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Übersicht

Schlaf ist eine wichtige physiologische Funktion, die sich nicht nur auf eine Vielzahl täglicher
Aktivitäten wie Lernen, Produktivität und Aufmerksamkeit auswirkt, sondern auch mit zahlreichen
Krankheiten wie Bluthochdruck, Schlaganfall und Herzerkrankungen in Verbindung gebracht
wird. Daher ist eine genaue Schlafüberwachung für viele Anwendungsszenarien in Medizin und
Psychologie von entscheidender Bedeutung. Da Schlaflabore sehr kosten- und ressourceninten-
siv sind, stellen tragbare Sensoren eine vielversprechende Alternative für eine nicht-invasive
Schlafüberwachung zu Hause dar. Ziel dieser Arbeit war es, mehrere Machine Learning- und
Deep Learning-Algorithmen systematisch mit etablierten, heuristischen Algorithmen auf einem
Benchmark-Datensatz zu vergleichen. Außerdem wurde untersucht, ob zusätzliche Biosignale, wie
Herzratenvariabilität, die Klassifizierung verbessern können. Die Ergebnisse zeigen, dass ein mul-
timodaler Ansatz, der Bewegungs- und Herzinformationen kombiniert, die beiden monomodalen
Ansätze übertrifft. Die beste Klassifizierung wurde für ein multimodales LSTM gefunden, das
eine Genauigkeit von 83:7� 9:6% erreichte, während die machine learning Algorithmen etwas
schlechter abschnitten. Die heuristischen Algorithmen schnitten am schlechtesten ab.
Um diese Algorithmen in einer realen Umgebung zu bewerten, wurde ein neuer Datensatz mit
IMU- und EKG-Daten und einer klinisch validierten Schlafmatte als Referenz von 42 Teilnehmern
(85 Nächte) aufgenommen. Anhand dieses Datensatzes wurde untersucht, ob die Verwendung von
inertialen Messeinheiten (Inertial Measurement Unit (IMU)) anstelle von aggregierten Aktigra-
phiedaten die Schlaf/Wach-Erkennung weiter verbessern kann. Dabei übertraf der IMU-basierte
Ansatz mit XGBoost (XGB)-Klassifikator den auf Aktigraphie basierenden Ansatz und erreichte
ein Cohen’s � von 0:59� 0:27 (vs. � = 0:38� 0:24). Außerdem wurde die Erkennungsrate von
IMU- und Heart Rate Variability (HRV)-basierter Schlaf/Wach-Erkennung verglichen, wobei
der multimodale Ansatz im Vergleich zum monomodalen, bewegungsbasierten Ansatz nicht von
zusätzlichen kardialen Informationen profitieren konnte. Da teilnehmerspezifische Einflüsse
auf die Klassifizierungsgenauigkeit angenommen wurden, wurden verschiedene demografische
Merkmale und Eigenschaften untersucht, die statistisch signifikante (p < 0:05) Einflüsse auf die
Erkennungsrate ergaben, beispielsweise für das Geschlecht und die Aufnahmequalität.
Die Ergebnisse zeigen, dass die Verwendung von IMU-Rohdaten anstelle der Aktigraphie für eine
bessere Schlaf-/Wach-Erkennung mit tragbaren Sensoren vorteilhaft sein könnte. Jedoch müssen
weitere Forschungen durchgeführt werden, um mehr Daten aus der realen Welt zu sammeln, die
zum Vergleich verschiedener Algorithmen zur Schlaf-/Wach-erkennung in einem realistischeren
Szenario verwendet werden können. Des Weiteren sollte der Nutzen weiterer Biosignale, wie die
aus EKG-Daten, oder der Bewegung des Brustkorbs extrahierte Atmung, untersucht werden.
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Abstract

Sleep is an important physiological function that does not only affect a variety of daily activities
like learning, productivity, and attention, but is also linked to multiple diseases such as hyper-
tension, strokes, and heart disorders. For that reason, accurate sleep monitoring is crucial for
many application scenarios in medicine and psychology. As sleep laboratories are very cost- and
resource-intensive, wearable sensors are a promising alternative for unobtrusive sleep monitoring
at home. The aim of this work was to systematically compare several state-of-the-art machine
and deep learning algorithms with traditional heuristic algorithms on a large benchmark dataset
that was collected in a controlled laboratory environment. It was further assessed if additional
data modalities, such as HRV, are able to boost the classification. The results demonstrate
that a multimodal approach combining movement and cardiac information outperforms both
monomodal approaches. The best classification performance was found for a multimodal LSTM,
which achieved 83:7� 9:6% accuracy, while the machine learning algorithms performed slightly
worse. The heuristic algorithms performed worst.
To evaluate these algorithms in a real-world setting, a new sleep dataset containing IMU and
ECG data and data from a clinically validated sleep mat as ground truth of 42 participants (85
nights) was collected. Using this dataset, it was examined whether using raw IMU data instead of
aggregated actigraphy data can further improve sleep/wake classification performance. Thereby,
the IMU-based sleep/wake detection using XGB outperformed the actigraphy-based approach
reaching a Cohen’s � of 0:59 � 0:27 (vs. � = 0:38 � 0:24). Furthermore, the performance of
IMU- and Electrocardiogram (ECG)-based sleep/wake detection were compared in mono- and
multimodal approaches. Here, the multimodal approach was not able to benefit from additional
cardiac information compared to the monomodal, motion-based approach. Because subject-
specific influences on classification performance were hypothesized, different demographics
and characteristics were examined and yielded statistically significant (p < 0:05) influences on
classification performance, for instance, for gender and recording quality.
The results of this thesis show that the usage of raw IMU data instead of actigraphy might be
advantageous for better sleep/wake detection using wearable sensors. However, further research
needs to be conducted by collecting more real-world data resulting in larger datasets that can be
used to benchmark different sleep/wake detection algorithms in a more realistic scenario to obtain
more generalizable results. Furthermore, the benefit of adding further unobtrusive biosignals,
such as respiration, extracted from ECG data or chest movement, should be examined.
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Chapter 1

Introduction

Sleep is an important physiological function that affects a variety of daily activities like learning,

productivity, attention, or memorizing [Cho10]. Insuf�cient sleep is directly linked to a series

of diseases like diabetes or hypertension and causes a higher risk of strokes and heart disor-

ders [Ban07, Cho10]. For that reason, sleep monitoring is crucial for many application scenarios

in medicine and psychology because it can help to identify the causes for sleep disorders, thus

enabling to initiate adequate therapies. The gold standard approach for sleep monitoring and

the detection of sleep disorders isPolysomnography (PSG), which is typically performed in a

sleep laboratory [Ban07, Che20b]. In a PSGexamination, different physiological signals like

Electroencephalogram (EEG), ECG, pulse, and respiration are assessed during sleep, as well as

body position and muscle activities of limbs [Bar02]. Usually,PSGrecordings are divided into

30s or1 min epochs which are then labeled by a trained professional that assigns a sleep or wake

stage to each epoch. The classi�cation of sleep stages can follow different conventions, but the

most common classi�cation includes �ve different stages: Wakefulness,Rapid Eye Movement

(REM), and three different categories ofNon-Rapid Eye Movement (NREM), known as N1, N2,

and N3 [Daf18]. The high precision ofPSGallows a good and reliable diagnosis. However, it

also suffers from several drawbacks. For instance, longitudinal measurements are not feasible

sincePSGis very cost- and resource-intensive. Furthermore, the unfamiliar laboratory setting can

in�uence the sleep quality of patients [Ibe04].

In contrast, sleep diaries are inexpensive and easy to acquire for large-scale datasets. However,

sleep diaries lack accuracy because of imprecise data during the night, poor awareness of exact

sleep and wake times, as well as a subject-speci�c bias [Ber97].

A promising alternative to the gold standard method for sleep/wake detection is provided by

wearable sensors. The advantage of this approach is that wearable sensors experience wide
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popularity since they are broadly accepted in the population, unobtrusive, and low-cost. The

advantages enable longitudinal studies, thus potentially allowing to develop better diagnostic

approaches. Moreover, individuals can follow their regular daily habits and, most importantly

sleep in their own bed, which makes sleep monitoring in a more realistic setting possible.

During sleep, body movements decrease compared to a wakeful state [WF83]. Hence, assessing

human activity is a promising candidate for unobtrusive sleep detection. An established approach

to assess body activity is via actigraphy [Sad11]. Actigraphy is an accelerometer-based aggre-

gation of movement in time windows of30 s or1 min. In medical applications, Actigraphy is

used since the 1950s. Since then it rapidly developed into a valuable asset for sleep medicine

clinicians [Mar11].

Algorithms for actigraphy-based sleep/wake detection have been developed over the past four

decades. In the beginning, most algorithms were of heuristic nature, de�ning activity rules when

individuals are likely to be sleeping or not. In the past years, the rise of machine learning and deep

learning techniques has also led to researchers developing more advanced, data-driven algorithms

for sleep/wake detection.

An alternative to perform movement-based sleep/wake detection is to useIMU sensors. In con-

trast to Actigraphy,IMU sensors are higher sampled and offer different sensing modalities like

acceleration and angular velocity. This opens up the potential for �ner detection of movements,

and thus, for a more precise classi�cation [Bor14, Pal19, Che20b].

However, not only sleep but also cardiac activity changes during sleep. DuringNREM-phases,

blood pressure decreases by10 %concurrently with a lower heart rate [Sil13]. Therefore, combin-

ing movement and cardiac information allows to perform sleep staging, i.e., identifying different

sleep stages, instead of solely detecting sleep and wake phases [Pal19, Che20b, Zha20, Hag21].

In order to determine the best set of algorithms for sleep/wake detection, it is important to sys-

tematically compare different algorithms with different input modalities on a large-scale, diverse,

and publicly available dataset. This ensures comparability between different approaches and

avoids the risk of study-speci�c in�uences. One dataset allowing the benchmarking of different

algorithms and different input modalities is theMulti-Ethnic Study of Atherosclerosis (MESA).

MESA was a multi-centric collaborative longitudinal investigation of factors associated with the

development of subclinical cardiovascular disease between 2000 and 2012. It included 6,814

men and women of different age and ethnicities. Between 2010 and 2012, 2,237 participants

of this study were also enrolled in a sleep study, containing actigraphy and heart rate data with

synchronized full overnight unattendedPSGrecordings as well as sleep diaries [Che15, Zha18].
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However, the dataset only contains actigraphy data and no rawIMU data, thus allowing no

conclusions on whether rawIMU data might increase sleep/wake detection accuracy.

The goal of this master's thesis is therefore to implement state-of-the-art sleep/wake detection

algorithms of different types and input modalities and compare these to newly developed algo-

rithms using the “MESA Sleep” benchmark dataset [Che15, Zha18]. Furthermore, this thesis

will evaluate the developed algorithms on real-world sleep data by collecting a new dataset with

wearableIMU andECG sensors while using a clinically validated sleep mat (Withings Sleep An-

alyzer, Issy-les-Moulineaux, France) as reference. Concurrently, this thesis will identify whether

sleep/wake detection performance can be further improved by different input modalities, e.g, by

using features computed from rawIMU data instead of aggregated actigraph data. Furthermore,

the performance ofIMU - andECG-based sleep/wake detection will be compared in mono- and

multimodal approaches.

The structure of this thesis is organized as follows: Chapter 2 presents relevant work of recent

research in the �eld of sleep/wake detection, while Chapter 3 outlines the medical background

necessary for this thesis. This Chapter includes especially the assessment of body parameters

during sleep as well as the connection of sleep disorders with widespread diseases. In Chapter

4, the technical fundamentals are presented. Chapter 5 introduces the MESA Dataset, as well

as all methods which were used to benchmark the algorithms. Chapter 6 focuses on the study

conducted to acquire real-world data and its processing. The evaluation metrics are presented in

Chapter 7, followed by the results in Chapter 8. The discussion of the outcomes of this thesis will

be presented in Chapter 9 while the conclusion and outlook conclude this thesis in Chapter 10.





