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Übersicht

Das Erfassen des Wesens der menschlichen Bewegung eröffnet Möglichkeiten von der Mensch-
Computer-Interaktion bis zur medizinischen Diagnose. Human Pose Estimation (HPE) als Aufgabe
transformiert Daten wie RGB- oder Tiefenbilder in eine Posenbeschreibung um, die in der Regel
eine Reihe von Schlüsselpunkten umfasst, die ein menschliches Skelett bilden. HPE wird in der
Regel mit RGB-Kameras durchgeführt, die ein erhebliches Datenschutzproblem darstellen und
gleichzeitig zu Ungenauigkeiten in der Tiefe führen und anfällig für Änderungen der Lichtverhält-
nisse sind. Andererseits liefern Radare im Millimeterwellenbereich genaue Informationen über
über Standorte und Zielgeschwindigkeiten, was sie zu einer natürlichen Wahl für HPE-Aufgaben
macht.

Umfassende HPE-Datensätze, die Radar-Punktwolken enthalten, sind selten, und die meisten
von ihnen enthalten nur wenige Teilnehmer oder weisen Ungenauigkeiten in den Berechnungen der
Skelettpunkte auf. Um einen Beitrag zur zukünftigen Forschung auf diesem Gebiet zu leisten, stellt
diese Arbeit den mmRadPose-Datensatz für HPE und ein Datenerfassungsprotokoll zu dessen
Erweiterung vor. Der Datensatz umfasst mehr als 200k Tupel von 7-dimensionalen radargenerierten
Punktwolken und 26-Schlüsselpunkt-Skelette. Zwölf Teilnehmer nahmen an der Studie teil und
führten elf Bewegungen aus in drei verschiedenen Winkeln in Bezug auf das Radar (dem Radar
zugewandt, 45◦ gegen den Uhrzeigersinn gedreht und 90◦ gegen den Uhrzeigersinn gedreht). Der
Datensatz enthält auch sequenzielle Daten.

Ergänzend werden zwei Deep Learning (DL)-Architekturen vorgeschlagen, die auf Pointnet
[Qi17a] basieren: PointnetPose, ein Modell zur Verarbeitung von Einzelbildern HPE, und Point-
netPoseRNN, das in der Lage ist, mmWave-Radar-Punktwolken-Sequenzen zu verarbeiten. Beide
Modelle können Punktwolken ohne vorherige Transformation verarbeiten und sind auf die Verar-
beitung von Punktwolken mit Punkten beliebiger Anzahl von Dimensionen zugeschnitten. Beide
Modelle wurden an Daten aus dem mmRadPose-Datensatz mit Aufnahmen von der Teilnehmer mit
Blick auf das Radar. Das PointnetPose Modell zeigte einen Mean Per Joint Position Error (MPJPE)
von 13.62 cm, während PointnetPoseRNN einen MPJPE von 11.96 cm auf Sequenzen der Länge
10 erreicht. Schließlich wurde ein PointnetPoseRNN-Modell für Sequenzen der Länge 10 auf dem
gesamten Datensatz trainiert, trainiert, wobei die Teilnehmer in alle drei Richtungen blickten und
ein MPJPE von 9.94 cm erreichten.
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Abstract

Capturing the essence of human motion opens up possibilities from human-computer interac-
tion to medical diagnosis. HPE as a task, transforms data such as RGB or depth images into a pose
description, typically comprising a set of keypoints that form a human skeleton. HPE is typically
conducted via RGB cameras, which pose a significant privacy issue while also introducing depth
inaccuracies and vulnerability to changes in lighting conditions. On the other hand, radars in
millimeter-wave range provide accurate information about locations and target velocities, making
them a natural choice for HPE tasks.

Comprehensive HPE datasets containing radar pointclouds are rare, with most of them contain-
ing few participants or presenting inaccuracies in the skeleton keypoint calculations. To contribute
to future research in the field, this thesis introduces the mmRadPose dataset for HPE and a data
recording protocol to extend it. The dataset comprises more than 200k tuples of 7-dimensional
radar generated pointclouds and 26-keypoint skeletons. Twelve participants took part in the study
performing eleven movements facing three different angles with respect to the radar (facing the
radar, rotated 45◦ counterclockwise, and rotated 90◦ counterclockwise). The dataset also features
sequential data.

Complementary, two DL architectures based on Pointnet [Qi17a] are proposed: PointnetPose,
a single frame processing HPE model, and PointnetPoseRNN, capable of process mmWave radar
pointcloud sequences. Both models can process pointclouds without any previous transformation
and are tailored to handle point clouds with points of any number of dimensions. Both models were
tested on data from the mmRadPose dataset with recordings of the participants facing the radar.
The PointnetPose model showed an MPJPE of 13.62 cm, while PointnetPoseRNN achieves an
MPJPE of 11.96 cm on sequences of length 10. Finally, a PointnetPoseRNN model on sequences
of length 10 was trained on the entire dataset, with participants facing in all three directions,
achieving an MPJPE of 9.94 cm.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Open-Source Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Human Pose Estimation Methods for Radar Pointclouds . . . . . . . . . 4
1.2.3 Machine Learning Models for Pointclouds . . . . . . . . . . . . . . . . . 4

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals 7
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Pointnet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Frequency Modulated Continuous Wave Radar . . . . . . . . . . . . . . 14
2.2.2 Constant False Alarm Rate (CFAR) . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Processing Sparse Radar Pointcloud . . . . . . . . . . . . . . . . . . . . 15

3 Data Acquisition 17
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Optical Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Study Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Data recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



x CONTENTS

3.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 OMC Data Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 mmWave Radar Data Post-processing . . . . . . . . . . . . . . . . . . . 22

3.4 mmRadPose Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Methods 25
4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 PointnetPose Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 PointnetPoseRNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Percentage of Correct Keypoints (PCK) . . . . . . . . . . . . . . . . . . 28
4.3.2 Mean Absolute Error (MAE) . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Results 31
5.1 PointnetPose validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Evaluation of PointnetPoseRNN on mmRadPose . . . . . . . . . . . . . . . . . 34

5.3.1 Evaluation of PointnetPoseRNN on the action group 0 . . . . . . . . . . 34
5.3.2 Evaluation of PointnetPoseRNN on the action group 1 . . . . . . . . . . 39
5.3.3 Evaluation of PointnetPoseRNN on the action group 2 . . . . . . . . . . 43
5.3.4 Evaluation of PointnetPoseRNN on all the action groups (0, 1, 2) . . . . . 47

6 Discussion 55
6.1 PointnetPose validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Evaluation of PointnetPoseRNN on mmRadPose . . . . . . . . . . . . . . . . . 56

6.3.1 Evaluation of PointnetPoseRNN on the action group 0 . . . . . . . . . . 56
6.3.2 Evaluation of PointnetPoseRNN on the action group 1 . . . . . . . . . . 57
6.3.3 Evaluation of PointnetPoseRNN on the action group 2 . . . . . . . . . . 57
6.3.4 Evaluation of PointnetPoseRNN on all the action groups (0, 1, 2) . . . . . 57

7 Summary 61

8 Outlook 63



CONTENTS xi

List of Figures 65

List of Tables 69

Bibliography 71
.1 Study protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
.2 Apendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Acronyms 93





Chapter 1

Introduction

1.1 Motivation

Machine Learning (ML) applications are highly integrated in everyday life. Recommendations
systems, automatic text translations, or performing an internet search from an image are some
applications all of us have used. One of the topics that has caught the attention of researchers is
the analysis of human movement. Automated human movement analysis has a profound impact in
sports [Lyu24; Che23; Fu23], health care [Zhu24b; Xu22; Mar22], surveillance [Che18], home
automation, automotive industry [Gei16], audiovisual content generation, etc. HPE [Ben21] serves
as a framework for analyzing human movement and helps with a number of tasks such as human
computer interaction, gesture recognition and activity recognition [Liu23].

HPE tasks attempt to infer the position of the human body in 2D [Uhl22; Cao19] or 3D
[Zho24] space. The human pose can be represented simply as a skeleton by detecting specific
body keypoints like head, toes, elbows, etc.

Currently, most of HPE applications derive their data from RGB cameras [Cao19; Luo22;
Zho24; Den24]. However, the audiovisual sensor technology poses a strong intrusion into people’s
privacy. In this respect, Millimeter wave (mmWave) radar sensors offer a decisive advantage since
the data does not have any immediately recognizable personal reference [Has24]. Unlike cameras,
radar sensors maintain robustness against variations in light conditions. Consequently, for both
private and public buildings, radar sensors present numerous appealing opportunities [Zhu24a]
for performing tasks which involve human behavior, even with high data protection requirements.
mmWave radars have proven to be useful for people detection, pose estimation [Sen20; Lee22],
gesture recognition [Yan23a] and even to measure vital parameters [Mer19].

mmWave radars operate on a frequency between 30 and 300 GHz, which results in having a
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wavelength in the millimeter range. This sensitivity allows them to detect movements on the scale
of fractions of a millimeter. Their precision, power efficiency, along with their affordable price
and compact size have made them a viable option for diverse applications [Koc22; Mow22].

The goal of this thesis is to conduct HPE utilizing mmWave radar point clouds. These point
clouds include not only the spatial 3D coordinates but also supplementary attributes provided
by the radar. The HPE problem is classically formulated as a regression problem [Tos14]. The
input data can be images, videos, pointclouds or radar data, while the ground truth is some form
of skeleton representation formed by body keypoints. The estimation of human poses is enabled
by determining the positions of keypoints of the human body such as the head, shoulders, arms,
legs and joints. HPE constitute is a challenging task, it is sensitive to data with occluded body
parts, making it specially hard for the algorithm to estimate the location of the keypoints.

In this work, a 60GHz frequency modulated continuous wave (FMCW) multiple-input multiple-
output (MIMO) [Ins22] radar of the mmWave family produced by Texas Instruments will be used
in conjunction with an Optitrack Optical Motion Capture (OMC) system to record participants
performing rehabilitation movements and functional activities. The recorded data will then be
used to train at least two variations of the PointNet [Qi17a] model: one for single frame processing
and another for multi frame processing.

1.2 State of the Art

In the current section, the state of the art of HPE with mmWave radars is described. This exploration
starts with a review of published datasets for HPE containing mmWave data. Then different
approaches for HPE with mmWave radar pointclouds are discussed. Finally, different classification
and regression models designed specifically for point clouds are examined, considering their
potential applicability to HPE tasks.

1.2.1 Open-Source Datasets

Since mmWave radars are becoming popular for HPE applications, datasets containing raw radar
data or radar pointclouds can be found in the literature. Most of them were recorded in laboratory
conditions. They contain a set of movements, usually well-defined rehabilitation movements,
where the participants are facing the radar sensors.

The University of Wisconsin-Madison performed a series of HPE studies releasing the mmWave-
based Assistive Rehabilitation System for Smart Healthcare (Mars) [An21]. The study was per-
formed with four participants. With the purpose of performing HPE, they created a dataset using a
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Texas Instruments IWR1443 Boost mmWave radar to record radar pointclouds at 10Hz frequency.
The 19 reference joints for the human poses were obtained from a Microsoft Kinect V2 sensor at
a frequency of 30Hz. They recorded 10 movements with the participants positioned facing the
radar at a distance of 2m. In addition, they also provide a Convolutional Neural Network (CNN)
to predict the joints 3D locations of the person’s keypoints.

