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AbstractÐThe accurate detection and quantification of ac-
tivities of daily life are crucial for assessing the health status
of palliative patients to allow an optimized treatment in the
last phase of life. Current evaluation methods heavily rely on
subjective self-reports or external observations by clinical staff,
lacking objectivity. To address this limitation, we propose a
radar-based approach for recognizing ADLs in a palliative care
context. In our proof of concept study, we recorded five different
activities of daily living relevant to palliative care, all occurring
within a hospital bed, from N=14 healthy participants (57 %
women, aged 28.6 ± 5.3 years). All movements were recorded
using two frequency-modulated continuous wave radar systems
measuring velocity, range, and angle. A convolutional neural
network combined with long short-term memory achieved a
classification accuracy of 99.8 ± 0.4 % across five cross-validation
folds. Furthermore, we compare our initial approach, which
takes into account all dimensions of the available radar data,
to a simplified version, where only velocity information over
time is fed into the network. While these results demonstrate
the high potential of radar-based sensing to automatically detect
and quantify activities in a palliative care context, future work
is still necessary to assess the applicability to real-world hospital
scenarios.

Index TermsÐactivities of daily living, radar, deep learning,
human activity recognition, palliative care

I. INTRODUCTION

Palliative care is a specialized, interdisciplinary medical do-

main that provides support to individuals with various diseases,

particularly cancer as well as cardiovascular, pulmonary, and

neurological conditions. It aims at managing symptoms and

improving patients’ quality of life (QoL) in their remaining

lifespan, rather than attempting to medically alter the course

of the diseases [1]. In order to allow an optimized individual

treatment, clinicians need to have the best possible knowl-

edge about the current state of health, symptom burden, and

lifetime prognosis. The health status of palliative patients is

typically evaluated through self-reports or external assessment

methods. In this regard, functional status and mobility play

an important role. Validated instruments for the assessment

are, for example, the Karnofsky index [2], a scale used to

assess symptom-related limitations of activity, self-care, and
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self-determination in patients with malignant tumors. Another

example is the Barthel index [3], which aims at measuring the

performance of patients while performing activities of daily

living (ADL) [4], that is routine self-care tasks that need to be

performed to fulfill basic human needs [5]. However, as these

established measures lack objectivity, they only allow a rough

approximation of the current health status [6]. Therefore, a

sensor-based and contactless assessment of ADL is desirable

in a palliative care setting.

One approach to automatically assess ADL can be achieved

by applying human activity recognition (HAR) techniques. In

this context, different sensor types (and combinations) are used

for data acquisition, while activities are automatically detected

using machine learning (ML) techniques. In the HAR context,

camera-based approaches have been researched intensively [7].

However, especially in the context of monitoring elderly

individuals or patients in a hospital setting, the usage of

cameras is limited due to privacy issues [8]. A promising

alternative is provided by wearable sensor-based technologies.

Previous work has successfully used accelerometers, together

with classical ML or deep learning (DL) approaches, to

track different patient activities, such as walking and standing

within a simulated hospital environment or at home [9], [10].

However, these approaches require one or more accelerometers

to be attached to or carried around the body. This imposes

a substantial burden in the palliative care context, which

is primarily focused on improving QoL in the last phase

of life [1]. Consequently, radar technology has emerged as

a promising contactless sensor for HAR in the healthcare

context, as it protects the visual privacy of the people being

captured. The radar-based fall detection of the elderly has

especially been researched in this regard [11].

Prior research has shown that the use of radar sensors within

palliative care is feasible and provides benefits over tradition-

ally employed methods, as it enables contactless monitoring

of vital signs with no impact on the QoL of patients [12].

In addition, the need for a contactless, sensor-based method

to, first, detect and, second, quantify the ADLs of palliative

patients, for example, regarding precision or speed, has been

addressed by our prior work [13]. This also included ex-

ploratory radar data analysis, which demonstrated the great

potential of radar technology in this context. Bhavanasi et

al. [14] presented a radar-based HAR approach for 10 daily

activities that take place in a hospital room environment. They

make use of two radar systems that are placed at different

locations in the room, each system measuring distance and
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Fig. 1: Measurement setup. (a) Picture of the measurement

setup including a hospital bed (1), a bed gallows (2), a desk

with a cup (3–4), two radar systems mounted on a tripod (5),

and an RGB camera (6). (b) Perpendicular arrangement of

both FMCW MIMO radars. (c) Examples of activities 1–4

performed during the study (Activity 5 is not shown).

velocity. The activity recognition was then performed using

deep convolutional neural networks (CNN). However, radar-

based ADL recognition of palliative patients to allow an

objective assessment of the functional status of patients has

not been researched thus far.

For that reason, we present a proof of concept for radar-

based detection of ADLs in the palliative environment and

used a DL algorithm for automatic activity classification.

