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Abstract—Cardiac parameters are important indicators for
health assessment. Radar-based monitoring with microwave in-
terferometric sensors (MIS) is a promising alternative to conven-
tional measurement methods, as it enables completely contactless
cardiac function diagnostics. In this study, we evaluated the
effects of sensor positioning and movement on the accuracy
of radar-based heart rate measurements with MIS. For this
purpose, we recruited 29 participants which performed semi-
standardized movements, a reading task, and a standardized
laboratory stress test in a seated position. Furthermore, we
compared three different sensor positions (dorsal, upper pectoral,
and lower pectoral) to a gold standard 1-channel wearable ECG
sensor node. The dorsal positioning achieved the best results with
a mean error (ME) of 0.2 ± 5.4 bpm and a mean absolute error
(MAE) of 3.5 ± 4.1 bpm for no movement and also turned out to
be most robust against motion artifacts with an overall ME of
0.1 ± 14.1 bpm (MAE: 9.5 ± 10.4 bpm). No correlation was found
between movement intensity and measurement error. Instead,
movement type and direction were identified as primary impact
factors. This study provides a valuable contribution towards
the applicability of radar-based vital sign monitoring with MIS
in real-world scenarios. However, further research is needed to
sufficiently prevent and compensate for movement artifacts.

Index Terms—Heart rate monitoring, Medical radar, Remote
sensing, Vital parameter measurement

I. INTRODUCTION

Cardiovascular diseases are among the leading causes of
death worldwide [1]. Monitoring cardiac parameters such as
heart rate (HR) or heart rate variability (HRV) is an important
measure to detect cardiac malfunctions at an early stage.
Through long-term assessment, cardiac parameters can be
an important predictor of neurodegenerative, chronic, and
psychological conditions, such as Parkinson’s disease [2],
epilepsy [3], or depression [4]. However, the measurement
principles of all established measurement modalities, such as
electrocardiography (ECG), phonocardiography (PCG), and
photoplethysmography (PPG), require direct skin contact,
which limits the feasibility for long-term cardiac monitoring,
even if the measurement is performed using lightweight,
seemingly unobtrusive, wearable sensors [5], [6].

A novel and promising alternative to the existing methods is
the radar-based assessment of cardiac parameters [5], [7]–[11].
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The electromagnetic waves used in medical radar systems can
penetrate clothing and light materials whilst being reflected
at the body surface. Vibrations of the body surface modulate
the reflected signal, enabling non-contact measurements. This
makes radar-based vital sign monitoring applicable for numer-
ous long-term scenarios, such as home care [6], sleep anomaly
detection [7], or driver monitoring [12]. Several approaches
exist to extract cardiac parameters, such as HR(V), from
radar measurements. Various publications utilize Fast-Fourier
Transform to extract low-frequency pulse wave components
that correspond to the HR from the data [8]–[10]. To calculate
HRV, beat-to-beat intervals, which can be derived from heart
sounds, are required. For that purpose, Will et al. introduced a
microwave interferometric sensor (MIS), that can extract heart
sounds by measuring micro-displacements of the skin due to
cardiac activity [5]. This approach has previously been vali-
dated for individuals lying at rest [5], [11], [13], [14]. Thus, it
is well suited for hospital settings with bedridden patients [11],
[13]. However, for long-term monitoring, a static position
cannot be ensured. Hence, the severity of motion artifacts
must be minimized which can, e.g., be achieved by finding an
optimal sensor position where motion artifacts have a minimal
impact on the HR measurement. This is a crucial step towards
long-term monitoring with MIS in real-life scenarios. The first
comparison of different measurement positions was carried
out by Vinci et al. [7]. However, they only examined one
single participant. Shi et al. [15] published a dataset with
various positions of the radar sensor relative to the position
of the body tested on upright sitting or standing participants.
However, no comprehensive evaluation of the measurement
accuracy was conducted. Thus, a systematic assessment of the
optimal measurement position and the occurrence of motion
artifacts, during daily-life activities, such as speaking or upper
body movements, has not yet been performed.

Therefore, the main objective of our study is to determine
the most suitable sensor position for radar-based cardiac
monitoring, specifically heart rate, using MIS in an upright
posture and to quantify the influence of different movements
on the accuracy of the extracted parameters. To the best of
our knowledge, our study is the first to systematically validate
radar-based HR measurements for different positioning and
movement scenarios.

II. METHODS

A. Data Acquisition

Data were collected from n = 29 healthy participants aged
23.5 ± 6.9 years (16 male, 12 female, 1 other). All participants



Fig. 1. Upper Pectoral (UP), Lower Pec-
toral (LP) and Dorsal (D) sensor position.
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Fig. 2. Bland-Altman plot showing measurement differences between ECG and MIS during baseline phase,
evaluated for each sensor position.

provided written informed consent before the study. The
study was approved by the Ethics Committee of Friedrich-
Alexander-Universität Erlangen-Nürnberg (number 493 20B).