Chapter 2

Related Work

Over the past decades, many researchers worked in the �eld of sleep/wake detection. To get a

good overview of the state-of-the-art in research, it is practical to group the publications according

to the algorithm type and the input modalities that were used to predict sleep and wake states.

Grouping sleep/wake detection algorithms according to their algorithm type yields three cate-

gories: heuristic, rule-based algorithms, traditional machine learning-based algorithms, and deep

learning-based algorithms. Prominent heuristic algorithms have been developed by Webster et

al. [Web82], Kripke et al. [Kri10], and Cole et al. [Col92]. These threshold-based algorithms work

with actigraph data convolved with a windowed kernel to gain time dependency. Another rule-

based algorithm for distinguishing sleep and wake phases was developed by Sadeh et al. [Sad94].

In their paper they presented an approach to classify sleep and wakefulness using wrist-worn

actigraphy and compared the results of the device worn on the dominant and non-dominant hand.

Sazonov et al. [Saz02, Saz04] published an accelerometer-based algorithm to detect sleep/wake

states of infants as well as their current position in the crib. The estimation of sleep/wake is based

on logistic regression and was evaluated againstPSG. These traditional, rule-based approaches

produced promising results with accuracies greater than80%. Except of Sazonov's work, all

presented heuristic algorithms suffer from a considerable overprediction of sleep that is expressed

in high precisions of over90%and low recalls of about70%.

However, these heuristic algorithms are static and can, therefore, barely be adapted to different

subject-speci�c sleep patterns. To get a better representation of different sleep characteristics,

many researchers applied classical machine learning with multiple input features to sleep data.

Tillmanne et al. compared anArti�cial Neural Network (ANN) and decision trees with the

approaches of Sazonov et al. and Sadeh et al. in a study of 354 young children who wore ankle

actimeters. Their results show thatANNs and decision trees are able to improve the quality
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of sleep/wake estimation [Til09]. Another publication of Orellana et al. aimed to address the

problem of overestimating sleep by focusing on balancing sensitivity and speci�city, rather than

accuracy, with anANN and a balanced dataset [Ore14]. To address this imbalance, Domingues et

al. [Dom14] also developed an approach that combines two linear discriminant classi�ers re�ned

by aHidden Markov Model (HMM). To overcome situations wherePSGis hard to acquire and

supervised methods are dif�cult to train, Li et al. developed an unsupervised sleep/wake detection

approach usingHMM . They trained anHMM algorithm that was tested on 43 individuals and

compared the results to the Actiwatch and its proprietary algorithm, as well as to theUniversity

of California San Diego (UCSD)algorithm that is of heuristic nature. The results showed that

they were able to improve the Cohen's� statistic to0:446compared to the Actiwatch algorithm

(0:399) and the UCSD algorithm (0:311) [Li20].

One recent innovative approach to further improve sleep/wake detection performance is to use

ensemble deep learning with accelerometer andHRV data. Chen et al. [Che20b] proposed a

Local Feature-Based LSTM (LF-LSTM)network that was able to outperform all benchmark ap-

proaches. Another work by the same research group proposes the implementation of a multimodal

attention-based Convolutional-Neural-Network-Long Short-Term Memory (LSTM)approach

using accelerometer andHRV data [Che20a]. To consider the distinct contributions of both

modalities, the attention-based algorithm dynamically adjusts the feature importance of both

sensors and enables the full usage of all information. With this particular network architecture,

the authors were able to outperform all benchmark approaches including theLF-LSTM that was

presented in their preceding publication [Che20a, Che20b]. Although the results of the presented

deep learning approaches are promising, they were just validated against a sleep-monitor headband

as well as a MotionWatch, but not validated against the gold standardPSG. In contrast, the work

of Haghayegh et al. presents aPSGvalidated comparison of different deep learning approaches

includingConvolutional Neural Network (CNN)and Deep ConvolutionalLSTM. The best model

they examined was theCNN with batch normalization [Hag20]. Li et al. published a sleep stage

algorithm that is based onECGmeasurements and validated againstPSG. They trained aCNN

with ECG-derived respiration andHRV signals and achieved results of75:4%accuracy which is

one of the highest non-electroencephalographic outcomes in sleep staging [Li18].

Another way to group sleep/wake detection algorithms is to divide them according to their input

modalities. A recent systematic review of different wearable sensing technologies for sleep-stage

and sleep/wake detection was published by Imtiaz et al. [Imt21]. Based on a review of 90 papers,

they identi�ed 13 different input modalities used in clinical and home monitoring environments.

Due to the highest agreement rates, the most common sensing modality isEEG. However, in the
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speci�c case of home monitoring, the most prominent input modalities are motion andHRV data.

Lauteslager et al. developed a radar-based sleep staging system that extracts both body movement

and respiratory features to distinguish different sleep phases. They found that their approach per-

formed better in terms of accuracy than two commercially available wrist-worn sleep monitoring

devices [Lau20]. A non-contact biomotion sensor for the detection of sleep/wake patterns was

used by De Chazal et al. [DC11]. The principle of this approach was to measure the re�ection of

radio waves to detect body and respiratory movements. The major advantage of that approach is

that it is completely unobtrusive and contactless since no sensors are worn directly on the body.

The results obtained with the sensor system are comparable with the performance of actigraph-

based approaches although they were not validated against each other in the same study. Sano et

al. presented a multimodal sleep/wake detection approach that combined features of biosignals

with phone usage statistics. They found that time was one of the most important features, though

irregular naps and unusual day routines degraded the performance [San19].

One of the most widely used input modality in home monitoring is actigraphy [Imt21]. Jean-

Louis et al. compared the performance of sleep estimation using movement data acquired by

two different actigraphs. In their study, both actigraphs worked comparably, suggesting that the

usage of different actigraph devices does not have a major impact [JL01]. Because three-axial,

linear accelerometry is sampled at a high rate, sleep estimation reliability might improve in

comparison to low-sampled actigraphy which cannot exploit full movement information. To

provide ongoing studies with backward comparability, te Lindert et al. examined if it is feasible to

acquire movement data via high sampled three-axial accelerometry and transform it into traditional

activity counts. They found a good agreement between the estimated and the measured movement

counts. Furthermore, they stated that the usage of accelerometers avoids the risk of brand-speci�c

incompatibility and showed that the agreement of two accelerometers is higher than the agreement

of two actigraphs [tL13].

Another widely spread input modality is cardiac-based. According to the review of Itmaz et

al., most of the cardiac data is acquired viaPhotoplethysmography (PPG)[Imt21]. A sleep

stage detection system based onECGsignal measurements was proposed by Widasari et al. The

decision-tree-based Support Vector Machine that only used features of theHRV spectrum gained

a remarkable accuracy of 89.2% [Wid18]. Lewicke et al. compared the prediction performance of

a Learning Vector Quantization (LVQ) neural network using only actigraphy or onlyHRV. They

found better overall agreement using actigraphy, however, being awake was better recognized

with the heart-based approach [Lew04].
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Due to the widespread usage with high prediction rates, it is a promising approach to combine

these two modalities. Devot et al. investigated the achievement of adding cardiac and respiratory

information to movement recordings. They stated that the multimodal approach may improve

the classi�cation result for sleep/wake classi�cation [Dev10]. De Zambotti et al. examined

the performance of commercially available �tness trackers that estimate sleep, using activity

as well asHRV in different works. Their results were validated againstPSG. The authors

found a high sensitivity for detecting sleep, but a low prediction rate of wake epochs during the

night [dZ15, dZ16]. Haghayegh et al. evaluated their recently presented algorithm with different

combinations of input modalities including activity counts as well asHRV features in different

epoch lengths. They found that the combination ofHRV and actigraphy improves the performance

compared to the monomodal approaches. They further stated that a less granular epoch length

leads to better agreement rates [Hag21].

Even though the presented results gain high prediction rates, one of the major problems in

sleep/wake detection research is the limited comparability between different works due to small

studies and differing study conditions. For instance, it is way easier to reach high agreement rates

in longitudinal studies that include day and night, rather than only night. Due to considerably

increased movement in daily activities, epochs of wakefulness over the day are easy to predict

and gain a higher overall accuracy. Furthermore, a difference in study-speci�c parameters such

as epoch length or device can have a large impact on results. For this reason, it is of particular

importance to systematically benchmark different algorithms and different input modalities on a

large standardized dataset.

Hence, Palotti et al. [Pal19] compared a large quantity of state-of-the-art heuristic, machine

learning, and deep learning algorithms for sleep/wake detection on theMESA Sleep dataset which

contains more than 2,200 subjects. They also compared different study designs, including an

all-day as well as a night-only approach. Their results show that the all-day approach achieved a

better result in all metrics due to its high estimation performance during the day. Furthermore, the

deep learning approaches had the highest accuracy, followed by the machine learning algorithms,

whereas the traditional heuristic algorithms performed the worst. When evaluated only for

nighttime, all algorithms except from Sazonov overestimated sleep, while theLSTM network

performed best [Pal19]. Zhai et al. implemented different state-of-the-art machine- and deep

learning algorithms to estimate sleep stages in different subdivisions usingHRV and actigraphy

in single- and multimodal approaches on the same benchmark dataset as Palotti et al. They found

that the estimation performance decreased from84:4%for sleep/wake detection to63:7%for sleep

stage prediction, i.e., attempting to distinguish wake,REM as well as N1-3 stages. For sleep/wake
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detection, they found no improvement between the actigraphy-only and multimodal approaches,

however addingHRV features considerably improved classi�cation accuracy for sleep staging.

The monomodal approach using onlyHRV features performed worse in all tasks [Zha20].





Chapter 3

Medical Background

3.1 Physiology of Sleep

For a long time, sleep was considered to be a simple passive state to recover for the next day.

Since the second half of the 20th century, it has become clear that sleep is a highly complex

physical state involving a huge amount of brain activity. Sleep quantity as well as sleep quality

considerably contribute to our physical and mental well-being and thus have a major impact on

our quality of life [Sta05].

The underlying mechanism of sleep is determined by genetics. For that, it is different for each

individual but stable from one night to another. This mechanism is regulated by cardiac rhythm

and the intensity of brain activity [PH13].

Sleep is no homogeneous process [Tra14]. According to theAmerican Academy of Sleep

Medicine (AASM), sleep can be divided into two fundamental types:REM, which is associated

with active dreaming, andNREM that can be further divided into the three stages N1-N3, whereas

N1 describes light sleep with conjugate reasonably regular sinusoidal eye movements and a

low amplitude of brainwaves from4 to 7 Hz. To classify sleep as N2, one or more trains of

sleep spindles have to occur. A sleep spindle is a train of brain waves with a frequency from

11 to 16 Hz and a duration of more than0:5 s. N3, which is also refereed as the deep sleep

phase, is characterized by slow brain waves of0:5 to 2 Hz [Ibe07, Mos09]. Throughout the

different sleep stages, a lot of body functions are diminished. EspeciallyNREM sleep phases

are characterized by a decrease in heart rate, blood pressure, breathing rate, and body core

temperature [Mos09, Cho10, PH13, Sin15, Car16].

The actual gold standard to assess sleep isPSG. It consists ofEEG to assess brain activity,

Electromyography (EMG)to measure muscle activity of the limbs,Electrooculography (EOG)
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Figure 3.1: Example hypnogram of a healthy adult.

to track eye-movement activity as well asECGto examine changes in cardiac activity. Further

parameters are pulse oximetry asessed by a �nger or ear clip as well as respiration measures

acquired by a stretch belt [Bar02, Sta05]. Typically, PSGrecordings are staged in 30s epochs

according to theAASM criteria [Sta05, Mos09, Car16]. The sleep process over night is usually

visualized in a hypnogram, which is a graph that represents sleep stages as a function of time.