This paper was followed by the mRI [An22a] paper, also developed by the same group from the
University of Wisconsin-Madison. The mRI paper introduced a new dataset containing recordings
of 20 participants between the ages of 20 to 28. The participants performed 10 rehabilitation
movements in addition to relaxing and stretching free forms and walking. Each recording took
approximately one minute. The mRI dataset consists of 5D pointclouds recorded at a frequency of
10Hz with an IWR1443 Boost mmWave radar. These pointclouds include the spacial coordinates
along with the intensity of the signal and Doppler velocity. RGB and depth frames from two
Microsoft Kinect V2 sensors recorded at 30Hz frequency, and inertial signals from six wearable
Inertial Measurement Unit (IMU) Wit-motion BWT901CL IMU sensors attached to the wrists,
knees, head and pelvis of the participant at 50Hz. The participants performed the movements at
2.4m from the radar.

The MM-Fi dataset [Yan23b] comprises RGB data, depth frames, Light Detection and Ranging
(Lidar) pointclouds, mmWave radar pointclouds and channel state information (CSI) from WiFi.
The dataset is annotated with 2D and 3D human keypoints and 27 action categories. The sensors
used were an IWR6843 60-64GHz mmWave radar with a frame rate of 10Hz, the Ouster OS1
32-line LiDAR, and a pair of TP-Link N750 WiFi access points and a Kinect. The participants
were recorded at 3m from the sensors. Since radar pointclouds are sparse and some frames do not
contain points, they aggregated the points from consecutive 0.5 seconds to increase the number
of points per frame up to 128. The study encompassed 13 daily activities and 12 rehabilitation
exercises. They obtained 2D keypoints from the two infrared cameras and used the cameras
intrinsic and extrinsic parameters to triangulate the 3D keypoints.

Although a few datasets containing radar data for pose estimation were found in the literature,
obtaining the data for mRI proved to be challenging since it was not available on Github. Addi-
tionally, the movements of the skeleton target data from MM-Fi were not as fluid as expected,
exhibiting some shaking, likely attributable to estimation errors derived from the RGB data. The
Mars dataset, although smaller than the other two, provided easy access to the data and showed
quality in both radar pointclouds and 3D keypoints.

https://www.ti.com/tool/IWR1443BOOST
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1.2.2 Human Pose Estimation Methods for Radar Pointclouds

mmWave radars represent an interesting source of information for HPE related tasks. Conse-
quently, mmWave generated pointclouds provide a comprehensive representation of the scene and
the objects in it. They are able to accurately calculate distances and velocities, which are impor-
tant components of human movements. In conjunction with ML methods, mmWave generated
pointclouds have proven to be useful to estimate human poses. This section intends to explore the
different methodologies followed by researchers to process mmWave radar pointclouds for HPE.

Since their introduction, CNN [Lec89] models have taken a main role in solving image pro-
cessing task. 2D convolutional layers are specifically designed to process matrix-shaped data.
Therefore, they are an accurate choice when it comes to processing data with a strong spatial corre-
lation, like images. Radar pointclouds are not matrix shaped, instead they represent an unordered
set of sparse independent points. A CNN cannot be used, unless some prior transformation is
performed to convert the pointclouds into a grid-like format.

The University of Wisconsin-Madison in the Mars paper, proposed to order the points within
the pointcloud according to their x, y and z values to later rearrange the points into an 8× 8 matrix
of points. With this setup, each point would be similar to a pixel in an image, facilitating the use of
a CNN. The network architecture consisted of two 2D convolutional layers with dropouts followed
by two fully connected layers with batch normalization. This rather simple architecture achieved
an average Mean Absolute Error (MAE) of 5.87 cm for the 3D keypoints estimation.

Another approach was proposed by mmPose [Sen20]. They projected the 3D points from an
mmWave pointcloud into the orthogonal planes xy and xz. Two images were obtained by dividing
the planes in 16 × 16 grids and annotating each grid with features extracted from the points in
them. Each of the images is fed to a CNN module with three convolutional layers, 20% dropout
and rectified linear unit (ReLU) activations. The CNNs outputs are concatenated to form a forked
architecture that ends in three layers Multilayer Perceptron (MLP). The output of the network are
the (x, y, z) coordinates of each joint as a flattened vector.

1.2.3 Machine Learning Models for Pointclouds

There are many creative architectures focused on pointclouds. However, not all of them have been
tested on radar pointclouds. In this section, methods originally developed for general point clouds
are introduced, providing insights into their potential applicability to radar point cloud data.

VoxelNet [Zho17] is based on the idea of dividing the 3D space into equally spaced 3D voxels.
A voxel can be understood as the 3D counterpart of a 2D pixel. It represents a small volumetric
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portion of the space. In a 3D space, a voxel is a regular grid annotated with a value and voxelization
is the process of dividing a portion of the 3D space into these regular grids assigning them values
according to a function. In the case of pointclouds, voxelization is done by assigning a value to
the voxels that have the presence of an element of the pointcloud, similar to the idea of mmPose
[Sen20]. Then it annotates each voxel with features extracted with an MLP from the points within
the voxel. Finally, 3D convolutions are applied to the voxels for object detection.

PointGNN [Shi20] is a method designed for Lidar pointclouds. They proposed to use a graph
representation of a pointcloud and designed a Graph Neural Network (GNN) to detect objects.
The graph edges connect a point to its neighbors within a fixed radius. However, since Lidar
pointclouds usually have tens of thousand of points, this method includes a downsampling phase to
reduce the complexity of the graph. The pipeline consists of creating voxels of dense neighborhood
of points and extracting their features using an MLP to downsample the number of vertexes of the
graph. The graph is constructed with the downsampled pointcloud. After the graph is constructed,
it is processed with a GNN followed by a MLP. It outputs the category and bounding boxes of the
objects to which each vertex belongs. It is also able to detect multiple objects in a single shot.

As explained before, there are quite many techniques that aim to extract structural information
from pointcloud data. Usually these approaches are either too expensive as using 3D convolutions
or need some kind of preprocessing or transformation of the input data like voxelization or
rendering. PointNet [Qi17a] is a model designed to perform inference directly on point clouds,
leveraging efficiency without the need for preprocessing or input transformation. The model input
is represented as a batch containing a set of point’s coordinates represented as x, y, z for the 3D
coordinates, however, additional features can be added to expand the information provided by the
points.

They proposed two main architectures; one for classification and the second for object seg-
mentation. The classification model was trained on the ModelNet40 [Wu15] shape classification
benchmark. Although Pointnet was not initially proposed for radar pointclouds, it should be
possible to apply the principles under its design to HPE with mmWave radar pointclouds. One of
the goals of this thesis is to prove this assumption.

1.3 Research Questions

The appearance of mmWave radars and the possibility to use them indoors for home applications
opens new opportunities for HPE applications. mmWave radars provide a vast amount of informa-
tion about the location and velocities of targets. The scope of this work includes performing HPE
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on 3D pointclouds obtained from radar data. This work poses the following research questions:

• Can HPE models based on Pointnet architecture accurately estimate human poses from
radar pointclouds?

• How do HPE models based on Pointnet architecture perform compared with other approaches
described in the literature?

• Does a multiple-frame approach offer significant performance advantages over a single-frame
approach?

• Can Pointnet based models be robust against noise and body occlusions?

1.4 Objectives

From the previously mentioned questions the following objectives are derived:

1. Examine the current state of HPE models as documented in existing literature.

2. Develop a dataset for HPE comprising mmWave radar data and human keypoint annotations
obtained from an OMC system.

3. Develop and evaluate HPE models based on Pointnet architecture.

4. Compare the outcomes generated by the models designed during this thesis and those
reported in existing literature.

5. Assess the performance differences of employing a multiple-frame approach compared to a
single-frame approach.

6. Evaluate the robustness of the models designed during this thesis to body occlusions.



Chapter 2

Fundamentals

In this chapter, important topics for the understanding of this thesis will be introduced.

2.1 Machine Learning

“Can Machines think?” Alan Turing posed this question in 1950 [TUR50]. At the time only a few
could think about the possibility of a sentient machine, and even today, the answer to that question
remains unknown. There are as many accepted definitions of Artificial Intelligence (AI), and the
reason is, that there is not an infallible way to define intelligence.

John Haugeland defined AI as:

“The exciting new effort to make computers think …machines with minds, in the full
and literal sense.” [Hau85]

And Raymond Kurzweil defined it as:

“The art of creating machines that perform functions that require intelligence when
performed by people.” [Kur90]

Both definitions are correct. The first one corresponding to strong AI, which pursuits to create
machines whose intelligence is equal to humans and possess consciousness. The second definition
corresponds to weak or narrow AI [Sea80]. Weak AI focuses on training machines to perform
human tasks with a high success rate. Most of today’s AI is powered by weak AI. In practice,
AI is a branch of computer science that equips machines, typically computers, to imitate human
behavior.

There are many kinds of systems that fall in the category of AI. Such as rule-based and expert
systems [Jab15], search algorithms, genetic algorithms [Rus16] and ML algorithms. ML is a
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subset of AI methods. ML methods distinguish themselves from other AI methods by identifying
patterns on data and improve their decision-making without relying on predetermined rules.

ML problems can be classified in two groups: classification and regression problems. Re-
gression problems are solved by predicting continuous values based on the input. Examples of
regression problems are predicting stock prices using historical data, estimating house prices
base on location and building characteristics [Ann16], forecasting the amount of traffic accidents
based on weather conditions. On the other hand, classification problems seek to fit the input into
one or more classes. This is typically done following a probabilistic approach and selecting the
classes that present higher probability for a given input. Examples of classification problems are
determining whether a passenger from the Titanic survived based on their name and physical
characteristics [Cuk12], or image classification based on their content [Rus14].

2.1.1 Deep Neural Networks

Deep Neural Networks (DNNs) are arguably the most used ML methods nowadays [LeC15].
DNNs are versatile and extensible, making possible to adapt them to almost any problem. They
are extensively used computer vision [Sim15; He15], natural language processing [Tou23] and
reinforcement learning [Mni13].

Figure 2.1: Schematic diagram of the relationship between Artificial Intelligence, Machine Learning, Deep
Learning

DNNs are based on the Rosenblatt’s perceptron [Ros57; Ros58]. The perceptron is inspired
on the physical connections of the nervous system. In the nervous system, synaptic connections
between neurons are strengthened or weakened based on the frequency and timing of input signals,
a process known as synaptic plasticity. This process facilitates changes in the neural structure that
corresponds to the learning process. DNNs use the same principle to activate artificial neurons or
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perceptrons and propagate these activations to other artificial neurons

y =
d−1∑
i=0

wixi + wd. (2.1)

Equation 2.1 calculates the output y of an artificial neuron or perceptron that receives d inputs
x0, x1 ... xd−1. The perceptron has d weights parameters w0, w1 ... wd−1 that are multiplied by
the inputs influencing the output of the neuron. Additionally, the neuron has a bias parameter wd,
which is added to the product to shift the output.

DNNs are commonly structured as a stack of layers composed by neurons, where each layer
transforms the information coming from the previous layer. This kind of DNN is called feedforward
network. The propagation of information in feedforward DNNs is made forward, in contrast with
the nervous system, where the neurons are connected in all directions.

Fully Connected Layer

Typically, perceptrons are disposed parallelly to form a fully connected layer [Goo16]. This,
propitiates that multiple neuron outputs can be calculated from the same set of inputs. Consequently,
multiple layers can be stacked together and processing the input of the previous layer and feeding
their outputs to the next layer.

Since a fully connected layer, is formed by a set of parallel neurons, the output y ∈ Rk of a
layer with k neurons, can be expressed in terms of matrices.

y = W>x (2.2)

The input vector x ∈ Rd+1 is composed by x0, x1 ... xd−1 and extended with the value 1 for
convenient handling of the bias. The weights’ matrix W ∈ Rk×d+1 is formed by rows, each row
contains the weights of a neuron and the bias.

