ± 26.35 -42.0

Second derivative — 4696 41.25 ± 15.34 -36.90 ± 23.99 -42.0
Autoregression 5081 38.70 ± 16.12 -34.43 ± 23.92 -39.0
Interpolation 5081 36.93 ± 16.48 -31.89 ± 24.87 -38.0

Straight line — 5081 23.63 ± 17.86 -21.97 ± 19.87 -21.0
Autoregression 5081 21.44 ± 14.28 -18.75 ± 17.66 -20.0
Interpolation 5081 21.01 ± 13.79 -17.83 ± 17.71 -19.0

Third derivative — 5080 19.78 ± 18.34 -12.75 ± 23.77 -14.0
Autoregression 5080 16.46 ± 12.89 -7.19 ± 19.63 -10.0
Interpolation 5080 16.30 ± 12.79 -6.20 ± 19.77 -9.0

Time interval Multiple conditions — 5006 21.34 ± 23.45 -13.46 ± 28.71 -4.0
Autoregression 5072 19.51 ± 20.13 -9.73 ± 26.29 -3.0
Interpolation 5072 19.23 ± 20.00 -8.68 ± 26.35 -2.0

Second derivative — 4696 14.58 ± 19.30 3.10 ± 23.99 -2.0
Autoregression 5081 15.31 ± 19.20 5.57 ± 23.92 1.0
Interpolation 5081 16.63 ± 20.20 8.11 ± 24.87 2.0

Straight line — 5081 22.48 ± 14.65 18.03 ± 19.87 19.0
Autoregression 5081 23.10 ± 15.16 21.25 ± 17.66 20.0
Interpolation 5081 23.65 ± 15.67 22.17 ± 17.71 21.0

Third derivative — 5080 31.29 ± 18.12 27.25 ± 23.77 26.0
Autoregression 5080 33.52 ± 18.39 32.80 ± 19.63 30.0
Interpolation 5080 34.42 ± 18.68 33.80 ± 19.77 31.0
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5.2.1 Q-wave onset

In this chapter, the R-onset detection methods were examined in isolation to test their accuracy
in extracting the manually labeled reference point and to identify possible trends of under- or
over-estimation of this point. Therefore, the MAE, ME, and the Md of each R-onset detection
algorithm were calculated with respect to the reference data in line with the previous chapter.
Another aim of this section is whether subtracting 40ms from the R-peak, which was used
in related work to estimate the Q-onset [Lie13], is the best approach to estimate the R-onset,
which was used as the starting point of PEP in this work [Ber04]. Therefore, the performance
when using values between 30ms and 50ms were tested. An overview of the obtained results
is provided in Table 5.5.

Table 5.5: Overview of the performance of the Q-onset detection methods with regard to the
manually labeled reference data.

MAE ± SD ME ± SD Md
Algorithm

Q-peak 2.87 ± 7.51 -2.54 ± 7.51 0.0
R-peak 31.63 ± 6.96 31.63 ± 6.96 33.0
R-peak - 30ms 6.10 ± 3.73 1.63 ± 3.73 3.0
R-peak - 32ms 5.71 ± 3.40 -0.37 ± 4.00 1.0
R-peak - 34ms 5.62 ± 4.74 -2.37 ± 4.74 -1.0
R-peak - 36ms 6.07 ± 5.55 -4.37 ± 5.55 -3.0
R-peak - 38ms 7.23 ± 6.07 -6.37 ± 6.07 -5.0
R-peak - 40ms 8.78 ± 6.43 -8.37 ± 6.43 -7.0
R-peak - 42ms 10.59 ± 6.62 -10.37 ± 6.63 -9.0
R-peak - 44ms 12.50 ± 6.73 -12.37 ± 6.73 -11.0
R-peak - 46ms 14.48 ± 6.74 -14.37 ± 6.74 -13.0
R-peak - 48ms 16.46 ± 6.75 -16.37 ± 6.75 -15.0
R-peak - 50ms 18.45 ± 6.76 -18.37 ± 6.76 -17.0

Each R-onset detection method was able to achieve results for all 5086 cardiac cycles.
Regarding the MAE, using the Q-peak, to estimate the R-onset showed the least deviation
from the reference data. The MAE was 2.87ms with a SD of 7.51ms. This observation
seems logical, since the R-onset, which is coincident with the Q-peak in the presence of a
Q-wave, was labeled as the start point of PEP in this work. This was done, according to
the recommendation of Bernston et al. [Ber04]. Furthermore, the same Q-peak detection
algorithm used for automatic Q-peak detection was also used for pre-labeling, which reinforces
the high agreement. Looking at the residual plot of the Q-peak detection algorithm in
Figure 5.3, it is noticeable that most of the points are lying close to the zero line. This
indicates that the R-onset was correctly detected by the Q-peak detection algorithm. Hence
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no manual correction was necessary afterward. On the other hand, scattering in the negative
y-direction can also be observed. To obtain the reference data, a manual correction was
necessary in these cases since the Q-peaks occurred too early, which can be seen in the
negative mean error of −2.53ms and the observed trend in the residual plot.