Figure 3.1 depicts a typical hypnogram of a heatly adult.

In a normal night, the sleep process consists of repetitive, but slightly changing sleep cycles, and

lasts about 8 hours. Typically, there is a deep N3 sleep phase of about one hour shortly after

falling asleep, followed by alternating phases ofNREM andREM sleep at60� 90min intervals

throughout the rest of the night [Car16] [Sta05]. Usually, most of the deep N3 phases occur in

the �rst part of the night, whereasREM sleep predominates the second part of the night [Car16].

Overall,REM sleep accounts for20� 25%of the night, whileNREM sleep represents75� 80%

of the sleep phases [Sta05].
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3.2 Sleep Disorders

It is well known that suf�cient sleep is essential and sleep deprivation resulting either from lifestyle

or from sleep disorders causes short- and long-term health consequences [Cho10]. Short-term

effects of slep deprivation are present in a reduced ability to focus or to solve complex tasks, lower

productivity, and thus reduced quality of life. Long-term consequences include a higher morbidity

and mortality as well as a higher risks for several diseases like obesity, diabetes, strokes, and

coronary artery diseases [Ban07, Cho10, PH13]. While lifestyle-induced sleep deprivation can be

easily remedied, sleep disorders are highly complex diseases. Several epidemiological studies

showed that sleep problems are common in the population [Sin15]. According to a report of the

National Center of Sleep Disorders Research,35%of the population in the USA have problems

falling asleep, maintaining sleep, and suffer from awakening too early in the morning [oSDRU93].

Thereby, the four most common sleep problems in society are excessive daytime somnolence,

insomnia, abnormal movements or abnormal behaviors during sleep, and an inability to sleep at

the desired time [Cho10, Sin15].

However, most of the sleep problems are not relevant from an acute medical perspective as they

need to be treated by a physician. To assess patients with serve sleep disturbances, physical

examinations are undertaken, followed by an evaluation of treatment history and laboratory

tests [Cho10]. Furthermore, it is of particular importance to study the family disease history,

because several sleep diseases have a genetic component [Seh11]. Symptoms that occur when the

patient is lying in the bed may suggest a diagnosis ofRestless legs syndrome (RLS), a widespread

movement-induced sleep disturbance with a strong genetic component [Seh11]. RLS is associated

with sensory symptoms like unpleasant crawling, burning, aching, or itching sensations that

mostly occur between the knees and ankles. As the symptoms are typically noted when patients

are sitting and lying, these conditions have a major impact on sleep initiation although sleep

interruptions can be a problem, too [Cho10, Sin15].

The most common sleep disorder in medical treatment isInsomnia (INS). Individuals suffering

from INS mostly experience a lack of sleep time, triggered by dif�culties to initiate and maintain

sleep as well as early-morning awakenings. AcuteINS may be associated with acute stress, but

commonly, insomnia cases are chronic [Cho10].

To assess sleep diseases and their severities, laboratory tests need to be conducted. The most

important laboratory tests are an overnightPSG, as described in Section 3.1, andMultiple Sleep

Latency Test (MSLT). MSLT de�nes a sequence of sleep latency tests to provide an objective

measure of daytime sleepiness [Cho10, Sin15]. For instance, the presence of twoREM phases

shortly after falling asleep or a sleep onset latency of less than8 min suggests a diagnosis of



14 CHAPTER 3. MEDICAL BACKGROUND

narcolepsy, that is associated with excessive sleepiness at daytime [Cho10, Sin15].

TheApnea–hypopnea Index (AHI)is a commonly used score to assess the severity and frequency

of apneas and hypneas. The scores usually depend on the air�ow and oxygen desaturation,

however, there are no unique criteria to de�ne hypopneas in theAHI [Man01]. The de�nition

used in this work is provided1.

Additionally to this techniques, it may be useful to use standardized questionnaires about usual

sleep behaviour to assess sleep quality as well as sleep disturbances longitudinally [Sin15].

Commonly used questionnaires for that are thePittsburgh Sleep Quality Index (PSQI)for

adults and thePediatric Daytime Sleepiness Scale (PDSC)that assesses daytime sleepiness in

children [Buy89, Dra03, Sin15]. In this work, thePSQI was used, providing values from 0-21,

with PSQI values above �ve indicating poor sleep quality. TheMESA dataset, used in this work

employed theWomen's Health Initiative Insomnia Rating Scale (WHIIRS)questionnaire, which

is a �ve-item scale evaluatingINS symptoms. This score ranges from 0 to 20, with scores above

nine indicating aINS diagnosis [Lev03].

1https://sleepdata.org/datasets/mesa/variables/ahia0h4a [Resc]
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Fundamentals

4.1 Actigraphy

Within the last decades, the technical characteristics of batteries, sensors, and digital data storage

developed, and thereby also the usage of wearable devices became increasingly popular since

data quality, battery runtime and on-device storage drastically increased [LT19]. This opened

up the possibility to transfer sleep medicine partially into the patients' homes [Mar11]. A major

advantage of this development is that wearable devices are more reliable and have less subjective

information compared to sleep questionnaires.

Figure 4.1 shows a movement recording via wrist-worn actigraphy, acquired with concurrent

PSG. As depicted, high activity counts correlate with wake phases which opens the possibility to

estimate sleep/wake states from movement data.

The general working principle of actigraphy is to aggregate physical movement that is sampled

several times per second in epochs of30s or1 min, whereas sampling- and epoch rates can be

set by the investigator. As illustrated in Figure 4.2, the three commonly used methods to extract

activity counts areTime Above Threshold (TAT), Zero Crossing Mode (ZCM), andDigital

Integration Mode (DIM). TheTAT method assesses the time when the movement is above a

certain threshold, whereas theZCM method accounts the number of times the signal crosses zero.

However, both methods neither take amplitude nor acceleration into account which potentially

cause high-frequency artifacts to be counted as movement. In contrast,DIM integrates over the

highly sampled input signal and thereby considers both the amplitude and acceleration, but not

the duration or frequency of the input signal. For that reason, some actigraphs use more than one

method to cover the weakness of one single method [Sto17].
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Figure 4.1: Activity counts with concurrentPSGacquisition.

To record movements during sleep actigraph devices can be worn on wrist, chest, or other

body positions in an unobtrusive way. This modality is used frequently in sleep medicine because

it provides information about the sleep habits of individuals in their natural environment [Mar11].

In 2007, a report of theAASM supported the usage of actigraphy for clinical applications and

particularly for the diagnosis and evaluation of insomnia, hypersomnia, and obstructive sleep

apnea [Mor07]. However, actigraphy has some limitations in sleep medicine. When assessing

sleep, actigraphy tends to overestimate sleep due to a lack of movement in short periods of wake-

fulness. Moreover, different sleep phases cannot be distinguished by movement alone [Mar11].

Therefore, multimodal approaches includingECGor EEG may offer a better performance [Imt21].

Another major drawback is the limited comparability due to many manufacturers and closed-book

algorithms [Sad11].

To allow researchers to compare the results of accelerometer-based studies with ActiGraph-based

studies, Brønd et al. [Brø17] developed an algorithm that converts raw accelerometer signals

into activity counts for the most widely used device ActiGraph. To ensure compatibility with

the Nyquist-Shannon sampling theorem, the authors applied an aliasing �lter to the raw signal.

In a second step, a frequency band-pass �lter was applied. The coef�cients of the �lter were

extracted from the frequency response, measured from the original ActiGraph. To �lter high and

low frequencies, the data was truncated at 2.13 g and convoluted with a dead-band �lter of0:068g.

After conversion into 8-bit resolution, the activity counts were accumulated in all window sizes,
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Figure 4.2: Methods to process movement data to actigraphy, modi�ed from [Sto17]

whereas the authors present activity counts sampled at1 Hz. To validate their algorithm, the

authors conducted a 24 h free-living study with accelerometer and ActiGraph worn on the right

hip in an elastic belt. They found that the algorithm enables a conversion with a Cohen's� of

0:945, indicating an almost perfect agreement [Brø17]. However, the algorithm was validated

with acceleration sensors sampled at30Hz. The same research group published a paper which

indicates that the usage of sampling rates different than30Hz leads to considerable errors that

researchers have to be aware of [Brø16].

4.2 Sleep Parameters

In order to obtain relevant information about the sleep habits of individuals, various sleep statistics

can be applied, which are frequently used in the literature [Pal19, Li20, Hag21]. In this work, the

usage of sleep statistics enables to �nd more information about classi�cation performance for

different sleep patterns like sleep onset or the time awake during the night. The following section

lists the sleep statistics calculated and evaluated in this work:
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• Total Sleep Duration (TSD)is the total duration spent sleeping, i.e., the duration between

the beginning of he �rst sleep interval and the end of the last sleep interval in minutes.

• Net Sleep Duration (NSD)denotes the total time actually sleeping in minutes.

• Sleep Ef�ciency (SE)is de�ned as the ratio of Net Sleep Duration and Total Sleep Duration

in percent.

• Sleep Onset Latency (SOL)is the time difference between going to bed and the beginning

of the �rst sleep interval in minutes.

• Wake after Sleep Onset (WASO)is the summation of all epochs being awake between the

�rst sleep interval and the last sleep interval.

4.3 Sleep/Wake Detection Algorithms

With the development of wearable sensors it became increasingly popular to extend sleep medicine

with a home monitoring assessment. The acquired data can then be processed using different

algorithms for sleep/wake prediction. Generally sleep/wake detection algorithms can be grouped

into three concepts: Heuristic algorithms, machine learning algorithms and algorithms based

on deep learning. These algorithms differ in the concept of classi�cation as well as the input

modalities that can be used. Figure 4.3 gives an overview about the algorithms implemented for

this work and the following sections will present the algorithms in detail.

4.3.1 Heuristic Algorithms

In the initial phase of actigraphy-based sleep assessment, researchers developed various algorithms

to predict sleep and wakefulness. One of the �rst actigraphy-based algorithms was published

by Webster et al. [Web82] in the early 1980s. They recorded an actigraphy dataset which was

sampled with one activity count per minute, and developed an heuristic Formula (see Equation 4.1)

to estimate whether individuals were asleep or not. It consists of weightsW for the current as

well as for the four preceding and two subsequent epochs as well as a scaling factorS. Thereby,i

denotes the epoch that needs to be scored.
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Figure 4.3: Overview of algorithms implemented for this work.

D(i ) = S � (W1 � Ti � 4 + W2 � Ti � 3 + W3 � Ti � 2 + W4 � Ti � 1 + W5 � Ti

+ W6 � Ti +1 + W7 � Ti +2 ) (4.1)

D = 0:25� (0:15� Ti � 4 + 0:15� Ti � 3 + 0:15� Ti � 2 + 0:08� Ti � 1 + 0:21� Ti

+ 0:12� Ti +1 + 0:13� Ti +2 ) (4.2)

According to the scoring rules, the current epochi is scored as wake ifD � 1. To �nd the optimal

weights and scaling factor, they performed a grid search, and compared the sleep/wake estimation

with a sleep scoring, obtained byEEG. Applying Equation 4.1 on a small test dataset of three

subjects, they found over90%agreement. The weights and scaling factors resulting from the grid

search yield the �nal scoring formula (Equation 4.2) [Web82].

One decade later, Cole et al. [Col92] published an updated version of the Webster algorithm, which

was validated in a study with 42 participants, using actigraphy with concurrentPSGrecording.