Convolutional Layer

Convolutional layers are specially tailored for grid like data, like images [LeC89]. The main
idea is to implement a convolution operation involving the input of the layer I ∈ RW×H and a
two-dimensional kernel K ∈ RM×N [Goo16]. The output S(i, j) is computed:

S(i, j) = (I ∗K)(i, j) =
M∑

m=0

N∑
n=0

I(i−m, j − n)K(m,n). (2.3)
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When it comes to image processing, convolutional layers are able to capture structures in a
pixel’s neighborhood due to their two-dimensional kernels. This poses a decisive advantage over
fully connected layers. Additionally, the parameters of a convolutional layer are limited to those
of the kernel independently of the size of the input. A DNN composed by convolutional layer is
called CNN.

Pooling Layers

Pooling layers output the result of a symmetric operation within the rectangular neighborhood of
a pixel. There are different kinds of pooling layers, for example, the max pooling layer [Zho88]
applies the maximum operation while the average pooling calculates the mean. Pooling helps to
achieve a representation that is approximately invariant to small translations of the input [Goo16].
This feature allows more flexibility enabling finding the same feature even when the pooling region
is slightly shifted.

Activation Functions

So far, fully connected layers and convolutional layers operate by performing linear operations.
Linear operations are insufficient for solving complex problems [Hor91; Cyb89]. Although
pooling layers introduce non-linearity to some degree, there are more effective ways. Activation
functions apply a non-linear transformation to the input allowing it to learn complex patterns and
relationships within the data.

The sigmoid function is commonly used as a DNN activation function. It offers a smooth
non-linearization while been bounded between 1 and −1

Sigmoid(x) =
1

1 + e−x
. (2.4)

The ReLU [Fuk69] function returns the input value if it is positive, zero otherwise. It is
extensively used due to its computational efficiency

ReLu(x) =

x, if x > 0

0, otherwise.
(2.5)

However, dying ReLUs is a phenomenon that occurs when a large gradient updates a weight
such that it will not give a positive value for any input. If this happens, the ReLU will never activate
and the gradients will never update the weight again. Leaky ReLU [Maa13] is a variant of ReLU
that attacks this problem. Leaky ReLUs “leaks” a portion of the activation if it is negative
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LeakyReLu(x) =

x, if x > 0

a · x, otherwise,
(2.6)

where a is the efficient of leakage and usually a small decimal number. The LeakyReLU
activation function was utilized for the models in this thesis.

There are other variants like exponential linear unit (ELU) [Cle16], scaled exponential linear
unit (SELU) [Kla17] and Gaussian-error linear unit (GELU).

Loss Functions

Loss functions are used to measure how the outputs or predictions of a DNN ŷ deviate from the
target values or expected outputs y. Since loss functions take the output of a model as their input,
they are, in principle, functions over the model parameters, meaning that changing the model
parameters will result in an increase or decrease of the loss or error.

One of the most used loss functions for regression problems is the Mean Squared Error (MSE)

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2. (2.7)

The MSE is always differentiable and has a single global minimum, making it a widely used
choice for regression problems. Consequently, it was selected as the loss function for the models
in this thesis.

Parameter Optimization

When a DNN model f process an input x, the input values interact with the model parameters θ
of the model and provide an output y. This process is called forward propagation [Goo16]. The
loss L(f(x, θ), y) produced by the networks is computed through a loss function. The gradients
of the loss function with respect to the model parameters are computed and propagated backwards
through the network using the back-propagation algorithm [Rum86; LeC98].

The idea of parameters optimization from DNN models is to reduce the loss by shifting the
model parameters by small amounts in the opposite direction of the gradient of the loss function
with respect to the parameter. Which theoretically results in the loss decreasing after each iteration.
The amount the parameter values are shifted is the product of the loss gradient and an optimizer’s
hyperparameter η called learning rate. The parameters update follows:
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θ = θ − η · ∇θL(f(x, θ), y). (2.8)

This algorithm is called stochastic gradient descent (SGD) [Bot98].
Adam [Kin17] is another widely used optimizer algorithm. The name Adam derives from

adaptive moment estimation. Adam is known for its robustness, efficiency, and effectiveness in
training DL models [Sin23]. Consequently, Adam was chosen as the optimizer for the models in
this thesis.

Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a kind of DNNs that are specially tailored to process
sequences of inputs. They follow the idea of hidden states that act as a memory of previously
processed inputs. The hidden state values interact with the current input to give an output also
considering the history of the input sequence.

There are two main RNN architectures: Long Short-Term Memory (LSTM) [Hoc97] and
Gated Recurrent Unit (GRU) [Cho14].

GRUs, similar to LSTMs networks, excel at capturing long-range dependencies in sequential
data. However, GRUs offer the advantage of being computationally more efficient. Research has
shown that GRUs achieve comparable performance to LSTMs while requiring fewer parameters
[Chu14]. For these reasons the RNN designed for this thesis uses GRUs.

Training and Testing Deep Neural Networks

Initially the data is divided in three sets, one for training, one for validation and the last for testing.
The training data is used to update the model weights. The validation data is used during training
as an indicator of how the model performs on unseen data. The model parameters are not updated
using the validation data. Lastly, after the model is trained, the test data is used to evaluate the
model accuracy.

A mini-batch is a subset of samples from the data. Mini-batches are used to calculate the mod-
els outputs for multiple samples at the same time. The size of the mini-batch is a hyperparameter
of the training process and determines how many mini-batches can be formed from each data set.

The process of training a DNN model consist of performing multiple training iterations called
epochs. The number of epochs is a training hyperparameter that defines how many iterations
of the training loop are to be done. In each epoch, the training set is divided into mini-batches
and each of them is processed by the model. The loss is calculated between the model predictions
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and expected targets and the gradients are back-propagated. The optimizer algorithm updates
the model parameters. After the parameter’s update, the model processes the validation data and
calculates the mean loss for the validation.

After the training is over, the data is evaluated on the test data, which determines the overall
performance of the model.

2.1.2 Pointnet Model

Pointnet is a DL model that supports the assumption of point permutation invariability present in
pointclouds [Qi17a]. The output of the network should be invariant to affine transformations such
as rotations, translations or point shuffling.

The Pointnet model expects an input of N 3-dimentional points. It uses a transformation
network to construct a 3× 3 affine transformation matrix and apply this transformation to the input.
Then, features are extracted from the transformed input through a MLP. This MLP has shared
weights that allows to transform each input feature independently, sustaining the permutation
invariability.

At this stage, each point has been transformed into a feature vector of size 64. A second
transformation network predicts a new 64× 64 transformation matrix for the extracted features.
This transformation matrix is constrained to be close to the identity matrix via an auxiliary error
function. The features are transformed by the predicted transformation matrix. Subsequently, they
are processed by another MLP to extract feature vectors of size 1024.

At this point, features of size 1024 has been extracted from each of the original points in the
input. Due to the network design each point has been processed independently with the same set
of weights.

At the end they will aggregate each feature vector from the points using the maxpool (Sec-
tion 2.1.1) function. Since the maxpool is a symmetric function, the permutation invariability
assumption continues to be preserved and a single global feature vector of size 1024 is obtained.

From the global feature vector, the paper proposes two possible architectures: one for classifica-
tion and the second for point segmentation. The models in this thesis are based on the classification
architecture.

2.2 Radar

Radar stands for RAdio Detection And Ranging. As its name indicates, this technology uses radio
waves to locate objects in its effective range. Unlike cameras that depend on an external light,
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radars operate by emitting Radio Frequency (RF) waves of their own. These waves can penetrate
a variety of objects including fog and clouds enabling the radar to operate even in bad weather and
absence of light conditions.

2.2.1 Frequency Modulated Continuous Wave Radar

FMCW radar is a specific type of radar sensor that emits continuous transmission power, while
changing its operating frequency [Wol]. It can accurately measure the target range and its highly
effective measuring the target’s relative velocity. The pulse generated by an FMCW radar syn-
thesizer is typically referred to as chirp, a type of signal in which the frequency of the waveform
changes over time. The range resolution of the FMCW radar is determined by the bandwidth of
the chirp, which is the extent of the frequency change during this period. The components of an
FMCW radar are basically transceiver and a control unit with a microprocessor. First the chirp
is generated in the Voltage Controlled Oscillator (VCO), then it is transmitted by the transmitter
antenna (TX ant.), next the waves bounce on the object and are reflected in various directions.
Some of these echo signals are received by the radar’s receiver antenna (RX). At the mixing stage,
echo signal is compared with the current transmission frequency. Components such as the coupler,
amplifiers, and filters play crucial roles in the process by directing the signal, amplifying it, and
filtering out unwanted frequencies, respectively.

Figure 2.2: Block Diagram of an FMCW radar sensor
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2.2.2 Constant False Alarm Rate (CFAR)

An important issue while dealing with radar data is to detect targets in the presence of noise. A
basic way to do so is to set a threshold T (t) and ignore all the received signals with an amplitude
A(t) < T (t). This threshold regulates the number of targets detected. The higher it is, the fewer
targets will be accepted, and at the same time, the number of false alarms is reduced. However,
even with a high threshold, noise can still cause false alarms, therefore, an adaptive threshold is
used.

The idea of Constant False Alarm Rate (CFAR) is to have a variable threshold to enforce the
false alarm rate to be constant. Cell-Averaging Constant False Alarm Rate (CA-CFAR) consists in
dividing the signal into cells and calculating a threshold for each of them. The cell for which the
threshold is being calculated is called Cell Under Test (CUT) and its threshold is calculated by
averaging the power level of the cells around to the CUT ignoring its immediate adjacent cells. A
cell whose amplitude exceeds the average amplitude of the cells around will be acknowledged as a
target.

2.2.3 Processing Sparse Radar Pointcloud

Once the targets are found, they can be represented as a radar pointcloud. Pointclouds from radar
are a sparse type of data as shown in figure 2.3. Some frames of pointclouds contain few detections
or are empty, causing the ML models to present high errors. Even more interesting is to observe
that small changes in the target space (skeleton pose) are correlate with great changes in the input
space.

Most ML models require a consistent input shape, not allowing to use a variable number
of points as an input. Therefore, the pointclouds need to be standardized to match the model
architecture. It is a common practice that radar pointcloud datasets contain a fixed number of
points per frame. When a pointcloud has fewer points than necessary, the missing points are filled
with zeros. On the other hand if the expected number of points is exceeded, the detections are
cropped based on the signal.

Often radars are used in environments where more than one object is present. In this cases
semantic segmentation plays a roll in determining which points represent an object instance, object
differentiation and removing noise produced by the CFAR. A common approach, used specially
in the Automotive industry are clustering algorithms for grouping points into instance candidates.
The work proposed by [Sch19] propose a detection filtering to remove points that correspond to
static objects, followed by point clustering using DBSCAN algorithm [Est96] and finally a domain
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(a) Frame 100 (b) Frame 101

(c) Frame 102 (d) Frame 103

Figure 2.3: Consecutive snapshots of radar poinclouds and their corresponding target human pose.

knowledge based cluster merging to refine the final clusters.
Another way to enhance the information contained in a frame is to fuse many frames into

a single one. Each radar pointcloud contains a variable number of points. It is also possible
to have frames with few points or even none of them. One of the possible approaches merge
the information from consecutive frames to create a single enhanced frame. This was the idea
proposed by Fast and Scalable Human Pose Estimation (FUSE)[An22b] and followed by [Yan23b].
The method proposed to fuse the frames is concatenating them.