The use of the R-peak to estimate the R-onset leads to the largest mean absolute error of
31.630ms. This is consistent with the results of the PEP analysis, where most of the PEP
computation pipelines using the R-peak for R-onset estimation showed poor performance.
The reason for this observation is a systematic overestimation of the R-onset location through
the R-peak approach. This can either be seen in the positive mean error of 31.63ms and in
the positive offset in the residual plot (Figure 5.3).

Investigations regarding the R-peak - offset method revealed, that subtracting 34ms
from the R-peak results in the best R-onset approximation. A MAE of 5.62ms and a SD
of 4.74ms were found. The 40ms published by van Lien et al. showed only the six best
performance [Lie13], as the MAE was 8.78ms and the SD was 6.43ms. However, the R-onset
and not the Q-onset was manually labeled in this work. Therefore, the accuracy of the proposed
40ms could not be examined.



5.2. PEP ESTIMATION 33

Figure 5.3: Residual plots of the most important Q-onset detection methods.

5.2.2 B-Point

Furthermore, the ability of the B-point detection algorithms to pinpoint the B-points with
minimal deviation from the manually labeled reference data was also investigated in this
work. As in the previous chapters, the MAE, ME, and Md were calculated with respect to the
reference data. Since a detailed analysis of all results is not possible, the relevant ones are
marked red in Table 5.6.

The best performance was achieved by the algorithm that fits a straight line between the
C-point and the point 150ms prior to the C-point, firstly. Afterward, the maximal vertical
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Table 5.6: Overview of the performance of the B-point detection methods with regard to the
manually labeled gold standard.

MAE ± SD ME ± SD Md
B-point detection Outlier correction

Multiple conditions — 23.51 ± 27.24 -21.82 ± 28.61 -10.0
Autoregression 21.16 ± 23.68 -18.10 ± 26.09 -8.0
Interpolation 20.65 ± 23.43 -17.05 ± 26.16 -8.0

Second derivative — 17.09 ± 16.89 -5.22 ± 23.45 -10.0
Autoregression 16.62 ± 16.78 -2.80 ± 23.45 -8.0
Interpolation 17.15 ± 17.36 -0.26 ± 24.40 -8.0

Straight line — 15.17 ± 15.70 9.66 ± 19.58 9.0
Autoregression 15.49 ± 14.84 12.88 ± 17.15 10.0
Interpolation 15.88 ± 15.25 13.80 ± 17.15 10.0

Third derivative — 23.83 ± 18.82 18.88 ± 23.78 16.0
Autoregression 25.45 ± 18.06 24.44 ± 19.40 19.0
Interpolation 26.26 ± 18.40 25.44 ± 19.53 20.0

distance between the line and the dZ/dt signal was calculated, to obtain the B-point location.
In this case a MAE of 15.17ms with a SD of 15.70ms could be achieved. With a MAE
of 16.62ms and an SD of 16.78ms the pipeline based on the second derivative and an
autoregressive model for outlier correction performed second best. This observation is also
reflected in the MAE of total PEP, where the pipeline combining the previously described
approach with the R-peak - 40 ms method achieved the lowest MAE.

Considering the performance of the algorithm, which was described as the best in related
work, the result is consistent with the observations of the analysis of the PEP duration. A MAE
of 21.16ms and an SD of 23.68ms indicate that this algorithm does not work as expected.
When looking at the residual plot of the algorithm based on multiple conditions without
outlier correction, which is illustrated in Figure 5.4, a clear tendency of the data in the negative
y-direction can be observed. This can also be seen in the ME of −18.10ms. As can be seen
in Figure 5.4, the autoregressive model does lead to correcting some outliers but does not
influence the mean value strongly enough in the positive y-direction. A possible explanation
for this observation is, that the algorithm based on multiple decision rules clipped the B-point
to the A-point when no significant features were detected in the search interval extracted
before. Since the A-point occurs earlier than the B-point, a systematic underestimation is
introduced in this case.
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The assumption, that the systematic overestimation of the R-onset was compensated by a
systematic overestimation of the B-point location by the algorithm combination, based on
the third derivative and an outlier correction with linear interpolation, is confirmed through
the results from this investigation. The positive ME of 25.44ms and the positive offset in the
residual plot (Figure 5.4) verify this assumption.