They present the Webster Formula (Equation 4.1) optimized for different epoch lengths. Since
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the weights in Equation 4.2 were optimized based on the dataset from Webster et al., Cole et al.

recalculated the weights and scaling factor according to their dataset. Furthermore, they extended

the evaluation with relevant sleep parameters, likeWASO, SOL, andSE. Several sleep parameters

calculated and evaluated in this work are listed in Section 4.2. The optimized formula (known as

theCole-Kripkealgorithm) for an epoch length of 30 s is shown in Equation 4.3:

D = 0:0001� (50 � Ti � 4 + 30 � Ti � 3 + 14 � Ti � 2 + 28 � Ti � 1 + 121 � Ti

+ 8 � Ti +1 + 50 � Ti +2 ) (4.3)

Applying the optimized equations for different epoch lengths to the corresponding dataset, they

achieved agreements between86and89 %.

However, these approaches are rather basic and do not take signal metrics like variability into

account. Sadeh et al. [Sad94] developed a more complex algorithm, including standard deviation,

thresholding as well as logarithmic characteristics of the actigraphy signal. They performed

discriminant analysis to adjust the weights of the scoring algorithm, which is presented in

Equation 4.4.

PS = 7:601� 0:065� � 11min � 1:08 � NAT11min � 0:056� sd6min � 0:703� LOGAct (4.4)

Thereby,� 11min denotes the average number of activity counts during the scored epoch as well as

�ve epochs preceding and following it.sd6min is the standard deviation of the current, as well as

the �ve preceding epochs, whereasNAT11min describes the number of epochs with activity levels

equal or higher than 50, but lower than 100 activity counts in a window of11minutes, including

the current as well as the 5 preceding and 5 following epochs.LOGAct is the natural logarithm of

the number of activity counts during the scored epoch + 1. IfPS(probability of sleep) is zero or

greater, the epoch is scored as sleep, if PS is smaller than zero, the epoch is scored as wake. To

evaluate this algorithm, the authors conducted a study including 20 adults and 16 children wearing

actigraphs at the dominant and non-dominant wrist. The overall agreement rates ranged between

91%and93%, whereas the results of the non-dominant or dominant wrist were within the same

range [Sad94].

However, if the data are not normally distributed but have a high degree of skewness, discriminant

analysis as performed by Sadeh et al. [Sad94] is not validated. For this reason, Sazonova et

al. [Saz02, Saz04] developed an approach based on a neural network and logistic regression. As

sensing modality, they used accelerometers instead of actigraphs and sampled them to an epoch

length of30s. The �rst part of their analysis consisted of applying logistic regression, in the form
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presented in Equation 4.5, wheren denotes the number of previous30s epochs andACC is the

the movement measure, captured in the corresponding period.

� = log(
p

1 � p
) = � 0 + � 1 � ACC0 + � 2 � ACC� 1 + ::: + � i

� ACCi � 1 + ::: + � n+1 � ACC� n (4.5)

The model classi�es the epoch as sleep if the probability of sleep� is greater than0:5 and

wakefulness otherwise. The �nal model, presented in Equation 4.6 was then built by pooling four

subjects into a training set and validating it against the remaining four subjects.

� = log(
p

1 � p
) = 1 :727� 0:256� ACC0 + 0:154� ACC� 1 � 0:136� ACC� 2

� 0:140� ACC� 3 � 0:176� ACC� 4 (4.6)

Using that approach the authors yielded an agreement rate of76%, but reported a strong subject-

speci�c effect that results in a huge variation in agreement between subjects ranging from64:4%

to 89:4%.

Because the algorithms only got tested in small studies, it is dif�cult to gain generalizability.

Kripke et al. [Kri10] compared their new sleep/wake detection algorithm with the manufacturer's

one and validated their results in a study with 116 subjects. Using am Excel Visual Basic macro,

they developed a program to iteratively optimize their sleep/wake estimation equation:

D = S �
10X

i = � 10

bi � x i (4.7)

Thereby, D was the scaled polynomial sum of activity counts for 21 epochs, weighted by a scaling

factor b, each.x0 represents the activity count for the epoch currently being evaluated, whilex � 10

andx10 denote the actigraph signal of the 10th preceding and 10th subsequent epoch respectively.

WhenD � 1, the epoch was scored wake, while values smaller than one were classi�ed as sleep.

They found that the optimal parameters fromb3 to b10 are zero, so these parameters were excluded

in Table 4.1, which depicts the parameters of the optimized equation. The optimal scaler value

was found forS = 0:300, which resulted in87%agreement by excluding one outlier [Kri10].
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Epoch Parameter
x � 10 0.0064
x � 9 0.0074
x � 8 0.0112
x � 7 0.0112
x � 6 0.0118
x � 5 0.0118
x � 4 0.0128

Epoch Parameter
x � 3 0.0188
x � 2 0.0280
x � 1 0.0664
x0 0.0300
x1 0.0112
x2 0.0100
x3 0.0000

Table 4.1: Optimal scoring parameters for the Scripps Clinic Algorithm.

Although these heuristic actigraphy-based algorithms were a huge step in unobtrusive sleep

medicine, all of them suffer from massive overprediction of sleep caused by little movement.

In the work of Cole et al., a misclassi�cation of wake as sleep occured 3.5 times as vice versa.

For this reason, Webster et al. [Web82] developed a rescoring algorithm that adjusts the primary

scoring according to the following rules:

• After at least4 min scored wake, the �rst period of 1 min scored sleep is rescored wake.

• After at least10min scored wake, the �rst3 min scored sleep are rescored wake.

• After at least15min scored wake, the �rst4 min scored sleep are rescored wake.

• 6 min or less sleep surrounded by at least10min (before and after) scored wake are rescored

wake.

• 10 min or less scored sleep surrounded by at least20min (before and after) scored wake

are rescored wake.

Using that rescoring algorithm, Webster et al. were able to reduce the overestimation of sleep

relative to the whole night from1:89%to 0:81%, whereas Cole et al. gained a rise of overall

agreement from87:91%to 88:25%.
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4.3.2 Machine Learning Algorithms

Although these heuristic algorithms are well established and already widely used, they have

some disadvantages. Due to the simple, linear weights, this type of algorithm can hardly detect

and classify complex sleep patterns. Furthermore the usage of datasets based on other sensing

modalities is not possible. To enable a more complex sleep-wake classi�cation, including high-

level features of sleep parameters collected with different modalities, different state-of-the-art

machine learning algorithms can be used.

Usually, machine learning algorithms provide a sample by sample estimation, which means that

one input sample leads to one class sample [Bon17]. However, the probability of sleeping in one

epoch strongly depends on the information of the previous and subsequent epochs. Hence, to

achieve time-dependency, the extracted features can be calculated from the input data over sliding

windows which will be explained in further detail in Section 5.1.3.

The performance of machine learning algorithms depends on the choice of hyperparameters. To

�nd the optimal combination, a grid search can be performed over all parameters in a given search

space. However, if the model is too computationally intensive, or the search space is too large, a

randomized search can be used, i.e. random hyperparameter combinations are selected from the

parameter search space for a certain number of trials [Kot07].

To evaluate the performance of machine learning models on unknown sleep data, it is important

to divide the dataset into training- and test data to avoid over�tting [Kot07, Bon17]. Different

methods with increasing computational complexity can be used for this purpose: The simplest

method is to split the dataset into a training set containing between 60 and 80% of the samples

and a test set containing the remaining samples. However, the choice of the train-test split can

in�uence the results. To overcome this issue, k-fold cross-validation can be used. Thereby, the

dataset is divided into k subsets, whereas each subset serves as test set in one of the k folds, while

the other k-1 subsets serve as train set. When evaluating the results of the different folds, a small

standard deviation indicates a stable algorithm and, thus, good generalizability [Kot07].

4.3.3 Deep Learning Algorithms

One of the most recent innovations in the �eld ofArti�cial Intelligence (AI) in the last decade is

Deep Learning to trainANN. These networks consists of multiple processing layers to discover

patterns and structures in large datasets. Each layer learns a concept, on which the subsequent

layer is based. The higher the level, the more abstract concepts are learned. Thereby, deep learning

does not require prior data processing and extracts features automatically [Rus16].
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A special class of neural networks that is suited to processing time-series or other sequential data

areRecurrent Neural Network (RNN)s. The most popularRNN is LSTM, which achieves its time

dependency by using input gates, memory cells, and forget cells, with weights adjusted for each

cell [DiP20]. As RNNs are feedforward networks, the training usually consists of gradient-based

optimization, where gradients are obtained using backpropagation.

Although Deep Learning models can calculate features independently, they need to be optimized.

Popular tunable hyperparameters are sequence length, learning rate, number of layers, hidden

size and batch size. Usually these parameters are optimized using randomized search in a de�ned

parameter space [DiP20].
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Benchmarking of Sleep/Wake Detection

Algorithms

5.1 Dataset

5.1.1 Dataset Description

The MESA dataset is, to the authors knowledge, one of the largest open-access dataset that

combines gold standard measurements ofPSGwith actigraphy andECG. TheMESA study is

a longitudinal investigation of factors associated with sub-clinical and clinical cardiovascular

disease. The study, conducted at six centers in the United States, included 6,814 black, white,

Hispanic, and Chinese-American men and women. Of these, 2,237 participants were enrolled in a

Sleep Exam (MESA Sleep) which included a sleep questionnaire, one week of actigraphy, and

one night of concurrentPSG[Che15, Zha18].

TheMESA Sleep study was conducted using wrist-worn actigraphy devices (Actiwatch Spectrum,

Philips Respironics, Cambridge, USA) that records movements and aggregate them as activity

counts in30 s epochs. To record an in-homePSG, the Compumedics Somte System (Com-

pumedics Ltd., Abbotsford, Australia) was used. ThePSGincorporates corticalEEG, bilateral

EOG, chinEMG, thoracic and abdominal respiratory inductance plethysmography, air�ow,ECG,

leg movements and �nger pulse oximetry [Che15, Zha18]. Details of sampling rates, scoring

rules, and data collection protocols are available [Resa, Resb, Resc]. Nocturnal recordings were

transmitted to the centralized reading center at Brigham and Women's hospital (Boston, USA)

and scored by trained technicians following current guidelines. The QRS-complexes (R-peaks)

obtained by theECG were detected using the Compumedics (Abbotsford, VIC, Australia) Somte
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software Version 2.10 (Builds 99 to 101) and reviewed by a trained technician who corrected

misscored annotations during the sleep period.

5.1.2 Preprocessing and Cleaning

In this work, 1,743 of the initially 2,237 participants were included. 494 participants were

excluded because of at least one of the following reasons:

• no concurrentPSG, ECGand actigraphy recording available.

• no overlap ofPSGand actigraphy speci�ed.

• less than 1h of total sleep time.

Dataset Total Age Female/Male TSD Ethnicity

Full dataset 1; 743 69:1 � 9:0 951=792 921:8 � 170:2

36.7% White (639)
27:9%Black (487)
11:0%Chinese (192)
24:4%Hispanic (425)

Train set 1; 394 68:9 � 9:0 759=635 921:0 � 169:9

36.5% White (509)
27:4%Black (382)
10:9%Chinese (152)
25:2%Hispanic (351)

Test set 349 69:9 � 9:2 192=157 926:0 � 172:0

37.2% White (130)
30:1%Black(105)
11:5%Chinese (40)
21:2%Hispanic (74)

Table 5.1: Statistics of Mesa Sleep Dataset, age(U = 2:29 � 105; p = 0:101; g = 0:4724)and
TSD(U = 3:12� 105; p = 0:443; g = 0:0296)are given as mean� SD.

The participants were randomly divided into a training dataset of 1,394 and a test dataset of

349 participants using an 80/20 split. Further details regarding age, gender, and ethnicity of the

participants in train-, test- and full dataset are provided in Table 5.1.2.