Be f [k] the kth frame in the dataset. Then the fused frame F [k] is the result of concatenating
M consecutive frames as follows:

F [k] = {f [k −M ], f [k − (M − 1)], . . . , f [k], . . . , f [k +M − 1], f [k +M ]}

Since they take not only frames from the past but also from the future, it is not suited for
real-time applications. However, it can be fixed by only taking a few frames from the past and
benefit from the additional information.
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Data Acquisition

A dataset comprising radar generated pointclouds and target skeleton keypoint positions obtained
from humans was recorded. The study was performed in the Faculty of Engineering of the
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), in a room equipped with a OMC
system and a mmWave radar.

3.1 Setup

This sections will describe the characteristics of the room where the data was acquired and the
sensors and devices involved in the recording process.

3.1.1 Optical Motion Capture

An Optitrack OMC system, comprising 12 cameras strategically positioned around the recording
room, was installed for data capture. The room also had a dedicated computer with Motive 2.3.1
installed, which allowed the interaction with the OMC system. Motion capture suits were worn by
the participants. These suits allowed reflective markers to be attached to them. Motive provided
a number of predetermined marker sets that defined biological landmarks where the reflective
markers should be attached to the motion capture suit. When the markers are placed on the body in
accordance with the guidelines of a marker set, they will be fitted on a virtual skeleton in Motive.
For this thesis, the Conventional (39) [Optb] marker set was selected.

https://optitrack.com/software/
https://optitrack.com/accessories/wear/
https://docs.optitrack.com/markersets
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3.1.2 Radar

A radar box equipped with a 60 GHz FMCW MIMO IWR6843AOP mmWave [Ins22] radar was
used to obtain the input data for our study. The radar box comprises a mmWave radar and a
microcomputer for real time processing. The radar box records radar raw data and simultaneously
trigger the OMC.

3.1.3 Room

The recordings were performed in a special room equipped with an Optitrack OMC system. The
room dimensions were 10.60m length, 4.72m width and 3.27m height. In the center of the room,
a rectangular area of 3.55m length by 3.05m width was marked. This area was in the radar field
of view, and the OMC cameras were oriented to cover it. The participants were recorded in this
area. An additional line was added in the center of the area, for the participant to walk towards the
radar and another obliquous line to walk in a 45◦ angle with respect to the radar center. Figure 3.1
represents a top view of the room.

Figure 3.1: Top view representation of the recording room. The camera locations and orientation are
represented by blue pyramids. The radar is represented by the red rectangle. The green rectangle represents
the area of interest. The X marks the location where participant performed the rehabilitation movements.
The lines AB (0°), CD (45°) and EF (90°) were used to walk in different directions with respect to the radar.

Before each recording session, the OMC and the radar box were calibrated once using four
reference points in the space. These points are created using corner reflectors with reflective
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markers inside. The corner reflectors are made of three mutually perpendicular, intersecting flat
metal surfaces. The material and the shape create a strong echo from the radar emitted wave
which is exceptionally detected by the radar. At the same time, the reflective markers inside
the corner reflectors are targeted by the OMC. The combination of these corner reflectors and
reflective markers allows both systems, the OMC and the radar to find the same 3D coordinates
simultaneously. Then, a transformation matrix to transform the radar coordinates system to the
OMC coordinates system is obtained.

3.2 Study Procedure

In this section, the study procedure is briefly described. A complete study protocol is presented in
the Appendix .1.

3.2.1 Participants

Within this study twelve adult participants were recorded. Four were females and eight males
between 25 and 35 years old. At the time of the study, the participants were healthy, and showed
no injuries that would prevent them from performing the exercises. At the beginning of each
recording session the participants signed a consent form allowing us to use the data obtained
during the recordings.

The Table 3.1 summarizes the age, weight and height distributions of all the participants. While
tables 3.2.1, 3.2.1 summarize the same information for female and male participants respectively.

Variables min max mean std
age (years) 25 35 28.92 3.15
weight (kg) 50 93 72.33 12.37
height (m) 168 190 176.25 6.25

Table 3.1: Summary of the age, height, and weight of the twelve participants.

Variables min max mean std
age (years) 28 35 31.75 2.86
weight (kg) 50 70 62.00 8.15
height (m) 168 173 171.00 2.12

Table 3.2: Summary of the age,
height, and weight of the female
participants.

Variables min max mean std
age (years) 25 32 27.50 2.18
weight (kg) 60 93 77.50 10.78
height (m) 170 190 178.88 5.97

Table 3.3: Summary of the age,
height, and weight of the male par-
ticipants.
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3.2.2 Data recording

At the beginning of each recording session, the participants were informed about the purpose
of the study and how the data will be handled. They consented on giving us the right to use the
recorded data. The participants received detailed instructions about each movement they were to
perform. They donned motion capture suits, which made it easier to attach the markers. The person
conducting the study carefully aligned the markers with the participants’ biological landmarks,
following the guidelines of the Conventional 39 [Optb] marker set. This marker set, designed for
general purposes, includes ample markers for both the upper and lower body, ensuring an accurate
representation of the participants’ full-body movements

The recording session was divided in four stages. Each stage corresponds to a group of
movements: rehabilitation, walking, functional and free movements. Each recording started with
the participant performing a T-pose, which helped the OMC to recalibrate the skeleton to the body
markers.

There were 10 rehabilitation movements and a T-pose recorded: T-pose (a0), left upper limb
extension (a1), right upper limb extension (a2), side upper limb extension (a3), curls (a4), front
arm rotation (a5), torso forward bending (a6), left front lunge (a7), right front lunge (a8), squat
(a9), side lower limb extension (a10), front lower limb extension (a11).

The rehabilitation movement batch was recorded three times. Each of them corresponded to
an action group. Figure 3.2 depicts how the action groups were recorded. The action group 0 was
recorded with the participant facing the radar box, the action groups 1 and 2 were recorded with
the participant rotated 45◦ and 90◦ counterclockwise, respectively. Recording with the participant
facing to different directions is intended to help to evaluate the efficiency of our algorithms to
deal with occlusions on radar pointclouds as well as variations in radar resolution across different
directions. Each recording in this stage lasted for 36 seconds.

The second batch of movements consisted of four recordings of walking of one minute each.
The participant first walked back and forth on a straight line along the radar Y axis (from A to B
in Figure 3.1) (w0). Next the participant walked over the 45◦ line marked on the floor (from C to
D in Figure 3.1) (w1). On third place, the participant walked on a parallel line to the radar X axis
(from E to F in Figure 3.1) (w2). And finally, the participant walked freely on the marked squared
area (w3).

The third batch of movements consisted in five functional movements. Simulating picking
up and object from the floor (f1), standing up and sitting down (f2), standing up, waking and
sitting (f3), standing up, walking around the chair and sitting down (f4) and dancing Macarena
(f5). These movements were recorded for 36 seconds each, except for the f5 which lasted for about
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Figure 3.2: Participant’s orientation with respect to the radar. The action group 0: participant facing the
Radar. The action group 1: participant rotated 45◦ with respect to the radar. The action group 2: participant
rotated 90◦ with respect to the radar. The radar is represented with the red rectangle.

45 seconds.
And the last batch consisted on a single free movement. The participant shadow-boxed (f6)

facing the radar and performing lateral, backwards and forward displacements. The recording
lasted for 36 seconds.

3.3 Post-processing

The recorded data was reviewed and post-processed. The recordings sequences were trimmed
to remove invalid frames due to the OMC recalibration at the beginning of each recording. The
skeleton keypoints were extracted from the OMC data and the radar pointclouds were extracted
from the radar raw data.

3.3.1 OMC Data Post-processing

The .tak files containing the recordings were saved using the Motive software. These files contained
the skeleton model and the marker’s location. Each of the markers locations were labeled by
the Motive software auto-labeling feature and the skeleton was fitted to the marker’s location.
However, due to the low frequency of the recordings (15Hz), the markers were often not labeled
or mislabeled resulting in a bad estimation of the skeleton pose. Some markers were lost due to
occlusions and some were added due to reflections in the room. These factors required manual
post-processing of each recording.

First, all recordings were reviewed to determine its quality based on the number of valid frames
it contained. Some recordings were disposed as a result of that.
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The files to use were reviewed to determine the start and end frame of each movement, and were
trimmed. Each valid frame was reviewed to label unlabeled markers, unlabel markers resulting
of noise and relabel those mislabeled. The markers that did not correspond to the skeleton were
deemed as noise and removed as a result. Using the edit tools provided by Motive, it was possible
to fill the missing markers automatically using cubic interpolation and pattern based interpolation.
The process then was repeated until the tracking data reached the best quality. A sequence was
considered corrected when it had sufficient markers to make an accurate skeleton estimation.

The recordings were exported as .vbh files and the 3D locations of the keypoints were extracted
by using bvh-converter. The frames and the keypoints’ locations of each recording were saved as
a .npy file.

3.3.2 mmWave Radar Data Post-processing

The radar datacubes were processed using fast Fourier transform (FFT) [Bri67] and CFAR
[Ric14] to obtain radar pointclouds. Static clutter removal was used to remove the static targets.
The result were radar pointclouds where each point contained the following seven components:
x, y, z, v, snr, noise, I , where x, y, z are the 3D coordinates of the detected target, v is the Doppler
velocity, snr is the signal-to-noise ratio and I is the intensity.

The 3D coordinates of the pointclouds were transformed to match the OMC coordinates by
using the transformation matrix obtained during the calibration process. The pointclouds files
were trimmed to match the frames contained in the OMC files.

3.4 mmRadPose Dataset Creation

The post-processing process was very time-consuming. Therefore, only the three action groups
of the rehabilitation movement batch were post-processed. The walking, functional and free
movements were not included in the current release of the dataset. After the post-processing, some
recordings were not usable due to a considerable amount of missing points. Some actions had no
valid recordings while others were recorded twice and both recordings were valid. Detailed tables
showing how many frames were recorded for each combination of participant, action group and
action can be found in the Appendix .2.

The data for the mmRadPose dataset was organized following the structure in Figure 3.3. The
first level contains the data from the twelve participants in separate folders named from p1 to p12.
Within each participant’s folder there are action group folders (actions_0, actions_1, actions_2)

https://github.com/tekulvw/bvh-converter
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that contain the recordings for the three action groups. On the third level, there are action folders
numbered from 0 to 11 containing the recordings corresponding to each action.

Figure 3.3: Dataset folder structure.

The mmRadPose dataset was implemented in python following the python Dataset interface.
This implementation allows to select a subset of participants and actions as well as retrieving
items with multiple sequential pointclouds enabling time-series processing. When the seq_length
hyperparameter is set on the mmRadPose dataset, the items generated would contain a sequence
of seq_length radar pointcloud frames as input and a single target skeleton corresponding to the
last pointcloud on the input sequence.

For training were selected eight participants (six males and two females). Two participants for
validation and two for testing (one male and one female each).

The Table 3.4 makes a comparison between the different datasets available in the literature
and ours.

Dataset # participants # actions # sequences # frames # 3D keypoints
Mars[An21] 4 10 80 40k 19
mRi[An22a] 20 12 300 160k 17
Hupr[Lee22] 6 3 235 141k -
mmpose[Sen20] 2 4 - 40k 25
mm-Fi[Yan23b] 40 27 1080 320k 17
mmRadPose 12 30 432 203k 26

Table 3.4: Comparison of the mmRadPose dataset with the datasets in the literature.
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Figure 3.4: Skeleton from the mmRadPose
dataset. It consists of 26 keypoints, with
the left side colored blue and the right side
colored green.