Regarding the outlier correction methods, a pattern can be observed. Whereas the outlier
correction led to a decrease in the MAE for the methods based on multiple decision rules and
the second derivative, the opposite was observed for the methods based on the straight line and
the third derivative. Looking at the ME, it can be observed that the outlier correction improved
the performance for the methods, that tend to underestimate the B-point location, while the
opposite is observable for the algorithms that tend to overestimate the B-point location. These
results are not consistent with the observations in the residual plots, as outliers were visibly
moved in the direction of the mean line. A possible explanation for this discrepancy is the way
in which outlier detection was carried out in this work. To be able to detect outliers, firstly,
the B-point time data had to be obtained [For18]. For this purpose, the distance to the C-point
was calculated. Accordingly, points that were far away from the C-point and thus appeared
too early, were detected as outliers. However, when the B-point detection algorithm led to a
systematic overestimation of the B-point location, the values that occurred early with regard
to the other detected points were also shifted backward by the outlier correction method.
This leads to a further shift of the data towards the C-point and consequently increases the
overestimation and the mean absolute error accordingly. Therefore, the described outlier
detection method, based on the distance to the C-point is only suitable for B-point detection
algorithms that do not introduce a systematic overestimation of the B-point location.
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Figure 5.4: Comaparision of the B-point detection algorithms without outlier correction (left
column) and with outlier correction (right column).



5.2. PEP ESTIMATION 37

5.2.3 Best Performing Algorithm

The best-performing algorithm subtracted 40ms from the R-peak to estimate the R-onset,
and used the reversal point of the second derivative with an autoregressive model for B-point
extraction. To verify whether a 40ms time interval produces the best possible PEP outcomes,
in combination with the B-point detection algorithm described above, the values of the time
interval were varied between 30ms and 50ms. However, the pipeline with a constant time
interval of 40ms, which was used before showed the lowest MAE with respect to the reference
data. An overview of the obtained results is provided in Table 5.7.

Table 5.7: Comparision of the performance of several fixed time intervals for PEP computation.
MAE ± SD ME ± SD Md

Q-onset

R-peak - 30ms 17.73 ± 16.65 -4.43 ± 23.92 -9.0
R-peak - 32ms 16.82 ± 17.18 -2.43 ± 23.92 -7.0
R-peak - 34ms 16.12 ± 17.67 -0.43 ± 23.92 -5.0
R-peak - 36ms 15.64 ± 18.16 1.57 ± 23.92 -3.0
R-peak - 38ms 15.36 ± 18.67 3.57 ± 23.92 -1.0
R-peak - 40ms 15.31 ± 19.20 5.57 ± 23.92 1.0
R-peak - 42ms 15.50 ± 19.72 7.57 ± 23.92 3.0
R-peak - 44ms 15.94 ± 20.24 9.57 ± 23.92 5.0
R-peak - 46ms 16.66 ± 20.69 11.57 ± 23.92 7.0
R-peak - 48ms 17.63 ± 21.10 13.57 ± 23.92 9.0
R-peak - 50ms 18.83 ± 21.45 15.57 ± 23.92 11.0

Since the best-performing PEP computation pipeline was found, further investigations
on whether the pipeline can detect changes in the individual’s stress level were carried out.
In alignment with the results obtained in the analysis of the reference PEP, a gap in mean
PEP duration between the f-TSST and the TSST could be noticed (Table 5.8). However, the
algorithm overestimates the actual PEP duration as can be seen in Figure 5.5.

Table 5.8: Overview of the MAE, ME, Md and mean PEP of the best-performing algorithm
grouped by conditions.

MAE ± SD ME ± SD Md PEPMean ± SD
Condition

f-TSST 15.51 ± 19.20 6.89 ± 23.71 1.0 99.49 ± 28.33
TSST 15.14 ± 19.19 4.40 ± 24.05 0.0 89.20 ± 29.14

The same can be observed on the phase level. Although there is a trend of overestimation
of the PEP duration, which can be seen in Figure 5.6, and in the positive ME in Table 5.9, the
relative changes between the phases are well reflected, which is also obtainable in Figure 5.6.
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Figure 5.5: Comparision of the best-performing algorithm with the reference PEP on condi-
tions level.