The preprocessing consists of several steps (Figure 5.1). In this process, the RR-intervals extracted

from theECG data were further cleaned and �ltered to be reliable. Using the python package

hrv-analyis1, outliers of RR-intervals shorter than300ms and longer than2000ms were removed

using a method described by Tanaka et al. [Tan01]. Removed beats were then imputed by linear

1https://github.com/Aura-healthcare/hrv-analysis [Rob21]
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interpolation. The next step was to detect ecotropic beats and remove them according to the work

of Malik [Mal96]. Then, the RR-intervals were grouped into epochs of30s to match the time

interval of the data obtained byPSGand actigraphy. To ensure that only overlapping epochs were

considered, actigraphy,PSGand RR-intervals were aligned using metadata information from

theMESA dataset indicating the overlap of different recordings. Thereafter, all non-overlapping

epochs were dropped out. Participants were further excluded if the remaining data after alignment

contained less than1 h of total sleep.

Figure 5.1: Preprocessing and cleaning ofMESA Dataset.

5.1.3 Feature Extraction

As described in Section 4.3.2, machine learning models need appropriate features for good

performance. This section describes feature extraction from actigraphy and cardiac data.

To evaluate sleep/wake detection using an motion-based approach, 370 handcrafted time-series

features were extracted for an actigraphy-based machine learning approach. These features,

described in Table 5.2, are basic statistical time-series features that are calculated over centered-

and non-centered sliding windows of sizen = 1:::19. Moreover, these features were also used in

recent literature [Pal19, Zha20].

As described in Section 4.1, using actigraphy alone has disadvantages such as massive over-

prediction of sleep. Thus, it might be advantageous to add additional biosignals to the sleep/wake

estimation. According to Section 3.1, the human body reduces the activity of core body functions

during sleep, such as heart rate or blood pressure. For that reason, using cardiac information is a

promising approach for sleep/wake detection.HRV features describe the variability of beat-to-beat

intervals, extracted from the time interval between several R-peaks. Hence, 30 differentHRV
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Feature Name Description Window Size
ACC Raw actigraphy count 1
LOG Natural logarithm of activity count 1
Mean Mean value of activity counts 1 � n < 20
Median Median value of activity counts 1 � n < 20
SD Standard deviation of activity counts 1 � n < 20
Maximum Maximum of activity counts 1 � n < 20
Minimum Minimum of activity counts 1 � n < 20
Variance of Variance of activity counts 1 � n < 20
NAT Number of epochs with activity counts larger than 50,

but lower than 100
1 � n < 20

ANY Number of epochs that contain any activity count
larger than 0

1 � n < 20

Skewness Skewness of actigraph signal 4 � n < 20
Kurtosis Kurtosis of actigraph signal 4 � n < 20

Table 5.2: Feature set extracted from raw actigraphy.

features were extracted for each 30 s interval according to previous work [Zha20]. The extracted

features can be divided into four categories: time-domain, frequency-domain, non-linear, and

geometrical features [Mal96]. Table 5.3 provides an overview of allHRV features used in this

work.

5.2 Models and Settings

This section describes the application of heuristic, machine learning-based, and deep learning-

based algorithms to theMESA-Sleep dataset presented in Section 5.1. A multimodal approach

including motion and cardiac data was compared to the two monomodal approaches using only

actigraphy orHRV.

5.2.1 Heuristic Algorithms

As already described, heuristic algorithms based on actigraphy were the �rst steps in unobtru-

sive sleep medicine. However these algorithms are static and only allow the evaluation of the

movement-based approach using actigraphy. This work compares the following algorithms which

were introduced in Section 4.3.1:
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Feature Description
Time domain features

Mean NN Mean overNormal-to-Normal (NN)-Intervals
SDNN Standard deviation ofNN-Intervals
SDSD Standard deviation ofNN differences
NN50 Number ofNN- Intervals greater than50ms
pNN50 Ratio between NN50 and number ofNN-Intervals
NN20 Number ofNN- Intervals greater than20ms
pNN20 Ratio between NN20 and number ofNN-Intervals
RMSSD Root mean square of successive differences betweenNN-Intervals
Median NN Median ofNN-Intervals
Range NN Range between smallest and largestNN-Interval
CVSD RMSSD divided by Mean NN (variation of successive differences)
CV NNI The ratio of SDNN divided by Mean NN (variation ofNN-Intervals)
Mean HR Mean Heart Rate
Max HR Maximum Heart Rate
Min HR Minimum Heart Rate
Std HR Standard deviation of Heart Rate

Geometrical domain features
Triangular Index Integral of density distribution ofNN-Intervals (number of allNN-

Intervals) divided by the maximum of the density distribution
Frequency domain features

LF Variance (power) in low frequency (0:04to 0:15Hz)
HF Variance (power) in high frequency (0:15to 0:4 Hz)
VLF Variance (power) in very low frequency (0:003to 0:04Hz)
LH/HF ratio Ratio of Low frequency to high frequency
LF norm Normalized LF power
HF norm Normalized HF power
Total Power Total power

Non linear domain features
CSI Cardiac Sympathetic Index [Jep14]
CVI Cardiac Vagal Index [Jep14]
Modi�ed CSI Alternative measure of Cardiac Sympathetic Index [Jep14]
SD1 The standard deviation of the projection of the Poincaré plot [Beh13]
SD2 SD2 is de�ned as the standard deviation of the projection of the Poincaré

plot on the line of identity [Beh13]
SD1/SD2 ratio Ratio between SD2 and SD1 [Beh13]

Table 5.3: Feature set extracted from RR-intervals.
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• Webster [Web82]

• Cole-Kripke [Col92]

• Sadeh [Sad94]

• Sazonov [Saz02, Saz04]

• Scripps-Clinic [Kri10]

These algorithms are easy to use because they do not require to compute higher-level features,

since they only use the raw activity counts as input. To �nd the optimal scaling value (only

for Webster, Cole-Kripke, Scripps-Clinic), and to assess whether applying Webster's rescoring

algorithm (see Section 4.3.1), a grid search was performed over a pre-de�ned search space.

Detailed information about the search space is provided in Appendix A in Table A.1.

As a part of this work, the heuristic algorithms listed above were implemented and included in the

open-source python librarybiopsykit2 [Ric21]. The code can be found online at:

https://github.com/mad-lab-fau/BioPsyKit.

5.2.2 Machine Learning Algorithms

Due to the weaknesses of actigraphy, explained in Section 4.1, it may be bene�cial to make use

of different modalities. This work compares the performance of actigraphy- and cardiac-based

monomodal approaches with a multimodal examination combining both. The features used for

this are presented in 5.1.3 and summarized in Table 5.4.

Modality Features Number of features
Actigraphy Features derived of raw activity counts 370
HRV HRV features derived of RR-intervals 30
Multimodal Combination ofHRV and Actigraph-based features400

Table 5.4: Modalities and input features for machine learning models.

Because of many publications using different studies as well as only a few algorithms, it

is dif�cult to make a reliable and generalized statement about the performances of different

well-established machine learning algorithms in sleep/wake detection. To gain comparability, the

2https://biopsykit.readthedocs.io/en/latest/api/biopsykit.sleep.sleepwakedetection.algorithms.html
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mono- and multimodal approaches were also applied to several state-of-the-art machine learning

models:

• Adaptive Boosting (AdaBoost)

• Support Vector Machine (SVM)

• Multi Layer Perceptron (MLP)

• Random Forest

• XGB

As hyperparameters are govern to in�uence the training and therefore also the �nal model, an

appropriate combination of hyperparameters has a major impact on the performance of machine-

learning models. To �nd the best set of hyperparameters forAdaBoost, MLP, andSVM, a grid

search with an embedded 5-fold cross-validation was performed over a de�ned parameter search

space. AsSVM andMLP calculate distances between datapoints, the features were normalized

by removing mean and scaling to unit variance. Due to a large number of hyperparameters for

Random Forest andXGB and the associated high computational cost, a 1,000 trial-Random Search

including an embedded 5-fold cross-validation was performed for each algorithm and modality. In

this context, Random Search means that the hyperparameters are selected from a de�ned parameter

search space in a random manner for a given number of trials or time. In this work, the python

packageoptuna3 was used, which is an open-source framework to automate hyperparameter

search [Aki19]. To determine the hyperparameters for each trial,optuna�ts one Gaussian

Mixture Model (GMM) G1 to the set of parameter values associated with the best objective

values, and anotherGMM G2 to the remaining parameter values. The next hyperparameters are

then chosen by the maximation of the ratioG1/G2. Thereby, the algorithm performance of all

machine-learning algorithms was optimized towards accuracy. More information, including the

hyperparameter search space, can be found in the Appendix A in Table A.2. The pipeline used for

the machine learning algorithms is illustrated in Figure 5.2.

5.2.3 Deep Learning Algorithms

As explained in Section 4.3.3,RNNs are powerful deep learning-based methods for the classi-

�cation of time series. For that reason, this work compares the performance of deep learning

models with the various heuristic and machine learning algorithms presented above. Thereby, two

3https://optuna.org/
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Figure 5.2: Pipeline for the machine learning based approach.

monomodal approaches using actigraphy andHRV were compared with a multimodal approach

combining both inputs. The deep learning algorithms that were evaluated in this work are:

• LSTM

• Temporal Convolutional Network (TCN)

This work uses an LSTM provided by the python packagetorch4 [Col11] and aTCN published by

Bai et al. [Bai18]. In time-series classi�cation, the choice of the optimal sequence length is crucial.

For that reason, both networks expect special input shapes. Thus, the �rst step was to prepare the

input data for further processing. TheLSTM expects 3-dimensional input data with shape

(batch size, sequence length, number of features) . To prevent sequences

that exist of more than one participant, participant-wise sequencing was performed. The shape of

the input data(number of samples, sequence length, number of features)

was created using a sliding window function from the python packagebiopsykit5 [Ric21]. Se-

quence length and sliding window overlap were considered as optimizable parameters. The

TCN network expects the data with an input shape(batch size, number of features,

sequence length) . For that, the same data shaping as for theLSTM was applied, followed

by �ipping the second and third dimensions. Since deep learning models require feature scaling,

4https://pytorch.org/docs/stable/torch.html
5https://biopsykit.readthedocs.io/en/latest/api/biopsykit.utils.arrayhandling.html
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Modality Input data
Actigraphy Raw activity counts

HRV

Mean NN
SDNN
SDSD
VLF
LF
HF
LF/HF ratio
Total Power

Multimodal Concatenation of Actigraphy andHRV features

Table 5.5: Modalities and input data for deep learning models.

all input data were standardized by means of z-normalization, corresponding to a distribution

with � = 0 and� = 1, using the python packagesklearn6 [Ped11]. For an epoch-wise training

of the Deep Learning networks,Adaptive Moment Estimation (Adam)was applied, a gradient

descent-based optimization method that computes adaptive learning rates for each parameter.

Equation 5.1 depicts theAdamupdate rule [Kin17], wherem̂t andv̂t are the bias-corrected �rst

and second moment estimates,� the learning rate and� a constant with a default value of10� 8. � t

and� t+1 denote the weights of the current epocht and the following epocht + 1.

� t+1 = � t �
�

p
v̂t + �

m̂t (5.1)

The loss was calculated via binary cross-entropy loss, which is depicted in Equation 5.2. Here,

y is the label for being asleep or not, whilep(y) is the predicted probability of the epoch being

classi�ed as sleep for allN epochs.

Hp(q) = �
1
N

NX

i =0

yi � log(p(yi )) + (1 � yi ) � log(1 � p(yi )) (5.2)

As described in Section 4.3.3, Deep Learning models automatically extract high-level features.