HR of the participants was measured using an MIS oper-
ating at 24 GHz as initially proposed by Michler et al. [11].
The In-Phase and Quadrature components of the radar signal
were recorded with a sampling rate of 2000 Hz. Simultane-
ously, each participant was equipped with a wearable device
(Portabiles GmbH, Erlangen, Germany) consisting of a 6-
axis inertial measurement unit (IMU) and an ECG unit that
acquires a 1-channel ECG from a chest strap according to
Lead I of Einthoven’s Triangle. An additional IMU sensor
was worn on the left wrist. Sensor data were logged onto the
internal sensor’s storage with a sampling rate of 256 Hz and
transmitted to a computer for further processing. The ECG
data served as ground truth for HR, whereas the IMU data
were used to quantify movement intensity.

The participants were seated on a chair with a mesh
backrest. To capture the different sensor positions, the radar
sensor was either placed behind the participant pointing at the
lower back (dorsal), in front of the participant aiming at the
lower chest region (lower pectoral), or in an elevated position
aiming at the upper chest region (upper pectoral), as shown
in Fig. 1. The distance between the participant’s skin and the
radar source was approximately 25 cm for each measurement
position. Each participant was randomly assigned to one of
the measurement positions (dorsal: n = 10, lower pectoral: n
= 10, upper pectoral: n = 9).

In our study protocol, different daily-life activities were sim-
ulated consisting of a baseline measurement (60 s), reading (to
simulate speech artifacts, 30 s), 8 different semi-standardized
movements (15–30 s), and a standardized laboratory stress
test to induce more HR variations (180 s). Movements were
performed moderately once and then again more intensely, dis-
tinguishing between head movements, rectangular arm move-
ments, medial-lateral torso movements (ML), and posterior-
anterior torso movements (PA). As stress test, we used the
social evaluative cold pressor test (SECPT) [16] to assess
the reliability of MIS measurements for biopsychological

research. The complete recording phase was video-captured
for control purposes. Two participants (measurement position
dorsal) were excluded from further analysis due to corrupted
ECG or MIS data.

B. Data Processing

1) ECG Data: From the acquired ECG data, we extracted
RR intervals after filtering and applying a QRS detection
algorithm provided by the Neurokit2 library [17]. Artifacts in
RR intervals were reduced as in previous work [18].

2) MIS Data: The radar sensor derives cardiac parameters
from micro-displacements of the skin surface due to heart
contractions. A displacement of the skin translates into a
relative phase shift between transmit and receive signal [13].
The displacement is calculated by arctangent demodulation of
complex baseband data after ellipse fitting, as described by
Will et al. [5].

The measurement quality was assessed using an automatic
signal quality index (SQI) as proposed by Shi et al. [19]. To
segment heartbeats from the resulting displacement data, a
hidden semi-Markov model (HSMM) detecting the first heart
sound of every heartbeat [20] was applied to MIS data [11].
Based on the inter-beat-intervals, the instantaneous HR was
calculated. Finally, HR outliers from radar data were removed
analogously to the ECG processing pipeline.

3) IMU Data: To objectively quantify movement intensity,
the power of the accelerometer signal was computed as
mean signal energy over each study phase after removing the
gravity component. For the upper body and head movements,
the chest-mounted IMU sensor was utilized for the power
calculation, whereas the wrist-mounted IMU sensor was used
for arm movements.

C. Evaluation

For a direct comparison between ECG- and MIS-derived
HR (HRECG and HRMIS), both signals were synchronized
via the internal clocks of the measurement devices. Next,
HRMIS, HRECG, and the MIS data SQI were resampled at
1 Hz and cut into the study part intervals. Afterwards, we
computed the sample-wise (absolute) error between both HR
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Fig. 3. Mean absolute errors (MAE) of HRMIS measurements per participant grouped by MIS position
and movement phase.
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Fig. 4. MAE per phase depending on the SQI.
The frequency of occurrence of different SQIs and
MAE, respectively, is depicted as a histogram on
the corresponding axis.

measurements and computed the mean error (ME) as well
as the mean absolute error (MAE) by error-averaging over
each phase, respectively. All processing steps were performed
using BioPsyKit, our open-source package for the analysis of
biopsychological data [21].

III. RESULTS

A. Position Evaluation

Fig. 2 shows the measurement differences between ECG
and MIS during the baseline phase for each evaluated sen-
sor position. For dorsal positioning, a bias of 0.2 ± 5.4 bpm
was observed, 95% CI [−10.26 bpm, 10.27 bpm]. The lower
pectoral MIS position yielded a bias of −0.8 ± 9.4 bpm. The
errors are distributed broader than for the dorsal position, 95%
CI [−19.65 bpm, 17.95 bpm]. For the upper pectoral position,
a bias of 2.6 ± 13.4 bpm between HRMIS and ground truth
was observed, 95% CI [−23.67 bpm, 28.81 bpm]. Considering
data over all movement phases, dorsal yields the lowest MAE
(9.5 ± 10.4 bpm) and ME (0.1 ± 14.1 bpm), followed by lower
pectoral (MAE of 11.9 ± 12.1 bpm, ME of −1.3 ± 17.0 bpm)
and upper pectoral (MAE of 14.2 ± 12.6 bpm, ME of
2.0 ± 18.9 bpm).