Number Name Abbreviation
0 Hips Hips
1 RightUpLeg RUL
2 RightLeg RL
3 RightFoot RF
4 RightToeBase RTB
5 RightToeBaseEnd RTBE
6 LeftUpLeg LUL
7 LeftLeg LL
8 LeftFoot LF
9 LeftToeBase LTB
10 LeftToeBaseEnd LTBE
11 Spine Spine
12 Spine1 Spine1
13 RightShoulder RS
14 RightArm RA
15 RightForeArm RFA
16 RightHand RH
17 RightHandEnd RHE
18 LeftShoulder LS
19 LeftArm LA
20 LeftForeArm LFA
21 LeftHand LH
22 LeftHandEnd LHE
23 Neck Neck
24 Head Head
25 HeadEnd HeadE

Table 3.5: List of names and abbreviations of the
keypoints on the mmRadPose dataset.
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Methods

4.1 Models

For this thesis, two models based on the Pointnet [Qi17a] architecture were designed. The
PointnetPose model is a regressor capable of performing HPE with radar pointclouds. Using
PointnetPose as a base for extracting features from the pointclouds, PointnetPoseRNN is able to
perform HPE using multiple pointcloud frames.

4.1.1 PointnetPose Model

The Pointnet [Qi17a] was specifically designed for pointclouds processing. It was noticed the
model can learn a summarized sparse pointcloud which provides an understanding about why it is
so robust against missing points and point additions.

PointnetPose is a variation of the original classification Pointnet model architecture (Section
2.1.2). Our proposed architecture is depicted in Figure 4.1. It was implemented using PyTorch
following the architecture in the Pointnet paper. However, the input of the Network and the input
transform module are modified to accept not only 3D pointclouds, but extended pointclouds
including radar extracted features like Doppler velocity, signal intensity and noise. The network
contains an input transformation and a feature transformation module that generate transformation
matrices to apply affine transformations to the data. First the input is transformed by the input
transformation module, then a MLP with shared weights processes each point independently. The
resulting tensor is transformed by the feature transformation module and again processed by a
shared weight MLP to obtain a feature vector with size 1024 for each of the original input points.
The features are condensed by using the max pool operation into a global feature vector. Then a
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Figure 4.1: PointnetPose architecture.

MLP process the global feature vector to output k × 3 sized tensor containing the predicted 3D
skeleton keypoints. k must be set as a network hyperparameter.

4.1.2 PointnetPoseRNN Model

The PointnetPoseRNN model is composed by a feature extractor, GRU cells and a final MLP to
generate the 3D skeleton keypoints. The feature extractor comprises the PointNet model without
its final layer. The output of the feature extractor connect to a GRU unit with one layer and a
hidden state of size 20. The Figure 4.2 depicts the PointnetPoseRNN model.

4.2 Training Procedure

A fully supervised training with the mmRadPose dataset was performed, using mmWave radar
pointclouds as input and 26×3D skeleton keypoints as target.

The training loop was implemented using Python. In each experiment the models were trained
for 500 epochs using a mini-batch size of 32. The NumPy and PyTorch random generators were
seeded using a seed of 42. The Adam optimizer was used with a learning rate of 0.0001.

The Loss chosen for the experiments was MSE loss (Equation 2.7). The model parameters
were saved every 20 epochs. Additionally, the models with the smallest validation loss were saved.

The High Performance Computing (HPC) resources were provided by the Erlangen National
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Figure 4.2: PointnetPoseRNN architecture.

High Performance Computing Center (NHR@FAU). An a100 module with 1 x NVIDIA A100-
SXM4-40GB GPU node, 2 x AMD EPYC 7713 ”Milan” CPUs with 64 cores each, 1 TB of
Memory (DDR4) and 14 TB NVMe SSD was used for training.

4.3 Evaluation Metrics

The models’ predicted skeletons’ similarity with the target in the dataset were measured using the
metrics defined in this section. With S and Ŝ, a target set of skeletons and the predicted set of
skeletons respectively, NS the size of the skeletons sets, NK the number of keypoints composing
each skeleton and Si,k,j the value int the jth axis of the kth keypoint of the ith skeleton in S.

Mean Per Joint Position Error (MPJPE)

The MPJPE calculates the mean over all the euclidean distances between the predicted skeleton
keypoints and the target skeletons keypoints

MPJPE(Si, Ŝi) =
1

NK

NK∑
k=1

||Si,k − Ŝi,k||2 (4.1)

MPJPE(S, Ŝ) =
1

NS

NS∑
i=1

MPJPE(Si, Ŝi). (4.2)
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4.3.1 Percentage of Correct Keypoints (PCK)

The Percentage of Correct Keypoints (PCK) is used to predict the ratio of correct keypoint
detections. A keypoint detection is considered correct is the distance with the target keypoint
location is smaller than a threshold t.

C(Si,k, Ŝi,k) =

1, if ||Si,k − Ŝi,k||2 < t

0, otherwise
(4.3)

PCK(Si, Ŝi) =
1

NK

NK∑
k=1

C(Si,k, Ŝi,k)× 100 (4.4)

PCK(S, Ŝ) =
1

NS

NS∑
i=1

PCK(Si, Ŝi) (4.5)

4.3.2 Mean Absolute Error (MAE)

The MAE was used to measure the displacement of the skeleton keypoints in a given axis. This
allows to visualize which combinations of keypoint and axis are more affected in the predictions.

MAEk,j(S, Ŝ) =
1

NS

NS∑
i=1

|Si,k,j − Ŝi,k,j| (4.6)

The MAE on a single axis can also be calculated as:

MAEj(S, Ŝ) =
1

NK

NK∑
k=1

MAEk,j(S, Ŝ) (4.7)

4.4 Experiments

The experiments were designed to train our models and measure their accuracy on HPE with the
mmRadPose dataset. First the PointnetPose model was validated using the data from Mars. Later
the model was trained for the three action groups independently.

The validation of the PointnetPose model was done by comparing its results with those presented
by the Mars model using the data in the same paper. Both algorithms, Mars and PointnetPose
were trained using the data split proposed by the paper. For both models, the MSE loss was used
during training for 500 epochs using a mini-batch size of 32. Both loss curves were compared and
the metrics with the test set were calculated.
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Figure 4.3: Training and Validation loss curves for PointnetPose and Mars models trained on the Mars
dataset.

Figure 4.3 shows the training and validation losses for both algorithms. During training
PointnetPose and Mars achieved a minimum loss of 0.00043 and 0.00688 respectively. While
during validation PointnetPose achieved a minimum loss of 0.00395 upon convergence and Mars
achieved 0.00729 without showing any convergence.

The action group 0 contains the recordings, made with the participants facing the radar. This
setup is similar to those found in the literature that have achieved a good performance. One of the
reasons is that it contains fewer occlusions that the other two action groups, with respect to the
radar point of view.

PointnetPose and PointnetPoseRNN were trained using all the actions in the action group 0,
including the T-pose. The objective was to observe if PointnetPoseRNN would perform better
that PointnetPose. Later the experiment was repeated excluding the T-pose. The reason was that
the T-pose is a static movement. Given that the radar pointclouds were processed using the static
clutter removal, this movement resulted in few or no points. Which cause the networks to predict
poses close to the T-pose when there were few points present.

The mmRadPose dataset recorded seven different point features. It includes the 3D point
coordinates, the Doppler velocity of the target, the signal-to-noise ratio, the noise and the signal
intensity. Datasets in the literature do not include the noise, and signal-to-noise ratio [An21].
The test is intended to unveil if training with and without this feature would make a substantial
difference.

The action group 1 contains the recordings where the participant is rotated 45◦ with respect
to the radar. This suggests that the number of limb occlusions should be greater than the action
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group 1. The recorded participants in the action group 2 are rotated 90◦ with respect to the radar.
In this case, half of the body is occluded mos of the time. PointnetPoseRNN was trained on action
group 1 and 2 independently.

Lastly, PointnetPoseRNN was trained using all the action groups.

Experiment Model Dataset action group T-pose noise sequence length
0 Mars Mars - - - -
1 PointnetPose Mars - - - -
2 PointnetPose mmRadPose 0 yes yes -
3 PointnetPose mmRadPose 0 yes no -
6 PointnetPose mmRadPose 0 no yes -
7 PointnetPose mmRadPose 0 no no -
5 PointnetPoseRNN mmRadPose 0 yes yes 4
8 PointnetPoseRNN mmRadPose 0 no yes 4
9 PointnetPoseRNN mmRadPose 1 no yes 4
10 PointnetPoseRNN mmRadPose 2 no yes 4
11 PointnetPoseRNN mmRadPose 0 no yes 2
12 PointnetPoseRNN mmRadPose 0 no yes 10
13 PointnetPoseRNN mmRadPose 1 no yes 10
14 PointnetPoseRNN mmRadPose 2 no yes 10
15 PointnetPoseRNN mmRadPose (0,1,2) no yes 10

Table 4.1: Experiments



Chapter 5

Results

This chapter presents the results of training PointnetPose and PointnetPoseRNN under different
conditions.

PointnetPose was validated by comparing its performance with that of the Mars model. Ex-
periments were conducted to determine the impact of training using the T-pose recordings. The
mmRadPose pointclouds present the values of the noise and signal-to-noise ratio, and the influ-
ence of training with and without those values is presented. Additionally, the performance of
PointnetPose and PointnetPoseRNN is compared using the same dataset. Finally, the performance
of PointnetPoseRNN trained on the three action groups is presented.

5.1 PointnetPose validation

The Mars [An21] paper proposed a CNN model able to process 5-dimentional radar pointclouds.
Each point Pi is formed by the features xi, yi, zi, Di, Ii where the first three components are the
3D coordinates of the point, Di is the Doppler velocity and Ii is the intensity of the signal. The
Mars model and the PointnetPose model were trained for 500 epochs and tested on the test set.

Figure 5.1 shows the PCK metric with ten evenly spaced thresholds ranging from 2 and 20 cm.
PointnetPose presented a higher percentage of correct keypoints for all the proposed thresholds.
Reaching a 91.17 % of predictions within 16 cm distance from the real keypoint position. While
Mars reached only 77.48 % of the predictions correctly classified within the same threshold
distance. The MPJPE for all the keypoints was 11.85 cm for Mars and 7.26 cm for PointnetPose.

The graphic in Figure 5.2 illustrates the mean position error for each of the skeleton keypoints
on the Mars dataset. The shapes of both polygons are similar which suggest that the models have
similar strengths and weaknesses while predicting keypoints, however in a different scale. The
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Figure 5.1: Percentage of Correct Keypoints (PCK) calculated for the Mars and PointnetPose algorithms
trained on the Mars dataset across ten thresholds ranging from 2 to 20 cm.
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Figure 5.2: The radial axes depict the mean euclidean distance between target and predicted keypoints.
Comparison between the Mars and PointnetPose algorithms trained on the Mars dataset.
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PointnetPose model surpasses the Mars model in terms closing the distance between the predicted
and target keypoints. The highest mean distance is present on the wrists for both models.

5.2 Preliminary Experiments

In this section, the results PointnetPose and PointnetPoseRNN models trained on the mmRadPose
dataset will be shown.

Four PointnetPose model were trained on the action group 0 of the mmRadPose dataset. Two
of the models excluded the T-pose recordings from the training data, while the other two trained
including the T-pose recordings. From the four models, two used all the pointclouds features (3D
location, Doppler velocity, Intensity, noise and signal-to-noise ratio), while the other two excluded
the noise and the signal-to-noise ratio. The PCK for four PointnetPose algorithms were calculated
using ten thresholds ranging from 2 to 20 cm (Table 5.1).