Table 5.9: Overview of the MAE, ME, Md and mean PEP of the best-performing algorithm
grouped by phases.

MAE ± SD ME ± SD Md PEP Mean ± SD
Condition Phase

f-TSST Prep 16.99 ± 20.34 7.22 ± 25.51 0.0 95.16 ± 27.59
Pause_1 13.73 ± 14.39 3.22 ± 19.64 1.0 81.49 ± 26.09
Talk 17.14 ± 21.20 9.50 ± 25.55 4.0 103.16 ± 27.96
Math 14.72 ± 18.68 6.60 ± 22.85 1.0 101.71 ± 28.60
Pause_5 9.67 ± 11.63 1.57 ± 15.06 -1.0 112.86 ± 21.14

TSST Prep 16.57 ± 20.89 4.24 ± 26.33 -2.0 86.01 ± 30.78
Pause_1 14.60 ± 18.52 1.42 ± 23.56 -3.0 78.85 ± 23.75
Talk 18.22 ± 22.53 8.21 ± 27.80 2.0 93.86 ± 33.65
Math 12.72 ± 15.24 3.22 ± 19.60 1.0 88.08 ± 23.77
Pause_5 8.43 ± 7.22 -1.52 ± 11.01 -2.0 97.66 ± 23.12
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Figure 5.6: Comparision of the best-performing algorithm with the reference PEP on phase
level.

The residual plot in Figure 5.7 provides information on the agreement between the
PEP results obtained with the automatic algorithm and the manually labeled reference data.
Consistent with the before mentioned findings, a slight overestimation of the PEP duration
through the algorithm can be seen in a positive offset. Furthermore, a straight line can be
identified, which seems to be the lower left border of the data. A possible explanation for
this is, that the B-point was set to the R-peak, when no local minimum was found, in order to
minimize the missing data for the outlier correction method. The residual plot in Figure 5.8,
which shows the agreement of the algorithm discussed before without outlier correction
confirms this assumption. No straight line can be seen in this plot, which is in line with the
implementation. In the previously described scenario, the B-points were not set to the R-peak,
but are considered to be undetected, when no outlier correction was performed afterward.
The stretched shape of the plot with high point density near the mean line shows that the
algorithm is able to reflect the reference data.

While absolute PEP levels are influenced by a variety of factors, PEP change may be more
expressive, since they reflect the response to psychosocial stress induction independently of
the baseline, which may vary between individual’s [Ber04]. The results revealed that the
algorithm is capable of reflecting these changes, which is quite promising.
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Figure 5.7: Residual plot of the manually labeled reference data and the best-performing
algorithm.

Figure 5.8: Residual plot of the manually labeled reference data and the best-performing
algorithm without outlier correction.
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5.3 General Discussions & Limitations

This bachelor thesis aimed to find out whether PEP is a valid marker for measuring changes
in the human stress level caused by psychosocial stress induction. For this purpose, a total
of 5086 cardiac cycles from all phases of the (f-)TSST, which was used for stress induction
were labeled. The results of this work have shown, that PEP is able to reflect changes in the
human stress level due to psychosocial stress induction, which is consistent with previous
findings in related work [New79; Kro17].

Another goal of this bachelor thesis was, to investigate commonly used automatic B-point
detection algorithms systematically. The necessity of such an investigation was shown by
Arbol et al. [Árb17]. According to this 72% of the authors did not specify, which automatic
B-point detection algorithm was used. Another 23% reported using Lozano’s polynomial
method, which did not provide reliable results in related work [Lie13; Árb17]. Therefore, a
total of 36 different PEP computation pipelines were compared in terms of their performance
with a manually labeled dataset, generated in this work. Apart from commonly used B-point
detection methods based on the calculation of the reversal point in the dZ2/dt2 signal [Deb93]
or the maximum in the dZ3/dt3 signal [Árb17], a method based on the vertical distance
between a straight line reaching from the point 150ms prior to the C-point to the C-point was
implemented in this work [Dro22]. To the best of my knowledge, the performance of this
algorithm has not yet been systematically investigated. In addition, an algorithm based on
different decision rules, and thresholds to detect the B-point was implemented. This approach
incorporates an outlier detection with subsequent correction, which was also applied to the
other B-point detection algorithms [For18]. As an alternative outlier correction method, linear
interpolation was performed, which is often used for data imputation [Lep17; Kul21]. The
investigations have shown, that the PEP computation pipeline, based on subtracting a constant
time interval of 40ms to estimate the R-onset, and using the reversal point of the second
derivative combined with an autoregressive model, to detect the B-point, showed superior
performance. To achieve the highest accuracy in the isolated computation of the start and
end points of PEP, the Q-peak detection algorithm and the method based on the straight line
without outlier correction should be used as they showed the least mean absolute error from
the reference data.
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Since pinpointing the Q-wave onset was not possible for every participant, due to the
lack of visible Q-waves, the R-onset had to be used as the start point of PEP, according to
the recommendation of Bernston et al.. This ensured reliable labeling and a between-subject
variance could be avoided [Ber04]. Even though relative changes in PEP may be of greater
importance [Ber04], PEP could not be labeled according to the physiological definition [Pil23].
This represents a limitation of this work when absolute values should be compared with the
results of other investigations.