The MAE in relation to the SQI for each position is shown
in Fig. 4. An SQI > 0 was observed 70.54% of the time
for the dorsal position, whereas the SQI for lower pectoral
and upper pectoral was above zero only 10.95% and 14.14%
of the time, respectively. Mean SQIs over all phases were at
1.49 for dorsal, 0.21 for lower pectoral, and 0.23 for upper
pectoral. Spearman’s correlation coefficient (CC) yielded a
tendency towards negative correlation between SQI and MAE,
r = −0.35, p < 0.001, that increases when only measurements
with SQI > 0 are considered, r = −0.51, p < 0.001.

B. Impact of Movements

The MAE over all participants is shown in Fig. 3 for
each sensor position and phase, respectively. The baseline

phase yielded the lowest MAE for all measurement positions.
The dorsal position yielded the lowest MAE for the phases
arm and head movement, moderate ML torso movement,
and SECPT, whereas lower pectoral showed the best results
for reading, intense ML torso movement, and moderate PA
torso movement. Upper pectoral showed the highest MAE
values for all movement phases. Furthermore, no meaningful
correlations were found between the MAE and the mean
accelerometer power for each position and phase.

IV. DISCUSSION

As many application scenarios of radar-based cardiac mon-
itoring involve moving individuals, it is important to assess
the performance in dynamic scenarios. Therefore, the main
objective of our study was to quantify the impact of different
movement types and intensities, as well as sensor positions on
the HR measurement accuracy.

Our results show that the dorsal sensor position proved
to be the most robust against all minor movement artifacts.
All movements induced errors in HR estimation, however, the
intensity of the movement did not determine the magnitude of
the error, as no correlation between movement intensity and
MAE was found. The dorsal sensor position seemed to have
weaknesses especially during PA movements which could be
due to the movement being performed along the same axis as
the skin displacement caused by the heart sounds.

Similarly to our study, Vinci et al. [7] also found a dorsal
sensor positioning to yield the most robust signal for HR
detection but stated excellent performance for pectoral posi-
tioning as well. However, due to only one participant, their
results are hardly generalizable. Shi et al. also recorded cardiac
parameters in the upright or seated position with a similarly
constructed MIS [15]. They reported a bias of −0.03 bpm
for pectoral baseline measurements, 95% CI [−10.2 bpm,
10.1 bpm], which is in a comparable range to our dorsal
baseline results. It has to be noted that Shi et al. used an ECG



device that was hardware-synchronized with an MIS device,
and the sensor orientation was individually adjusted to the
anatomy of every individual [15], which might be responsible
for the more precise pectoral measurements. In comparison,
we synchronized radar and reference ECG signal during post-
processing, which yields less precise results than hardware
synchronization and, thus, requires improvement in the future.

Another source of error is the HSMM, which has been
trained on data that were free of motion artifacts and, thus,
might yield several seconds of incorrect measurements as soon
as one heart sound is not detected. This problem could be
approached by using an LSTM network instead of the HSMM,
as previously introduced by Shi et al. [14].

Major parts of our measurements were rated with an SQI
of zero, although MAE was not necessarily above average
(see Fig. 4). These low SQI scores also originate from the
fact, that the ensemble classifier for SQI determination was
trained on motion artifact-free data from lying individuals [19].
The SQI determination classifier would need to be retrained
on real-world data to accurately identify signal parts with an
appropriate quality for physiological evaluations.

Finally, it needs to be mentioned that the semi-standardized
periodic movement scenarios performed in our study, do
not accurately represent real-life movements. The movements
were chosen to increase inter-participant comparability and
to systematically reveal weaknesses of MIS measurements.
Whereas the MIS is currently not suitable for instantaneous
HR and HRV measurements because of the relatively high
MAE, the low MEs suggest good applicability for long-term
monitoring of average HR. Based on the findings of this
study, algorithms for heart sound extraction from MIS can
be improved and applied to real-life scenarios in future work.

V. CONCLUSION AND OUTLOOK

In this publication, we assessed the feasibility of contactless,
radar-based cardiac parameter monitoring with MIS. One aim
was to find a measurement position that is as robust as possi-
ble against motion artifacts and does not require individual
position adjustments by experts. Our findings suggest that
a dorsal placement of the radar sensor meets these criteria
best. Furthermore, the impact of different movements on the
measurement accuracy was analyzed. Our results confirm that
HR measurements using MIS can accurately be estimated by
averaging over a time period. However, they are susceptible
to large-body movements and speaking, thus limiting their
validity for instantaneous HR or HRV acquisition. Future
studies should investigate compensation for these artifacts
and thus improve the robustness of the sensor outputs. With
the recorded data, we provide a solid basis for further im-
provement of HR extraction algorithms and thus make radar-
based vital sign monitoring using MIS applicable for long-term
monitoring in daily-life situations.
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