We collected data from young healthy adults in a hospital

bed performing basic ADLs that correspond to the ADL

categories ambulating or feeding [5]. Therefore, this mea-

surement setting as well as the ADLs considered are es-

pecially relevant for palliative care. We used two multiple-

input multiple-output (MIMO) frequency-modulated contin-

uous wave (FMCW) radar systems that measure distance,

angle, and velocity. Based on these data, we trained a network

structure consisting of a CNN and a long short-term memory

(LSTM).

II. METHODS

A. Measurement Setup

Our measurement setup consisted of one hospital bed with

a tilted back support including a bed gallows, a desk with a

cup on it, two identical FMCW radars (Radarbook2, INRAS

GmbH, Linz, Austria) that form a one-dimensional MIMO

array mounted on a tripod, a video camera, and a synchroniza-

tion board (Fig. 1a). The radars were positioned at a height of

155 cm, and the line of sight was vertically tilted by 26°. The

array dimensions of the radars were positioned perpendicular

to each other (Fig. 1b).

B. Study Design

To assess the feasibility of radar-based ADL recogni-

tion in a hospital bed scenario, we collected data from

14 healthy participants (57 % women, aged 28.6 ± 5.3 years,

height 171.9 ± 9.9 cm). The study was approved by FAU’s

ethics committee (protocol #468 20 B). Written informed

consent was obtained from all participants prior to the study.

At the beginning of the study, participants were asked to lie

down in the bed. Afterwards, we asked them to imitate five

defined movements that are typically performed by patients in

a hospital bed (Fig. 1c): sitting up in bed without (Activity 1)

and with (Activity 2) the use of the bed gallows, drinking from

a cup placed on the side table (Activity 3), leaving the bed

(Activity 4), and turning over in bed (Activity 5). For activities

1 and 2 the starting position was defined by an unsupported

lower back. The end position was a supported lower back due

to the upper bed’s tilt angle. Thus, we asked all participants

to reposition themselves before starting activities 1 and 2,

respectively. Activity 3 was defined by reaching toward the

cup placed on the table, drinking from the cup, and placing

the cup back on the table. Activity 4 consisted of removing

the blanket from the legs and pushing the body towards the

side of the bed.

We asked participants to perform each activity for at least

five times before moving on to the next. The whole set of

movements was repeated three times, leading to each activity

being performed at least 15 times by each participant. All ac-

tivities were in the same duration range (Activity 1: 4.5 ± 0.8 s;

Activity 2: 5.7 ± 1.4 s; Activity 3: 8.9 ± 2.4 s; Activity 4:

6.8 ± 1.8 s; and Activity 5: 4.4 ± 1.3 s).

C. Radar Preprocessing

The MIMO FMCW radar systems used in our study operate

at a center frequency of f0 = 77 GHz with a bandwidth of

B = 2 GHz. Each system consists of two sending antennas

that send out sequences of frequency-modulated chirps (chirp

duration Tc = 320 µs, chirp repetition time Tr = 656 µs).

The chirps are received by each of the 16 receiving anten-

nas to enable the simultaneous measurement of a target’s

velocity (Doppler), distance (range), and angle with respect

to the radars’ position. Furthermore, it allows the resolving of

multiple targets in these dimensions [15]. The movement of

a human body can thus be seen as a dense arrangement of

moving targets that can be detected by the radar. Each radar

sensor yields three-dimensional data where the dimensions

describe antenna pairs, samples within one chirp, and chirps

over time.

For preprocessing, we first segmented the continuous radar

data stream into single movements using the time stamps

collected during the study. Afterwards, we divided the data

into multiple coherent processing intervals (CPIs) so that each

measurement contained a fixed number of chirps (Nc = 152)
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Fig. 2: Neural network architecture. (1) Projection of radar data cube of one time instance into three 2-d images. (2) CNN with

three layers. (3) Flattening of CNN outputs of both radars and concatenation into a feature vector. (4) Many-to-one single-layer

LSTM using the feature vector as input. (5) Fully connected layer. (6) Softmax activation function for calculating classification

probabilities for each activity.

before applying a 3-d fast Fourier transform (FFT) on each

CPI. This results in a 3-d tensor (also called radar data

cube) which contains information about the velocity, range,

and angle data of all targets within the object scene. The

use of two perpendicular radar systems allows us to compute

angular information from the horizontal (azimuth) and vertical

(elevation) planes simultaneously.

After computing two radar data cubes (one for each radar

system) per time step (CPI), we normalized the amplitudes to

the maximum occurring amplitude within one movement and

transferred them into a logarithmic scale. As the object scene

included multiple static targets that caused strong reflections,

we set the amplitude of all static targets to the minimum

occurring amplitude. Furthermore, we limited the extension

of the radar data cube to a range of 0.8–2.5 m, as well as

azimuth and elevation angles between −60–60°. To reduce the

dimensionality of our data, we performed a maximum intensity

projection along each axis of both radar cubes individually,

similar to the approach by Major et al. [16], where the authors

summed up all FFT bins along each axis. This resulted in six

2-d representations: two range–Doppler images, two range–

angle images, and two Doppler–angle images.