Experiment
PCK (%) t=0.02m t=0.04m t=0.06m t=0.08m t=0.10m t=0.12m t=0.14m t=0.16m t=0.18m t=0.20m

2 (T-pose and all vars) 0.61 4.41 13.01 25.18 38.90 52.72 65.26 74.92 81.18 85.02
3 (T-pose and var subset) 0.60 4.03 12.03 23.52 36.70 50.35 62.58 72.54 79.39 83.56
6 (No T-pose and all vars) 0.62 4.71 14.33 28.13 42.85 57.01 69.49 78.44 83.44 86.49
7 (No T-pose and var subset) 0.43 3.18 9.98 20.82 33.57 47.30 60.39 70.91 78.44 83.12

Table 5.1: Percentage of Correct Keypoints (PCK) for PointnetPose models on mmRadPose action group 0.

The MPJPE values for the PointnetPose models are described in the Table 5.2.

Experiment 2 (T-pose and all vars) 3 (T-pose and var subset) 6 (No T-pose and all vars) 7 (No T-pose and var subset)
MPJPE 0.1418 0.1477 0.1362 0.1511

Table 5.2: Mean Per Joint Position Error (MPJPE) for the PointnetPose models.

Both algorithms including all pointcloud features presented a higher PCK that those using a
subset of features. From the two models that used all pointcloud features, the one excluding the
T-pose recordings outperformed the model using the T-pose. Similarly, from the two models that
used a subset of pointcloud features the one excluding the T-pose recordings outperformed the
model using the T-pose. In general the best model, according to the PCK curves was trained with
all the pointcloud features and excluded the T-pose from the dataset. The model including the
T-pose and using a subset of the pointcloud features was the worst performing according to the
results of this experiment.

Four models were trained on the action group 0 from the mmRadPose dataset. The training sets
used all pointcloud features and excluded the T-pose recordings. On this section, the results of one
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PointnetPose model and three PointnetPoseRNN models will be presented. The PointnetPoseRNN
were trained using sequence lengths of 2, 4 and 10 respectively.

Experiment
PCK (%) t=0.02m t=0.04m t=0.06m t=0.08m t=0.10m t=0.12m t=0.14m t=0.16m t=0.18m t=0.20m

6 (PointnetPose) 0.62 4.71 14.33 28.13 42.85 57.01 69.49 78.44 83.44 86.49
11 (PointnetPoseRNN seq_lenght = 2) 0.88 5.66 15.24 28.52 42.91 56.37 68.13 77.47 83.70 87.22
8 (PointnetPoseRNN seq_length = 4) 0.74 5.21 15.14 29.80 45.74 60.05 71.81 80.57 86.11 89.33
12 (PointnetPoseRNN seq_lenght = 10) 0.79 5.68 16.73 32.23 48.06 61.60 72.81 81.55 87.33 90.47

Table 5.3: Percentage of Correct Keypoints (PCK) for PointnetPose models on mmRadPose action group 0.

Experiment 6 (PointnetPose) 11 (PointnetPoseRNN seq_lenght = 2) 8 (PointnetPoseRNN seq_length = 4) 12 (PointnetPoseRNN seq_lenght = 10)
MPJPE 0.1362 0.1329 0.1247 0.1197

Table 5.4: Mean Per Joint Position Error (MPJPE) for the PointnetPose models.

The results consistently showed a relation between the sequence length and the algorithm
performance. However, these improvements do not seem to be quantitatively significant.

5.3 Evaluation of PointnetPoseRNN on mmRadPose

In this section the results of training PointnetPoseRNN using sequence length of 10 in the different
action groups will be presented. Three PointnetPoseRNN models were trained independently on
each action group of the mmRadPose dataset. A fourth model was trained on the entire dataset.

For each model, the MAE per keypoint and axis combination will be presented as well as the
MAE per axis. In order to achieve a deeper understanding of the about the performance of the
model, the distances between each predicted keypoint and the target keypoints were computed and
the distribution of the distances presented in a boxplot.

Information about the PCK of each model and model and the MAE was presented.
In this section, the performance of the models will be broken down into each action from

the action groups. The mean euclidean distance between the predicted keypoints and the target
keypoints of the skeletons in the same action and action group will be represented using radar or
spider plots. The radial axes of the radar plots corresponds to each of the skeleton keypoints. The
names of the skeleton keypoints were abbreviated. Refer to Table 3.5 for a list of the names and
abbreviations.

5.3.1 Evaluation of PointnetPoseRNN on the action group 0

A PointnetPoseRNN model was trained using the action group 0. The model achieved a MPJPE
of 11.96 cm
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Figure 5.3: Distribution of distances between the target and predicted skeleton keypoints. The predictions
were calculated with a PointnetPoseRNN model trained on the action group 0. The outlayers were removed
from the graphic.
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Figure 5.4: Mean Absolute Error (MAE) for each keypoint and axis combination. The Mean Absolute
Error was calculated from the predictions of a PointnetPoseRNN model trained on the action group 0 of the
mmRadPose dataset.
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Thresholds t=0.02 t=0.04 t=0.06 t=0.08 t=0.1 t=0.12 t=0.14 t=0.16 t=0.18 t=0.2
PCK 0.79 5.68 16.73 32.23 48.06 61.60 72.81 81.55 87.33 90.47

Table 5.5: Percent of Correct Keypoints from a PointnetPoseRNN model trained on the action group 0.
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Figure 5.5: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action. The predicted keypoints were obtained via a PointnetPoseRNN model trained on the
action group 0 of the mmRadPose dataset. Part 1.
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Figure 5.6: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action. The predicted keypoints were obtained via a PointnetPoseRNN model trained on the
action group 0 of the mmRadPose dataset. Part 2.
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5.3.2 Evaluation of PointnetPoseRNN on the action group 1

A PointnetPoseRNN model was trained using the action group 1. The model achieved a MPJPE
of 8.82 cm
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Figure 5.7: Distribution of distances between the target and predicted skeleton keypoints. The predictions
were calculated with a PointnetPoseRNN model trained on the action group 1.

Thresholds t=0.02 t=0.04 t=0.06 t=0.08 t=0.1 t=0.12 t=0.14 t=0.16 t=0.18 t=0.2
PCK 3.45 19.04 42.46 62.32 74.38 82.15 87.31 90.61 92.85 94.34

Table 5.6: Percent of Correct Keypoints from a PointnetPoseRNN model trained on the action group 1.
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Figure 5.8: Mean Absolute Error (MAE) for each keypoint and axis combination. The Mean Absolute
Error was calculated from the predictions of a PointnetPoseRNN model trained on the action group 1 of the
mmRadPose dataset.
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Figure 5.9: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action. The predicted keypoints were obtained via a PointnetPoseRNN model trained on the
action group 1 of the mmRadPose dataset. Part 1.
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Figure 5.10: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action. The predicted keypoints were obtained via a PointnetPoseRNN model trained on the
action group 1 of the mmRadPose dataset. Part 2.
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5.3.3 Evaluation of PointnetPoseRNN on the action group 2

A PointnetPoseRNN model was trained using the action group 2. The model achieved a MPJPE
of 8.83 cm
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Figure 5.11: Distribution of distances between the target and predicted skeleton keypoints. The predictions
were calculated with a PointnetPoseRNN model trained on the action group 2.

Thresholds t=0.02 t=0.04 t=0.06 t=0.08 t=0.1 t=0.12 t=0.14 t=0.16 t=0.18 t=0.2
PCK 4.67 23.86 46.90 64.23 75.20 82.03 86.66 89.76 91.84 93.33

Table 5.7: Percent of Correct Keypoints from a PointnetPoseRNN model trained on the action group 2.
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Figure 5.12: Mean Absolute Error (MAE) for each keypoint and axis combination. The Mean Absolute
Error was calculated from the predictions of a PointnetPoseRNN model trained on the action group 2 of the
mmRadPose dataset.
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Figure 5.13: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action. The predicted keypoints were obtained via a PointnetPoseRNN model trained on the
action group 2 of the mmRadPose dataset. Part 1.
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Figure 5.14: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action. The predicted keypoints were obtained via a PointnetPoseRNN model trained on the
action group 2 of the mmRadPose dataset. Part 2.
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5.3.4 Evaluation of PointnetPoseRNN on all the action groups (0, 1, 2)

A PointnetPoseRNN model was trained using the entire mmRadPose dataset. The model achieved
a MPJPE of 9.94 cm. This model could only be trained for 320 epochs in contrast with the other
models that were trained for 500 epochs.

This model exhibit no significant performance differences compared with the other models. It
was able to achieve a PCK of 67.17% at a threshold of 10 cm which is even higher than the PCK
of the model trained on the action group 0 at the same threshold.
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Figure 5.15: Distribution of distances between the target and predicted skeleton keypoints. The predictions
were calculated with a PointnetPoseRNN model trained on the entire mmRadPose dataset.

Thresholds t=0.02 t=0.04 t=0.06 t=0.08 t=0.1 t=0.12 t=0.14 t=0.16 t=0.18 t=0.2
PCK 2.89 15.83 35.51 53.71 67.17 76.54 82.93 87.25 90.22 92.26

Table 5.8: Percent of Correct Keypoints from a PointnetPoseRNN model trained on the entire mmRadPose
dataset.
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Figure 5.16: Mean Absolute Error (MAE) for each keypoint and axis combination. The Mean Absolute
Error was calculated from the predictions of a PointnetPoseRNN model trained on the entire mmRadPose
dataset.
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Figure 5.17: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action from the action group 0. The predicted keypoints were obtained via a PointnetPoseRNN
model trained on the entire the mmRadPose dataset. Part 1.
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Figure 5.18: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action from the action group 0. The predicted keypoints were obtained via a PointnetPoseRNN
model trained on the entire the mmRadPose dataset. Part 2.
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Figure 5.19: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action from the action group 1. The predicted keypoints were obtained via a PointnetPoseRNN
model trained on the entire the mmRadPose dataset. Part 1.
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Figure 5.20: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action from the action group 1. The predicted keypoints were obtained via a PointnetPoseRNN
model trained on the entire the mmRadPose dataset. Part 2.
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Figure 5.21: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action from the action group 2. The predicted keypoints were obtained via a PointnetPoseRNN
model trained on the entire the mmRadPose dataset. Part 1.
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Figure 5.22: Each radar plot depicts the mean euclidean distance between predicted and target keypoints
for a specific action from the action group 2. The predicted keypoints were obtained via a PointnetPoseRNN
model trained on the entire the mmRadPose dataset. Part 2.



Chapter 6

Discussion

The previous chapter introduced PointnetPose and PointnetPoseRNN performance. In this chapter
we discuss the results achieved in the different tasks.

6.1 PointnetPose validation

PointnetPose was validated by training it with the Mars [An21] dataset and comparing it with the
results of the model from the same article. PointnetPose performed better, not only according to
the PCK curve, but also presented a smaller MPJPE.

However, the results of PointnetPose and PointnetPoseRNN on the mmRadPose dataset, were
not nearly as good. PointnetPose went from a MPJPE of 7.26 cm to 14.18 cm. This discrepancy is
most likely related to the way the data was split in each dataset. In the Mars dataset, the data was
split time-wise. Each recording was divided into training, validation, and testing sets at a ratio of
60%, 20%, 20% respectively. Therefore, the validation and test data were closely correlated to
the training data since the movements were performed by the same persons. On the other hand, the
mmRadPose dataset designated the data from two participants exclusively for testing, introducing
entirely new data instances for evaluation, which may have contributed to the observed differences
in performance. But it encourages overall learning and generalization.