Another limitation that could be an explanation for the poor performance of the algorithm,
published by Forouzanfar et al., is the lack of a detailed description of some steps of the
algorithm [For18]. Accordingly, assumptions had to be made in the implementation, which
may have influenced the performance of the algorithm. With an accurate description, these
inconsistencies could have been avoided and the results would have been more comparable.
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Conclusion & Outlook

In the context of this bachelor thesis, a reference dataset could be generated by manual
labeling. A major strength of the dataset is that the 5086 labeled cardiac cycles contain data
of all phases of the (f-)f-TSST. Thus, in addition to resting conditions, the data set also
contains phases in which the participants were exposed to psychosocial stress. Therefore,
this dataset can be used to validate the accuracy of PEP as a marker of psychosocial stress
through comparison with gold standard stress markers. Additionally, this dataset provides
the opportunity to systematically investigate the accuracy of commonly used event detection
algorithms.

The results of this work revealed, that the reference dataset is able to reflect changes in the
individual’s stress level. A mean PEP difference of 8.43% between the TSST and the f-TSST,
that served as a control condition, and the measured differences between the phases of the
(f-)TSST underline this finding.

Furthermore, commonly used event detection algorithms were implemented and their
accuracy was investigated with respect to the reference dataset. In total 36 event detection
pipelines were examined. The application of the outlier correction, proposed by Forouzanfar
et al. to all B-point detection algorithms has, to the best of my knowledge not been attempted
before [For18]. However, the results were quite promising. Visual inspection of the residual
plots showed, that both the autoregressive model and linear interpolation improved the results.
This trend was not reflected in the mean absolute error for each inspected algorithm, due to
inadequate outlier detection. Consequently, there is room for further improvements at this
point.

The algorithm, described as the best algorithm in related work, showed a surprisingly
poor performance in this work. A possible improvement of the algorithm could be achieved
by limiting the search interval for the B-point detection. Forouzanfar et al. suggest to use the
ECG signal to do so [For18]. The R-peak was used as the left border of the B-point search
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interval, in the algorithm based on the reversal point of the dZ2/dt2 signal in this work. This
algorithm, combined with an outlier correction by an autoregressive model, produced the
lowest MAE of 15.31ms. Therefore, it might be interesting to use the R-peak as the left
border of the previously described algorithm too. In addition, further investigations to verify
whether the combination of the algorithm based on the second derivative and the algorithm
proposed by Forouzanfar et al. modified with an adjusted search window leads to an overall
improvement, should be carried out in the future [For18].
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Appendix A

Acronyms

SNS sympathetic nervous system

PNS parasympathetic nervous system

DBP diastolic blood pressure

HPA Hypothalamus-pituitary-adrenal

HR heart rate

HRV heart rate variability

PEP Pre-Ejection Period

ECG electrocardiogram

ICG impedance cardiogram

dZ/dt first derivative of the cardiac impedance

dZ2/dt2 second derivative of the cardiac impedance

dZ3/dt3 third derivative of the cardiac impedance

Q-onset Q-wave onset

R-onset R-wave onset

ISTI Initial Systolic Time Interval

TSST Trier Social Stress Test

f-TSST control version of the Trier Social Stress Test
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FIR finite impulse response

DWT discrete wavelet transform

ARIMA Autoregressive Integrated Moving Average

AIC Akaike information criterion

ME mean error

MAE mean absolute error

Md median

SD standard deviation
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