Therefore, raw activity counts served as input for the movement-based approach, while 8 basic

HRV features were considered as input for the cardiac-based classi�cation (see Section 5.1.3). To

compare actigraphy-based and cardiac-based classi�cation, the deep learning algorithms were

applied �rst trained with monomodal data followed by a multimodal approach. Table 5.5 gives

6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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an overview of the different approaches along with the input data. Since the performance of

Deep Learning models is highly dependent on the choice of hyperparameters such as learning

rate, number of layers, or hidden layer size, anoptuna7-based randomized search was performed.

Additional information about the hyperparameter search space is provided in Appendix A in Table

A.3. The pipeline used for the deep learning algorithms is illustrated in Figure 5.3.

Figure 5.3: Pipeline for the deep learning based approach.

7https://optuna.org/



Chapter 6

Sleep/Wake Classi�cation with Real-world

Data

6.1 Real-World Study

6.1.1 Dataset and Study Protocol

Since the acquisition of theMESA dataset was performed under controlled laboratory environment

conditions, one purpose of this thesis was to evaluate the developed algorithms using real-world

data.

The study conducted as part of this work involved 22 participants recording concurrentIMU and

ECGdata during sleep for 3 nights. During the study, the participants were able to sleep in their

natural environment without any supervision or interferences.

Thus, a new dataset includingECG andIMU data was collected using two wearable sensors

(Portabiles NilsPod, Porabiles GmbH, Erlangen, Germany) worn at the chest and on the wrist of

the non-dominant hand. The chest sensor recorded 1-channelECG and 6-dIMU data consisting

of 3-d acceleration (range� 16g) and 3-d angular rate (range� 2000°=s) whereas the wrist sensor

only recorded 6-dIMU data. Both sensors recorded with a sampling rate of256Hz and were

synchronized wirelessly [Rot18]. Thus, data from both sensors can be processed on a common

time axis.

All data are logged onto the internal sensor storage and downloaded afterwards using the applica-

tion PortabilesHomeMonitoring1 for Android-based smartphones. The application automatically

1PortabilesHomeMonitoring(1.1.12)https://play.google.com/store/apps/details?id=de.portabiles.
homemonitoring
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Figure 6.1: Full overnight recording ofIMU signal with concurrent heart rate monitoring. accx,
accy, and accz denote the accelerometer axes whereas HR denotes the heart rate.

downloads the sessions from the sensors viaBluetooth Low Energy (BLE)when smartphone

and sensors both are charging, in Bluetooth range, and the sensors have new sessions available.

Upon download, the sessions are deleted from the sensors to allow the recording of further

sessions. Figure 6.1 shows an overnight recording of 3-axis accelerometer with concurrent heart

rate monitoring and Figure 6.2 depicts the placement of both sensors.

To validate the sleep/wake detection, this work used a clinically validated sleep mat (Withings

Sleep Analyzer, Withings France SA, Issy-les-Moulineaux, France) as ground truth. The sleep

mat was placed below the mattress on the slatted frame. With the help of highly sensitive sensors

movement, heart rate and respiration can be measured and used for sleep staging [Edo21].

The study was structured as follows:

Task 1: Sensor con�guration: The ECG andIMU sensors were con�gured and registered

in thePortabilesHomeMonitoringapp.

Task 2: Participant brie�ng: The participants were briefed in the facilities of the Machine

Learning and Data Analytics Lab of Friedrich-Alexander-Universität Erlangen-N̈urnberg (FAU)

in Erlangen, Germany. Thereby, the sensors and sleep mat were handed over, and a user pro�le

was created in theWithings HealthMate2 app.

2WithingsHealthMate(5.7.1)https://play.google.com/store/apps/details?id=com.withings.wiscale2
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Figure 6.2: Placement ofIMU andECG sensors.

Task 3: Installation of sleep mat and sensor charging:At their home, participants were

instructed to install the sleep mat themselves according to an explanation in the study protocol

and charge the sensors in their charging cradles. For potential technical issues, contact with the

study supervisor was provided.

Task 4: Recording start (evening):The sensors were con�gured to automatically start recording

data �ve seconds after removal from the charging cradle. Thus, before going to bed, participants

were asked to remove the sensors out of the charging cradles, attach them as depicted in Figure 6.2,

and check whether they are recording synchronously.

Task 5: Recording stop (morning): After waking up the next morning, participants were

instructed to stop data collection as soon as they got out of bed by putting the sensors back into

the charging cradles.
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Task 6: Data transfer: To ensure correct data transfer, participants were instructed to check in

thePortabilesHomeMonitoringapp whether the session download had been started correctly. If

not, they were asked to restart the session download manually. The sleep mat was connected to

WiFi and transferred data from the preceding night to the Withings cloud.

Task 7: Sleep diary questionnaire: Afterwards, participants were asked to �ll out a sleep

diary questionnaire about the last night. The questionnaire includes questions about subjective

sleep quality, bed time, self-estimated sleep onset, wake onset, etc. Furthermore, it was assessed

whether participants had consumed more than two alcoholic beverages the evening before since it

is known that alcohol affects sleep [Ebr13] and, thus, it was hypothesized that alcohol consump-

tion might also in�uence the classi�cation performance of sleep/wake detection algorithms. All

questions can be found in Appendix C.

Task 8: Night 2 and 3: On the second and third night, the participants had to repeat tasks

4-7.

Task 9: PSQI: Upon recording three nights, participants were instructed to �ll out thePSQI,

which assesses sleep quality of the last four weeks.

To obtain a larger dataset, a second study conducted at the Machine Learning and Data An-

alytics Lab of Friedrich-Alexander-Universität Erlangen-N̈urnberg (FAU) was merged with the

study conducted for this thesis. This study included 22 individuals as well and was conducted as

part of theDigital Psychology Lab (DiPsyLab)seminar. Thereby, it dealt with the assessment

of nightly heart rate patterns and their relation to stress and stress coping strategies. Because

this study is based on the same ground truth acquired by the same sleep mat as well as the same

wearable sensors, it was possible to combine both studies to obtain a larger dataset. However, this

study included only two nights per participant and a slightly deviating questionnaire.
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6.1.2 Data Cleaning

The combined studies initially included 107 nights of 42 participants. In order to use only

high-quality data, strict data cleaning was performed, excluding 22 nights for at least one of the

following reasons:

• Missing ground truth data (more than 40% of the night with missing ground truth labels).

• Ground truth not available (Technical problems of the sleep mat).

• Corrupted sensor data.

• Invalid sensor output.

The remaining dataset contained 50 nights of 20 different participants from the study conducted

for this thesis as well as 35 nights of 22 participants from theDiPsyLabstudy. Table 6.1 provides

additional information and statistics about the participants who participated in the studies.

Dataset Participants Nights Age [yr] Female/Male Height [cm] Weight [kg]

Thesis 20 50 25.5� 4.9 11 / 11 175.2� 9.7 68.3� 12.7

DiPsyLab 22 35 22.9� 2.3 11 / 8 178.3� 8.5 70.8� 9.0

Combined 42 85 24.3� 4.0 22 / 19 176.7� 9.2 69.5� 11.1

Table 6.1: Information about the examined participants.

Since theDiPsyLabstudy was conducted without the sleep diary questionnaire described

above, only the participants of the other study could be evaluated according to the characteristics

described in Table 6.2. Moreover, demographic information of three individuals participated in

theDiPsyLabstudy were missing.

Total nights Alcohol No alcohol Alarm No alarm
50 13 37 39 11

Table 6.2: Information about the examined nights collected within this work.
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6.1.3 Data Processing

The ground truth data from the sleep mat were converted into time-series data and exported as

csv �le usingBioPsyKit3 [Ric21]. Since the sleep mat measures different sleep phases the sleep

stages were converted into binary sleep/wake classes.

Before the data from the wearable sensors were used for sleep/wake classi�cation they �rst had to

be preprocessed. For that the binary �les were imported into python usingBioPsyKit4 [Ric21].

As technical problems occurred with some sensors, further error handling had to be performed

for some nights, such as truncating the start or end of a session due to invalid sample counters

or incorrect start timestamps. Unfortunately, a total of 9 sessions of the study conducted for this

work as well as 5 nights of theDiPsyLabstudy had to be excluded due to corrupted sensor data.

After data loading, the data of both sensors were aligned using the synchronized counter. The

synchronized session was then aligned with the sleep labels extracted from the sleep mat. Thereby,

all non-overlapping epochs were removed. As next step, the sensor data were calibrated using the

python libraryimucal5 [Kü21] which implements the IMU-in�eld calibration based on Ferraris

et al. [Fer94]. The Ferraris calibration is a simple and affordable calibration method for 6 DOF

IMUs as it can be performed by placing the sensor on each side and rotating it around each axis.

To use theECGdata for further processing and feature extraction, RR-intervals were extracted.

This involved cleaning and �ltering of the rawECG signal followed by R-peak detection and

outlier correction withBioPsyKit6 [Ric21].

6.1.4 Feature Extraction

One goal of this thesis was to evaluate the newly developed algorithms on real-world data by

collecting a new dataset. However, the data collected within this thesis wasIMU data, while

theMESA benchmark dataset only contained actigraphy data. To compare the results of both

datasets, a conversion from acceleration data to actigraphy according to Brønd et al. [Brø17]

(Section 4.1) was performed using an implementation fromBioPsyKit7 [Ric21]. Using the activity

counts resulting from this conversion, the same actigraphy-based features were calculated as

for theMESA dataset (see Table 5.2). For theHRV-based sleep/wake detection, the extracted

3https://biopsykit.readthedocs.io/en/latest/api/biopsykit.io.sleepanalyzer.html
4https://biopsykit.readthedocs.io/en/latest/api/biopsykit.io.nilspod.html
5https://github.com/mad-lab-fau/imucal
6https://biopsykit.readthedocs.io/en/latest/api/biopsykit.signals.ecg.html
7https://biopsykit.readthedocs.io/en/latest/api/biopsykit.signals.imu.activitycounts.html
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Feature Name Description Window Size (in s)
Meanacc gyr Mean off Acc, Gyrg norm 30 � n < 600
Medianacc gyr Median off Acc, Gyrg norm 30 � n < 600
SDacc gyr Standard Deviation off Acc, Gyrg norm 30 � n < 600
Varianceacc gyr Variance off Acc, Gyrg norm 30 � n < 600
RMSacc gyr Root Mean Square off Acc, Gyrg norm 30 � n < 600
Minimumacc gyr Minimum of f Acc, Gyrg norm 30 � n < 600
Maximumacc gyr Maximum off Acc, Gyrg norm 30 � n < 600
Absolute Energyacc gyr Absolute energy off Acc, Gyrg norm 30 � n < 600

Table 6.3: Features extracted from accelerometer- and gyroscope norm, respectively.

RR-intervals were processed similarly as described in Section 5.1.3 using the python package

hrv-analysis8 [Rob21] resulting in 30 high levelHRV features. An overview of these features is

provided in Table 5.3.

Since actigraphy is usually sampled in30s or1 min epochs, important movement information may

get lost. For this reason, this work aimed to investigate whether sleep/wake detection performance

can be further improved by using other modalities, such as rawIMU data, instead of aggregated

actigraphy data. Thus, several high-level features based on accelerometer and gyroscope data

were extracted. Using the python packagetsfresh9, eight basic features were calculated from the

norm vectors of gyroscope and accelerometer data, resulting in 16 different features (Table 6.3).

Because the features were calculated in 20 different sized sliding windows, starting from30 s

and rising in30s steps up to10min, the feature extraction resulted in a set of 304 motion-based

features. As theIMU data was sampled at256 Hz, downsampling to32 Hz was performed

in advance. According to the work of [Kha16], this enables faster processing while retaining

important information.

6.2 Sleep/Wake Classi�cation

To evaluate the newly developed sleep/wake detection algorithms based on the real-world dataset

using different algorithms and modalities, the same algorithms as presented in Chapter 5 were

used. Moreover, the search spaces of the hyperparameter optimization were similar and are listed

in Appendix A.