D. Classification of ADLs

After preprocessing, we sequentially fed all six 2-d radar

images obtained for each CPI into a neural network. It

consisted of a CNN in combination with an LSTM (Fig. 2).

Each 2-d image was convolved by an independent CNN with

three 2-d convolutional layers with 16, 32, and 64 kernels,

respectively. Each kernel had a size of 3x3. After each con-

volutional layer, we applied batch normalization, max-pooling

of size 3x3 and stride 3, and a rectified linear unit (ReLU)

layer. Afterwards, the outputs of the last convolutional layer

of both radars were flattened and concatenated into one linear

feature vector. This feature vector was then fed into a many-

to-one single-layer LSTM with a hidden size of 128, followed

by a fully connected layer. Finally, we applied the softmax

activation function to calculate the classification probabilities

for each activity. We optimized the model using a single

validation set separated from the training set (80/20 split). For

a defined number of epochs, we applied the validation set on

the current model and calculated the corresponding loss. Each

time a new minimum validation loss was found, we saved the

model and finally evaluated the best model on the test set.

E. Evaluation

We evaluated our approach by performing a five-fold cross-

validation (CV) that split our measurements into a training and

a test set for each fold. The split between training and test

data was 80 % to 20 %. In addition to the proposed approach

using data from the entire radar data, we performed a second

experiment where we only utilized Doppler information over

time. This means the data from the azimuth radar were

completely neglected and the data from the elevation radar

cube were summed up along the range and angle axes. This

approach is very similar to the frequently used spectrograms

for activity recognition tasks [11].

III. RESULTS

Since we asked participants to perform at least 15 repe-

titions for every motion, we obtained a total 1145 motion

samples from all participants with the minimum number of

samples for Activity 4 (n = 218). Our results yield an

accuracy of 99.8 ± 0.4 % across all CV folds for our originally



proposed approach using all dimensions of the radar data

cube. The overall confusion matrix is visualized in Fig. 3a.

Furthermore, we also evaluated the Doppler-only approach,

which yielded an accuracy of 98.5 ± 0.9 %. The corresponding

confusion matrix can be seen in Fig. 3b.
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Fig. 3: Confusion matrices for the classification using (a)

range, Doppler, and angle, and (b) Doppler-only.

IV. DISCUSSION

The results obtained from the study demonstrate the great

potential of deep learning in combination with radar-based

sensing for activity monitoring of palliative patients. The

movements we selected for our study are representative of

ADLs in this context. Nonetheless, it should be noted that

the movements differ greatly in the dimensions of angle,

velocity, and range over time (relative to the radar position).

For instance, the drinking movement (Activity 3) inherits a

characteristic motion in the azimuth’s dimension, whereas the

sitting up in bed using the gallows (Activity 2) is characterized

by a motion in the elevation’s dimension. During the getting

out of bed movement (Activity 4), the range to the radar

is reduced over time. Since the radar system used in this

study is particularly designed to resolve changes along these

dimensions, we expected our neural network architecture to re-

liably distinguish these activities. A reduction to only Doppler

information over time yielded promising results, but a slight

decrease in accuracy, which is mainly caused by misclassifying

Activity 5 as Activity 2. However, the study solely focused on

young, healthy individuals within a laboratory environment.

Palliative patients may exhibit different movement patterns

and physical limitations. Therefore, the speed and precision

of motions might vary strongly over different patients, which

is why a purely velocity-over-time-based DL approach might

not be robust enough. Moreover, our study only monitored a

set of five specific ADLs. This limited scope raises questions

about the generalizability of our results to a broader range

of movements commonly observed in palliative care settings.

Furthermore, the method employed in the study involved

manually cutting out movements from the continuous data

stream. Therefore, plans for future research involve collecting

a more diverse and representative data set and an automatic

segmentation approach to allow a smooth transition of this

proof of concept to real-world scenarios of palliative care.

V. CONCLUSION

In this paper, we presented a proof of concept for a radar-

and DL-based recognition of ADLs in the hospital bed that

are relevant in a palliative care setting. Our results show

that the combination of two MIMO FMCW radar systems

together with a neural network consisting of a multi-layer

CNN together with an LSTM yields excellent recognition

accuracy and demonstrates the great potential of our approach

for an objective assessment of current health states of patients.

In the future, we plan to evaluate our pipeline on data from

actual palliative patients in the hospital. Furthermore, not only

the detection of ADLs, but also the radar-based quantification

of these regarding velocity and precision should be researched,

as this is also of interest when assessing the current state of

health of palliative patients.
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