6.2 Preliminary Experiments

PointnetPose and PointnetPoseRNN models were trained using the data from the mmRadPose
dataset with the recordings from the action group 0.
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The experiments showed that using all features obtained from the radar pointclouds resulted in
a better performance. Although there is a correlation between the noise and the signal-to-noise
ratio. These features enhanced the quality of the predictions.

It was found that because the T-pose sequences were recorded while the participant sustained a
static posture, the pointclouds on the T-pose recordings contained few or no points. This resulted
in the network learning to predict a T-pose skeleton when fewer points were present in the input
pointcloud. Therefore, excluding the T-pose from training had a positive impact in performance.

In the results of the experiments in the Section was observed that with a threshold of 10 cm,
less than 50% of the keypoints were correctly classified. This fact was corroborated by the MPJPE
value close to 15 cm for the four algorithms.

The PointnetPoseRNN models included GRU units to learn from sequences of frames, since
radar pointcloud frames are sparse and often there are only a few points per frame. Pointnet-
PoseRNN was tested with three different sequence lengths. The results showed that the model with
greater sequence length performed the best. However, as described in Section 3.4, the sequence
of frames obtained from the mmRadPose dataset are obtained from the past with respect to the
current skeleton frame. That means that although using a greater sequence length is beneficial
for the amount of data the model receives, in real-time applications, the radar would need to
record a number of frames equal or greater than the sequence length before the model can function
properly. The PointnetPoseRNN model trained with sequence length of 2 showed no improvement
whatsoever in comparison with the PointnetPose model.

6.3 Evaluation of PointnetPoseRNN on mmRadPose

One of the most used metrics for evaluating the accuracy of HPE models is the MPJPE 4.2. This
metric measures the mean of the distances between the predicted keypoints and the target keypoints.
However, this metric is not enough to determine which of the joints present the greatest deviation.

In order to understand better the functioning of the models. Three PointnetPoseRNN models
were trained on a different action group each. And a fourth model was trained on the whole dataset.

The mean of the euclidean distances between each predicted keypoint and the target were
shown in radar plots.

6.3.1 Evaluation of PointnetPoseRNN on the action group 0

According to the Figure 5.3 the median of the distances close to the MPJPE of 11.96 cm. However,
the hands (RightHand, LeftHand) and the fingers (RightHandEnd, LeftHandEnd) present skewed
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distributions and therefore the highest error.
Looking at the MAE on the Table 5.4 it shows the highest deviation in the Y axis.
The Figure 5.5 and 5.6 represent the mean distances between the predicted keypoint and target

keypoint per action group and action.
The first movement, left upper limb extension, displays the highest error corresponding to the

left hand. Similarly, the second movement, right upper limb extension has a high error associated
with the right hand. Movements such as side upper limb extension, curls, front arm rotation and
squat present a high error in both hands. While movements like side lower limb extension and
front lower limb extension present high error in the legs.

6.3.2 Evaluation of PointnetPoseRNN on the action group 1

A PointnetPoseRNN model was trained on the data from the action group 1. The distribution of
distances is similar to that in the action group 0. However the PCK is significantly higher for the
model trained on action group 2. It is 74.38% for a threshold of 10 cm in contrast with the PCK
of the model trained on action group 1 for the same threshold.

This action group show less distinction between the errors presented for actions such as left
upper limb extension and right upper limb extension. Instead it seems to have a high error for the
left hand. The participant’s orientation with respect to the radar is shown on Figure 3.2. It shows
that in the action group 1, the left hand is partially occluded. Which cloud difficult the estimation
of the hand location.

Additionally, side lower limb extension and front lower limb extension presented the high
errors related to the left leg in comparison with the error present on the right leg.

6.3.3 Evaluation of PointnetPoseRNN on the action group 2

Similarly to the action group 1, the action group 2 presents a high error for the predictions of the
left hand. In this almost three times the error of the right hand while performing right upper limb
extension. The Figure 6.1 makes a comparison between the predictions of the models on different
action groups. The evident increment of the left-hand error suggest that the model is not able to
handle the occlusions.

6.3.4 Evaluation of PointnetPoseRNN on all the action groups (0, 1, 2)

The PointnetPoseRNN model trained on the entire mmRadPose dataset, was trained only for only
320 epochs, however it was able to perform similarly as the models trained with independent action
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Figure 6.1: Compares the euclidean distances radar plots for the left and right upper limb extension
from the action group 0, 1 and 2. The first, second and last row corresponds to the predictions of the
PointnetPoseRNN models trained on the action group 1, 2 and 3 respectively.
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groups. The capacity of the model proves to be significant.
The PointnetPoseRNN model trained with the whole mmRadPose dataset was able to react to

the limbs movements in the same way as the other models did. This conclusion was made taking
into account the similarity between the radar plots depicting the distance errors in the predictions
and the same plots generated for other model.





Chapter 7

Summary

The aim of this thesis was to evaluate Pointnet based models on performing HPE tasks using
mmWave radar pointclouds. Therefore, a study involving twelve participants was conducted
to obtain radar pointclouds and pose data. A 60GHz FMCW MIMO mmWave radar was used
to obtain radar pointclouds from the participants. The participants wore a motion capture suit
with reflector markers attached in conjunction with an Optitrack OMC system to obtain 26 body
keypoints representing a human skeleton. The data was condensed in the mmRadPose dataset,
containing three action groups (0, 1 and 2) where the participants were recorded: facing the radar,
turned 45◦ counterclockwise and 90◦ counterclockwise respectively. Each action group contained
recordings of the participant performing eleven rehabilitation movements.

PointnetPose, a model derived from the Pointnet [Qi17a] architecture, was developed and
validated on data from the Mars [An21] dataset. Another model called PointnetPoseRNN was
designed using PointnetPose as a feature extractor followed by an RNN. PointnetPoseRNN
accepts a sequence of radar pointclouds as input. Both models were trained for 500 epochs on
the mmRadPose dataset on the action group 0 with MSE as loss function. They were tested on
the test set composed by two unseen participants during training and PointnetPose achieved am
MPJPE of 13.62 cm while PointnetPoseRNN with a sequence length of 4 achieved an MPJPE of
12.47 cm on a test set composed by two unseen participants during training.

Three PointnetPoseRNN models with sequence length 10 were trained independently on the
three action groups. They reported an MPJPE of 11.96 cm, 8.82 cm and 8.83 cm on the action
groups 0, 1 and 2 respectively. Lastly another PointnetPoseRNN model was trained using the three
action groups simultaneously, achieving an MPJPE of 9.94 cm. During the research was made
evident that our models were not able to accurately deal with occlusions using radar data.

In this thesis a dataset for HPE comprising twelve participants was constructed. Additionally,
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a study protocol for radar and OMC data recording was designed allowing to extend the dataset in
the future. In this thesis, the PointnetPose and PointnetPoseRNN architectures were proposed and
tested on real data proving the efficiency of using a Pointnet based architecture to perform HPE on
mmWave radar generated pointclouds.



Chapter 8

Outlook

The data recorded during the motion study included rehabilitation movements, functional move-
ments, walking, and free-form movements. However, only the rehabilitation movements recorded
from three different angles were post-processed and included in the mmRadPose dataset. The
performance of PointnetPose and PointnetPoseRNN should be evaluated on the remaining data,
with particular focus on movements where the participants transitioned to different locations.
Future work should include extending the dataset, including additional participants which increase
the generalization ability of the models. Increasing the sample frequency of the Optitrack could
lead to less mislabeled markers reducing the amount of effort during the post-processing stage.
Utilizing a different marker set with more markers such as Biomech (57) [Opta] could improve the
performance especially under occlusions.

For the experiments conducted as part of this thesis, a fixed set of hyperparameters was
used. To improve the generalizability of the results, a hyperparameter tuning study should be
performed. Although the metrics used in this thesis provided an accurate assessment of the models’
performance, they were only able to measure the difference between the skeleton predictions and
the target. The design of a metric capable of including keypoints’ trajectories in time could be
useful to assess the smoothness of the movements of the predicted skeleton.

The original Pointnet [Qi17a] paper demonstrated the robustness of the model against small
perturbations like jittering in the pointcloud points. This was not tested during this study. Further-
more, exploring the potential of Pointnet++ [Qi17b] could yield valuable insights into improving
pose estimation accuracy.

This research has yet to cover multiple person pose estimation. Only performing single person
pose estimation is a great limitation in most scenarios. The possibility of using multiple sensors
should also be evaluated.
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.1 Study protocol



Data Recording Protocol 
 

Study Purpose 

The purpose of this study is to record biomechanics data from healthy participants that can be used to 
perform human pose estimation tasks. 

 

Objectives 

• Obtain biomechanics and radar data from healthy participants performing rehabilitation 
movements, walking and functional movements. 

• Record information about the participant’s joint locations using an Optical Motion Capture (OMC) 
Optitrack system.  

• Record radar datacubes and obtain radar pointclouds from the participant’s movements.  

• Create a dataset for human pose estimation. 

 

Materials 

❑ Optitrack system (12 cameras) 
❑ Optitrack calibration utils 
❑ Optitrack marker suit (+39 markers) 
❑ Computer equipped with Motive 2.3.1 
❑ Radar box (mmWave radar + Kinect) 
❑ 4 styrodur columns + 4 corner reflectors + 4 markers 
❑ Laptop equipped with the radar triggering software and Natnet 3.1.0 
❑ Ethernet cable 
❑ 1 chair 

 

Characteristics of the Recording Room 

The recordings will be performed in a designated room equipped with an Optitrack system with 12 
cameras distributed around the room. The room's dimensions are 10.60m length, 4.72m width and 3.27m 
height. An area of 3.55m length by 3.05m width was marked in the middle of the room. This will be the 
volume of interest covered by the radar and the OMC system.  

The participant must perform all the movements within this area. In the area are marked 3 lines signaling 
0°, 45° and 90° angles, this will serve as a guide for the participants. The radar was located on a table 
2.92m in from the area of interest. The table height is 0.74m and the relative height of the radar with 
respect to the table is 0.32m. 



Original Image of the room Room with floor mark measurements. 
 

System Setup 

A radar box equipped with an mmwave radar, and a Microsoft Kinect sensor will be used to obtain RGB, 
depth, infra-red and radar data. The radar datacubes will be later processed to obtain pointclouds that 
will serve as input data for Human Pose Estimation models. 

An OMC Optitrack device was installed in the room to obtain the participant’s joint locations. The OMC 
was connected to 12 cameras distributed around the room. The use of this system provides a better 
accuracy of the estimated joints. It is also more robust to occlusions than single camera systems. The 
Optitrack system is controlled by the Motive software (version 2.3.1) installed in the computer located in 
the room.  

The NatNet 3.1.0 library will be used to trigger the Optitrack remotely from our main system. NatNet will 
communicate to a server from Motive to control the Optitrack’s recordings. To achieve a real-time 
synchronization with the radar box along with NatNet, a hardware trigger controlled by the radar box was 
used. The main system triggers the radar, Kinect and optitrack recordings at a frequency of 15Hz. 

 

Preparations  

❑ Turn on the computer and the laptop.  
❑ Connect the radar box to power. 
❑ Connect the radar’s USB serial to the laptop. Connect the hardware trigger pins to the Optihub 

(Optitrack hub for IO communication). Connect the Optitrack computer to the laptop through an 
Ethernet cable.  

❑ Set Optitrack streaming IP in Motive to match the laptop IP.  
❑ Calibrate Optitrack system and the radar. 
❑ Make a test recording to test the radar and OMC synchronization. 

 

Optitrack Calibration 



In the beginning the Optitrack sensors are calibrated. The whole process takes at most 15 minutes. The 
Optitrack is calibrated using a wand with 3 markers and moving it around the room. It will synchronize the 
marker detections from all cameras and set the space 3D origin. 