While the heuristic algorithms can only be investigated in a motion-based approach, the machine-

and deep-learning-based approaches were evaluated in monomodal approaches ofHRV and

8https://github.com/Aura-healthcare/hrv-analysis
9https://tsfresh.readthedocs.io/en/latest/
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motion data as well as in a multimodal approach combining both input modalities.

Since the real-world data set used in this work is highly imbalanced and about90 %of the samples

are labeled as sleep, optimization towards accuracy is not feasible. For that reason, algorithms

trained on real-world data were optimized on Cohen's� , which is known to be more robust to

imbalanced datasets compared to classical measures such as accuracy [Can13, Sui19]. More

information about the evaluation metrics used in this work is provided in Chapter 7.

The sleep/wake estimation based on real-world data examined in this work was separated into

two parts. To compare the actigraph-based approach with theIMU -based approach, the raw

accelerometer samples were converted into activity counts which served as base for sleep/wake

detection. The second part consists of anIMU -based approach which is based on accelerometer

and gyroscope data.

6.2.1 Actigraphy-based Sleep/Wake Classi�cation

To compare the performance of the heuristic motion-based algorithms, the converted activity

counts were applied to the heuristic algorithms described in Section 4.3.1. Since the heuristic

algorithms only accept activity counts as input, no multimodal orHRV-based approach was

examined.

In contrast, the machine learning approach was evaluated using two monomodal approaches,

including actigraphy-based andHRV-based features, as well as a multimodal approach combining

both modalities. To evaluate the machine learning algorithms for real-world data, the actigraphy-

based features described in Table 5.2 were computed as described above. The sleep/wake

classi�cation was performed in two different approaches: First, the actigraphy andHRV features

were applied to the machine learning algorithms. The models were optimized using a grid search

with embedded cross-validation forSVM, MLP, andAdaBoost, while the Random Forest and

theXGB models were optimized using a randomized search. Here, the hyperparameter search

space was identical to the hyperparameter optimization used for the benchmark dataset which is

provided in Appendix A.

The actigraphy-based sleep/wake detection for the real-world dataset was performed in two ways.

First, the algorithms were both trained and tested on theHRV features and the activity counts

extracted from theIMU signal (see Section 4.1). Additionally, the machine and deep learning

models trained on the benchmark dataset were used to be evaluated on the real-world dataset since

for both datasets, actigraphy andHRV data were present. Thus, the same features were extracted

for both datasets.
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6.2.2 IMU-based Sleep/Wake Classi�cation

Due to low sampling rates and built-in pre-processing of actigraphy devices, activity counts

as output are easy to handle and easy to understand. However, information can be lost due to

aggregation into epochs of1 min or 30s. For this reason, this work examines the performance of

IMU -based sleep/wake detection and compares it with the actigraph-based approaches.

Since the heuristic algorithms presented in this work are only developed for actigraphy as input

modality, no examination of heuristic algorithms usingIMU - or cardiac data was conducted.

For the machine learning-based sleep/wake classi�cation, theIMU -based features (see Table 6.3),

were used. The eight basic features presented in Section 5.3 were used as cardiac features.

The deep learning algorithms were applied using raw accelerometer and gyroscope data as

movement-based input modality. Thereby, the norm of the raw accelerometer and gyroscope data

was used. To save computational cost, the signal was downsampled to8 Hz. The correct input

was generated via participant-wise sequencing, as described in Section 5.2.3. TheHRV-features

presented in Section 5.5 were used as cardiac-based input modality.





Chapter 7

Evaluation

7.1 Evaluation Metrics

To evaluate and compare the classi�cation performance of the different algorithms, several

evaluation metrics were applied which are based onTrue Positive (TP), False Positive (FP), True

Negative (TN), andFalse Negative (FN)obtained from the confusion matrix.

1. Accuracy accounts for the number of correctly classi�ed epochs, divided by the total

amount of epochs:

Accuracy =
TP + TN

TP + FP + TN + FN
(7.1)

2. Precisionis the number of correctly classi�ed sleep epochs, divided by the total number of

epochs classi�ed as sleep:

P recision =
TP

TP + FP
(7.2)

3. Recall (also known as sensitivity)denotes the number of correctly classi�ed epochs being

asleep divided by the total number of epochs labeled asleep:

Recall =
TP

TP + FN
(7.3)
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4. F1-scoreis the harmonic mean of precision and recall:

F 1 =
2

recall� 1 � precision� 1
= 2 �

precision � recall
precision + recall

=
TP

TP + 1
2(FP + FN )

(7.4)

5. Cohen's � is a statistic to measure inter-rater agreement comparing observed accuracy with

expected accuracy, wherep0 denotes the observed, andpe the expected accuracy. Thereby,

the expected accuracy denotes the accuracy occurring by chance. In sleep/wake detection,

Cohen's� is considered to be more robust against class imbalance [Can13, Sui19].

k =
p0 � pe

1 � pe
(7.5)

7.2 Evaluation of Benchmark Dataset

To make reliable statements about the performances of the different algorithms with different

modalities, respectively, several techniques to prevent over�tting were used. Thereby, the �rst

step was to randomly separate 20% of the dataset to use as test set which is only used for the �nal

evaluation with the �nal classi�er models.

Since the heuristic algorithms are static and hence do not need to be trained, no separation into

train/test set would be required. However, to compare the heuristic algorithms with the machine-

and deep learning-based algorithms, the evaluation was performed on the same test set. Because no

intrinsic function exists to �nd the optimal scaling parameters, different parameter combinations

were tested using a grid search applied on the training set. This grid search was then repeated

in a 5-fold cross-validation train/test splits. The upper part of Figure 7.1 illustrates a 5-fold

cross-validation. The �nal scaling parameter was calculated as the mean over all cross-validation

folds.

As the machine learning models introduced in Chapter 5 have tunable hyperparameters, they were

optimized and evaluated using a parameter search with an embedded 5-fold cross-validation. The

performance of the classi�ers for different hyperparameter combinations were evaluated within

�ve-fold cross-validation. These different splits of train and validation set are supposed to prevent

over�tting during hyperparameter optimization. The best-performing classi�er is yielded by the

hyperparameter combination which achieved the best average performance over the �ve folds.

The classi�er is then retrained with this hyperparameter set on the complete training data. Finally,

the retrained classi�cation model is evaluated on the test set and the performance metrics are

reported. Due to the computational cost of deep learning algorithms, no cross-validation was
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Figure 7.1: Nested cross-validation.
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performed. Instead, the epoch-wise trained algorithms were evaluated using a single validation

set split off from the training set. Thereby, after each epoch, the validation set was applied to the

current model and the corresponding loss was calculated. Each time a new lowest validation loss

was found, the model was saved. After a de�ned number of epochs, the optimization aborted and

the model was evaluated on the test set.

7.3 Evaluation of Real-world Study

The real-world study contains sleep data from 85 nights, including special characteristics that

occur infrequently, i.e. waking up with an alarm clock is only reported for 11 nights while

consuming alcohol before bed time occurred 13 times. Using the same approach as for the

benchmark dataset with a hold-out test set with an 80/20 split would result in only 2 or 3 nights

with these characteristics being included in the test set, which would limit generalizability due to

strong subject-dependent in�uences.

For this reason, the machine learning models were evaluated using nested cross-validation.

Thereby, the hyperparameters of the algorithms were optimized like described for the benchmark

approach using 5-fold cross-validation with different train and validation splits. However, instead

of testing the �nal optimized model with a hold-out test set, this optimization is done using another

5-fold cross-validation including the whole dataset. This means that all data are used as test set

once on a trained model, optimized with the rest of the data. Figure 7.1 gives an overview of the

nested cross-validation applied in this work.

7.4 Statistical Analyses

In addition to the overall performance of sleep-wake recognition, several other investigations were

conducted to determine the in�uence of participant- and study-speci�c characteristics. As the

MESA dataset contains a large amount of additional demographic and clinical information about

each participant, the following properties that would suggest the greatest in�uence were extracted

and evaluated:

• Signal Quality of PSGand Actigraphy: The signal quality for bothPSGand Actigraphy

was rated on a range of two (poor) to seven (perfect). To compare the in�uence of signal

quality, the scale was converted into a dichotomous scale which values less than four being

labeled as bad quality and all values larger or equal then four being labeled as good quality.
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• Gender: The gender was provided as a dichotomous variable indicating male or female

gender of participants.

• Race: The dataset contains 36.7% White/Caucasian, 11% Chinese American,

27.9% Black/African-American, and 24.4% Hispanic participants.

• Sleep Quality: TheWHIIRS questionnaire was �lled out, which was designed to assess

INS symptoms. The resulting scale was converted into a dichotomous variable to distinguish

between good and bad sleep. A value of nine was chosen as cut-off value asWHIIRS scores

above nine indicateINS (Section 3.2).

• Extra Workload: One value obtained from the data set is the additional workload per week.

This value was classi�ed as high workload if individuals worked more than 5 h of overtime

per week.

• Sleep Diseases:TheMESA dataset contained clinical information about the diagnosis of

RLS, INS, and sleep apnea. It was evaluated if one of the diseases or being sick in general

in�uences the classi�cation performance.

• Age: As an important demographic information, age was provided for each participant. All

participants were between 54 and 93 years old (Mean� SD: 69.9� 9.2 years).

• AHI : The AHI seves as indicator for frequency and severity of apnea and hypopnea

(Section 3.2).

For the real-world study conducted in this work, a sleep diary questionnaire was �lled out.

Furthermore, the following demographic and sleep quality scores were evaluated as potential

confounders for sleep/wake classi�cation performance:

• Alcohol consumption: It was evaluated whether the consumption of more than two

alcoholic beverages in�uenced the classi�cation performance.

• Subjective sleep quality per night:The subjective sleep quality score of each night night

was rated from one (bad sleep) to seven (perfect sleep) (Questionnaire: C). To evaluate the

classi�cation performance according to the subjective sleep quality, all quality scores larger

than �ve were labeled as good sleep while scores lower or equal than �ve were labeled as

bad sleep quality.
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• PSQI: As PSQI scores larger than �ve indicate poor sleep quality (see Section 3.2), sleep

quality was rated as good for scores from zero to �ve and poor for scores from six to 21. (see

Section 3.2).

• Mode of awakening: It was assessed whether the mode of awakening (alarm vs. no alarm)

in�uenced sleep/wake classi�cation.

• Profession:It was evaluated whether the current profession (student vs. employee) has an

in�uence on classi�cation performance.

• Body Mass Index (BMI): With weight and height collected from thePSQI questionnaire,

theBMI was collected. It was evaluated if high or lowBMI in�uenced the classi�cation

performance.

As the resulting classi�cation metrics violated the assumptions of normal distribution, non-

parametric statistical analysis was performed. For features with only two conditions, such as

gender (male vs. female), theMann-Whitney-U-Test[McK10b], the non-parameteric version

of the t-test for independent samples was applied to detect possible differences. Since several

algorithms from different modalities got tested, Bonferroni correction for multiple-comparison

correction was applied.

For characteristics with more than two groups, such as the comparison of different algorithms or

different races, theKruskal-Wallis-Test[McK10a] was applied to determine group differences.

As post-hoc tests,Mann-Whitney-U-Testswith Bonferroni correction for multiple-comparison

correction were applied.

The signi�cance level was set to� = 0:05. In all Figures and Tables, the following notation is

used to indicate statistical signi�cance:� p < 0:05, �� p < 0:01, ��� p < 0:001.



Chapter 8

Results

8.1 Classi�cation of Benchmarking Dataset

One major research goal of this work was to systematically compare different algorithms with

different modalities on the same benchmarking dataset. For this, twelve different algorithms were

applied on theMESA dataset. The resulting performance measures are presented in Table 8.1.