Refer to https://docs.optitrack.com/motive/calibration for more information about the Optitrack’s 
calibration. 

 

Radar, Kinect and Optitrack Calibration 

The purpose of this calibration is to find a transformation matrix that allows to transform the Optitrack’s 
and Kinect’s coordinates to those from the radar. 

 

 
Corner reflectors and Optitrack markers are used for 
calibration. 
 

 
 
The red dots show the detections from 
Optitrack while the blue dots show the 
detections from the radar. 

 

Three corner reflectors with Optitrack markers inside, are placed on top of styrodur columns that do not 
reflect the radar signals. The coordinates of the markers are obtained from the optitrack while the 
coordinates of the center of the corner reflectors are obtained from the radar. Then a Procrustes Analysis 
produces the transformation matrix to the Optitrack data. A similar process is done to calibrate the Kinect 
with the radar. 

 

Participants 

This study will be conducted with healthy participants capable of performing the movements for a 
relatively long period of time. All subjects will be asked to sign a confirmation agreement and were 
explained about the purpose of the study and how the recording would be done.  
We also gathered some additional data like the age (years), the height (meters), weight (Kg), etc.  

 

Study Procedure 



In the beginning of the study the Optitrack and the radar must be calibrated once. Then we proceed to 
record data from each participant. Each session lasts from 2 to 3 hours. Therefor each participant will 
apply for 3 hours recording time slot. Each subject will be required to read and agree with an informed 
consent document before been part of the study. We will keep record of the name of the participant, age, 
sex, height, weight and assign a unique identifier for each participant. From the participants will be 
recorded RGB and depth data, datacubes from the radar and a .tak file from Motive containing the 
participants tracking data. 

 

Recording Session 

In the beginning of each recording session the participant must wear the marker’s suit. Then all the 
markers must be checked and relocated if necessary, following the skeleton marker set Conventional 39. 
This process should take about 15 minutes. The participant will make a T-pose for the Optitrack to fit a 
new skeleton from the participant’s markers detection. The subject will stand at 3m from the radar and 
perform each of the rehabilitation, walking and free movements describe next. 

 

Movements to study 

Each participant will perform a static T-pose and 10 rehabilitation movements in 3 different angles (0°, 
45° and 90°) with respect to the radar, walking in a straight line (0°, 45° and 90°), 5 functional movements 
and 1 free movement. In total 43 recordings will be performed by each participant.  

Each recording will last for at least 30 seconds. Before each recording, the instructor will explain the 
movement to the participant. The participant will start each recording with a T-pose to facilitate the 
skeleton fitting and start performing the movement after the instructor signal. In total the whole process 
of explaining the movement, recording and solving errors should take a maximum of 2 minutes per 
recording. 

 

Rehabilitation Movements 

For each participant a static T-pose for 10 seconds and 10 rehabilitation movements for 36 seconds will 
be recorded. 

All the movements will be recorded once with the participant facing the radar box (0°). Then the 
participant will turn 45° to his left and the movements will be recorded again. And finally, the participant 
will turn 45° and his orientation will be 90° from what it was initially, and the movements will be recorded 
once more. 

Each recording will last for 36 seconds, starting with a T-pose and then performing the indicated 
movement. 

Code  Action Name 

A1 Left upper limb extension 



Starting with the left arm close to the body, the participant will raise the arm straight up until it reaches 
shoulder height and then bend the arm upward. 
 
 
A2 Right upper limb extension 

Analog to A1 but using the right arm. 
 
A3 Side upper limb extension 

Analog to A1 but using both arms at the same time. 
 
A4 Curls 

Starting with the arms extended to the front, the participant will bring his hands close to his shoulders 
without moving the elbows. 
 
A5 Front arm rotation 

 
A6 Torso forward bending 

Starting with the arms on the hips, the participant will bend his torso forward. 
 
A7 Left front lunge  



 
A8 Right front lunge 

 
A9 Squat 

Starting with the arms extended to the front, the participant will perform a squat. 
 
A10 Side lower limb extension 

With the arms hanging in front of the body, the participant will alternately lift one leg to one side and 
then the other. 
 
A11 Front lower limb extension 

With the arms hanging next to the body, the participant will alternately lift one leg to the front and 
then the other. 

 

 

Walking 

After the rehabilitation movements the participants will walk back and forth in a straight line each in a 
different angle (0°, 45°and 90°) with respect to the radar.  

The markings on the floor will indicate the direction and the length of the walk. 

Each recording will last for 1 minute starting with a T-pose. 

 

 



 

 

Walking 0° (W0) Walking 45° (W1) 

The participant walks back and forth following a 
line parallel to the range axis. 
 

The participant walks back and forth along the 45° 
line with respect to the range axis marked on the 
floor. 
 

Walking 90° (W2) Random Walk (W3) 

The participant walks back and forth over a line 
perpendicular to the range axis. 

The participant walks freely inside the marked 
area.  

 

 

Functional movements 

These functional movements comprise some of the actions a healthy person must be able to perform in 
daily life. These movements are performed with the participant (and a chair in some cases) starting facing 
the radar. 

 

 

 



 

 

Code Action Name 

F1 Picking up 

The participant simulates the action of picking an object from the floor with a single hand.  The 
participant slightly bends his torso and his knees, then he simulates picking an object. He picks the 
objects alternating hands. 
 
F2 Standing up and sitting down 

The participant stands for approximately 2 seconds and sits on the chair for approximately 2 seconds. 
 
F3 Standing up, waking and sitting 

The participant stands with the chair at his back, walks 2m and goes back to sit on the chair, stands up 
and repeats. 
 
F4 Standing up, walking around the chair and sitting 

down 

The participant stands with the chair at his back, walks around the chair and sits back on the chair, 
stands up and repeats. 
 
F5 Dancing (Macarena) 

The participant will dance the macarena and jump to turn 45°, repeat the dance and jump to turn 90° 
ending with a jump in place. 



 

 

 

Free movements 

Finally, we will record free movements, where the participant can move without constraints in the marked 
area. 

Code Action Name 

F6 Boxing  

Boxing involves fluid and dynamic movements, incorporating punches and footwork that enable 
participants to navigate space freely. 

 

 

Last preparations and pos-processing 

At the end of the recording session, the marker suit is retrieved from the participant. 

The tracking data from Optitrack is saved.  

The tracking data is saved and reviewed to correct mislabeled markers, interpolate missing markers if 
needed, etc. Once the data has been corrected it is saved as .bvh files and the joints information is 
retrieved in a .csv. 

The radar pointclouds are obtained from the radar datacubes by using the CFAR algorithm. 

The radar pointclouds and the joint's locations are linked together in a dataset. 
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.2 Apendix B

Actions
Participants p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 Total

a0 151 128 151 186 0 221 231 241 151 161 171 171 1963
a1 411 495 497 477 503 496 484 486 502 496 490 898 6235
a2 437 514 501 493 498 511 495 480 511 491 500 482 5913
a3 445 525 524 483 503 507 498 499 508 506 0 478 5476
a4 429 518 476 478 512 515 497 505 507 499 489 484 5909
a5 438 523 515 505 513 532 524 520 509 509 444 505 6037
a6 416 514 498 501 499 516 472 930 496 510 484 487 6323
a7 468 1031 513 509 505 332 498 492 511 506 499 466 6330
a8 502 509 515 505 505 510 1006 472 510 513 509 473 6529
a9 430 518 502 518 513 516 501 456 509 442 496 391 5792
a10 0 514 508 514 515 521 511 503 513 510 497 498 5604
a11 0 513 516 509 515 515 501 513 505 503 505 476 5571
Total 4127 6302 5716 5678 5581 5692 6218 6097 5732 5646 5084 5809 67682

Table 1: Number of frames recorded within the action group 0, per participant and movement. The action
group 0 was recorded with the participants facing the radar.

Actions
Participants p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 Total

a0 151 151 210 199 211 381 211 191 171 171 171 166 2384
a1 510 532 417 508 497 520 493 488 0 509 495 498 5467
a2 512 523 513 507 513 514 488 494 508 507 500 501 6080
a3 512 511 513 511 516 501 480 492 514 515 499 495 6059
a4 469 489 495 496 489 514 496 467 496 507 458 435 5811
a5 520 518 520 510 511 535 519 501 517 515 513 510 6189
a6 508 500 499 505 506 516 496 472 509 514 496 499 6020
a7 462 0 516 507 509 512 493 488 513 510 510 486 5506
a8 507 0 516 498 509 477 499 467 510 511 506 498 5498
a9 504 518 514 469 515 497 503 951 500 509 492 492 6464
a10 517 516 514 503 512 512 505 504 515 503 466 387 5954
a11 518 512 468 498 507 494 508 503 515 508 456 440 5927
Total 5690 4770 5695 5711 5795 5973 5691 6018 5268 5779 5562 5407 67359

Table 2: Number of frames recorded within the action group 1, per participant and movement. The action
group 1 was recorded with the participants rotated 45◦ with respect to the radar.
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Actions
Participants p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 Total

a0 151 151 151 231 171 181 221 191 161 171 75 121 1976
a1 497 515 507 1003 506 490 494 914 510 508 503 502 6949
a2 472 509 513 506 0 492 492 489 510 495 504 504 5486
a3 502 509 519 506 485 490 492 490 516 514 474 503 6000
a4 470 492 501 473 503 486 497 499 498 505 497 468 5889
a5 502 515 524 514 512 502 507 518 531 505 473 511 6114
a6 491 513 516 510 994 485 511 497 505 504 495 500 6521
a7 438 506 521 513 501 498 506 508 436 512 506 475 5920
a8 478 512 513 515 506 494 502 474 504 502 506 483 5989
a9 469 502 482 504 505 497 499 485 509 511 416 457 5836
a10 492 514 0 506 493 496 489 465 477 512 504 490 5438
a11 509 962 518 508 502 441 486 509 509 508 461 509 6422
Total 5471 6200 5265 6289 5678 5552 5696 6039 5666 5747 5414 5523 68540

Table 3: Number of frames recorded within the actions action group 2, per participant and movement. The
action group 2 was recorded with the participants rotated 90◦ with respect to the radar.





Appendix A

Acronyms

HPC High Performance Computing

FAU Friedrich-Alexander-Universität Erlangen-Nürnberg

NHR@FAU Erlangen National High Performance Computing Center

DFG German Research Foundation

mmWave Millimeter wave

OMC Optical Motion Capture

TI Texas Instruments

RF Radio Frequency

FMCW frequency modulated continuous wave

MIMO multiple-input multiple-output

EM Electromagnetic

HPE Human Pose Estimation

IMU Inertial Measurement Unit

DNN Deep Neural Network

CNN Convolutional Neural Network



94 APPENDIX A. ACRONYMS

GNN Graph Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

MLP Multilayer Perceptron

FUSE Fast and Scalable Human Pose Estimation

MAE Mean Absolute Error

CFAR Constant False Alarm Rate

CA-CFAR Cell-Averaging Constant False Alarm Rate

CUT Cell Under Test

ML Machine Learning

AI Artificial Intelligence

DL Deep Learning

Lidar Light Detection and Ranging

Mars mmWave-based Assistive Rehabilitation System for Smart Healthcare

CSI channel state information

ReLU rectified linear unit

ELU exponential linear unit

SELU scaled exponential linear unit

GELU Gaussian-error linear unit

SGD stochastic gradient descent

FFT fast Fourier transform

PRI pulse repetition interval
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MSE Mean Squared Error

PCK Percentage of Correct Keypoints

MPJPE Mean Per Joint Position Error

VCO Voltage Controlled Oscillator
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