Additionally, Figure 8.1 visualizes the best algorithm in terms of Cohen's� of every group

separated between different input modalities.

Figure 8.1: Best-performing algorithm of every category for mono- and multimodal approaches;
� p < 0:05, �� p < 0:01, ��� p < 0:001
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For the actigraphy-based, monomodal approach,XGB achieved the highest accuracy of81:0%

correctly classi�ed epochs, while all deep learning and machine learning approaches performed

within the same range of80� 81%. In comparison, the heuristic algorithms performed slightly

worse in a range from77 � 79%. Among all heuristic algorithms,Sazonovposes an outlier

performance of only73:7%accuracy. Thereby, the comparably low recall and high precision of

Sazonovshow under-prediction of sleep. Furthermore, in terms of� , accuracy, and F1 score, the

algorithm ofSazonovperformed worst of all algorithms. In terms of� values, it is visible that the

machine learning-based approaches perform better than both deep learning and heuristics for the

actigraphy-based approach (Figure 8.1).

For theHRV-based approach the deep learning models were able to achieve the highest classi�-

cation performance (Table 8.1) with theLSTM as the best-performing model (accuracy:80:2 �

10:5%). The TCN achieved an accuracy of76:8%, while the machine learning models only

achieved average accuracies of69� 71%.

Overall, the multimodal approach combining both modalities worked better than both monomodal

approaches. Only theSVM could not pro�t from theHRV data resulting in an equal performance

between the actigraphy-based and the multimodal approach. The best overall performance was

obtained withLSTM, achieving83:7 � 9:6%accuracy.

Table 8.2 presents sleep statistics in absolute values andMean Absolute Error (MAE). As visible,

most algorithms tend to overestimate sleep, expressed in a highSE and lowWASOcompared to

the ground truth. Thereby, the machine learning algorithms in theHRV-based approach led to the

highest overestimation of sleep.

As visible in highSE, and lowWASOmost of the algorithms underestimate wake phases occur-

ring between sleep onset and wake onset. Participants had an averageSEof 75:5%, while most

algorithms predicted ef�ciencies of more than80%. As visible from the other sleep metrics, the

Sazonovalgorithm overestimates wake phases during sleep with228:5 � 118:6 min instead of

152:4 � 112:2 min.

Further sleep statistics are provided in Appendix B.1. It was observed that most of the algorithms

underestimate the time to fall asleep, expressed in theSOL. All HRV-based approaches show

MAE larger than50 min , while the machine learning-based approaches in the actigraphy and

multimodal approach show error rates of only33� 35min. In contrast, theNSD observed in the

multimodal approach is lower than for the actigraphy-based approach for all algorithms except

SVM. That is caused by a slightly higherWASO, which results in less overprediction of sleep and

therefore the boost in performance.
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Algorithm Accuracy [%] Precision [%] Recall [%] F1-score [%] Cohen's �
Always wake 33:2 � 13:1 0:0 � 0:0 0:0 � 0:0 0:0 � 0:0 0:00� 0:00
Always sleep 66:8 � 12:3 66:8 � 12:3 100� 0:0 79:3 � 10:2 0:00� 0:00
Ground truth 100� 0:0 100� 0:0 100� 0:0 100� 0:0 1:00� 0:00

Actigraphy
Cole-Kripke 78:0 � 10:1 78:4 � 12:9 91:6 � 7:4 83:7 � 9:3 0:45� 0:20
Sadeh 78:6 � 10:5 77:5 � 13:0 94:8 � 5:8 84:6 � 9:2 0:45� 0:21
Sazonov 73:7 � 10:0 81:4 � 12:2 76:9 � 13:3 78:1 � 11:1 0:41� 0:20
Scripps-Clinic 77:8 � 9:9 78:9 � 12:9 90:1 � 8:0 83:4 � 9:3 0:46� 0:20
Webster 78:2 � 10:1 78:6 � 12:9 91:5 � 7:8 83:8 � 9:3 0:46� 0:21
AdaBoost 80:8 � 10:7 81:3 � 12:5 91:6 � 11:1 85:3 � 10:2 0:52� 0:23
MLP 80:9 � 10:8 81:4 � 12:5 91:5 � 11:1 85:3 � 10:3 0:53� 0:23
Random Forest 80:8 � 10:8 81:2 � 12:5 91:6 � 10:8 85:3 � 10:2 0:52� 0:23
SVM 80:4 � 10:7 80:3 � 12:7 93:0 � 9:9 85:3 � 9:8 0:51� 0:23
XGB 81:0 � 10:7 81:6 � 12:4 91:4 � 11:0 85:4 � 10:2 0:53 � 0:22
LSTM 80:5 � 11:1 83:2 � 12:1 89:8 � 11:8 85:6 � 10:6 0:46� 0:23
TCN 80:4 � 10:9 81:9 � 12:3 92:2 � 10:1 86:0 � 9:8 0:44� 0:23

HRV
AdaBoost 70:5 � 11:9 71:5 � 13:6 92:3 � 12:9 79:2 � 11:6 0:24� 0:16
MLP 71:1 � 12:0 71:9 � 13:6 92:3 � 13:0 79:5 � 11:8 0:26� 0:16
Random Forest 70:8 � 12:1 71:9 � 13:6 91:5 � 14:3 79:1 � 12:5 0:25� 0:16
SVM 69:2 � 12:8 69:1 � 13:6 96:7 � 10:0 79:4 � 11:3 0:16� 0:14
XGB 70:9 � 12:0 72:2 � 13:6 90:9 � 14:3 79:0 � 12:4 0:26� 0:16
LSTM 80:2 � 10:5 85:4 � 12:7 87:1 � 12:3 85:0 � 10:3 0:50 � 0:19
TCN 76:7 � 11:5 81:3 � 13:9 87:1 � 11:9 82:9 � 11:0 0:41� 0:18

Multimodal
AdaBoost 81:5 � 10:4 82:4 � 12:3 91:2 � 11:4 85:6 � 9:9 0:55� 0:22
MLP 81:9 � 10:3 82:7 � 12:3 91:4 � 10:6 86:0 � 9:7 0:56� 0:22
Random Forest 81:7 � 10:4 82:3 � 12:4 91:7 � 10:4 85:9 � 9:7 0:55� 0:22
SVM 80:4 � 10:7 80:2 � 12:7 93:0 � 9:8 85:3 � 9:8 0:51� 0:23
XGB 82:1 � 10:2 83:0 � 12:2 91:3 � 10:6 86:1 � 9:6 0:57 � 0:21
LSTM 83:7 � 9:6 86:5 � 12:0 91:0 � 9:9 87:8 � 9:1 0:57 � 0:19
TCN 80:9 � 9:3 84:9 � 12:0 88:2 � 9:2 85:8 � 8:8 0:50� 0:18

Table 8.1: Performance measures for the algorithm benchmarking on theMESA dataset sorted by
input modality. The types of algorithms are separated by a line. The best-performing performance
scores per algorithm group and modality, respectively, are written in bold.
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Algorithm SE[%] MAE SE [%] WASO[min] MAE WASO[min]
Ground truth 75:8 � 12:9 0:0 � 0:0 152:4 � 112:2 0:0 � 0:0

Actigraphy
Cole-Kripke 80:2 � 12:0 9:8 � 8:9 125:4 � 92:8 68:5 � 71:1
Sadeh 85:6 � 10:0 12:2 � 10:2 86:2 � 70:8 81:4 � 80:6
Sazonov 68:0 � 13:4 11:4 � 9:3 228:5 � 118:6 102:5 � 85:7
Scripps-Clinic 81:1 � 10:1 9:6 � 8:9 129:2 � 82:7 67:0 � 71:2
Webster 80:9 � 11:6 10:0 � 9:1 121:3 � 90:1 69:5 � 71:3
AdaBoost 81:8 � 13:6 10:8 � 9:5 112:0 � 104:0 75:9 � 78:8
MLP 81:6 � 13:6 10:6 � 9:5 113:6 � 104:9 75:7 � 78:3
Random Forest 81:8 � 13:3 10:6 � 9:4 111:9 � 102:4 75:4 � 78:0
SVM 83:5 � 12:7 11:7 � 9:8 100:0 � 95:9 79:3 � 81:3
XGB 81:6 � 13:3 10:5 � 9:4 111:8 � 102:9 75:5 � 77:2
LSTM 76:6 � 14:8 10:1 � 9:2 147:4 � 122:7 91:0 � 90:5
TCN 79:8 � 13:5 10:8 � 9:3 128:1 � 111:3 92:1 � 87:4

HRV
AdaBoost 87:9 � 13:8 18:1 � 13:3 86:0 � 102:7 114:3 � 103:9
MLP 87:4 � 13:7 17:4 � 13:2 89:8 � 102:7 108:7 � 103:1
Random Forest 86:8 � 15:1 17:9 � 13:7 93:0 � 113:2 114:2 � 106:9
SVM 93:9 � 10:5 21:5 � 13:2 42:5 � 76:7 128:3 � 107:6
XGB 85:8 � 14:9 17:1 � 13:5 100:8 � 112:4 109:1 � 104:4
LSTM 72:4 � 14:3 11:8 � 10:6 211:4 � 131:8 114:9 � 108:8
TCN 75:9 � 12:4 12:3 � 10:9 211:5 � 120:7 122:8 � 102:1

Multimodal
AdaBoost 80:5 � 14:0 10:5 � 9:6 122:2 � 108:8 74:8 � 78:5
MLP 80:3 � 13:4 10:0 � 9:3 124:0 � 105:0 74:2 � 76:8
Random Forest 81:0 � 13:2 10:1 � 9:3 117:1 � 101:0 72:4 � 76:5
SVM 83:6 � 12:6 11:7 � 9:8 99:4 � 95:7 79:6 � 81:3
XGB 80:3 � 13:3 9:9 � 9:1 122:2 � 103:6 72:7 � 75:7
LSTM 74:6 � 13:6 10:0 � 8:9 167:4 � 119:9 91:0 � 90:0
TCN 73:6 � 12:2 9:7 � 8:3 211:4 � 115:2 106:2 � 93:0

Table 8.2:SEandWASOwith correspondingMAE measured on the benchmarking dataset.
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The following results show the assessment of the in�uence of different study- and participant-

speci�c in�uences on classi�cation performance. Statistical tests were applied for this purpose

and can be found in Appendix B.2. Thereby, only the best-performing algorithm of each group

(heuristic, machine learning, and deep learning) and each modality, according to accuracy, were

analyzed.

Signal Quality

It was examined, whether the signal quality of actigraphy andPSGrecording in�uenced the

performance. Figure 8.2 shows the performance of the algorithms in all three modalities distin-

guished between good and badPSG-signal quality. As it is visible, all algorithms achieved higher

classi�cation accuracy for high-qualityPSGdata (Figure 8.2). Concurrently, higher actigraph

signal quality led to a signi�cantly (p < 0:05) better classi�cation accuracy. The statistical tests

are provided in Appendix (Table B.5).

Figure 8.2: Classi�cation performance dependent onPSGRecording Quality;
� p < 0:05, �� p < 0:01, ��� p < 0:001.

Gender

Figure 8.3 depicts differences in classi�cation performance between male and female participants.

As visible, both the actigraph and the multimodal approaches achieved signi�cantly higher

classi�cation performance for female participants (see Appendix, Table B.7).
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Figure 8.3: Performance dependent on gender of the participants;
� p < 0:05, �� p < 0:01, ��� p < 0:001.

Race

Furthermore, the sleep/wake estimation was evaluated towards different races. Thereby, no

signi�cant differences were found (see Appendix, Table B.11).

Extra Workload

Another examination was performed to determine the in�uence of extra work (more than 5 h per

week). Results show that individuals with more than 5 h of extra work showed better classi�cation

performance (see Figure 8.4 and Appendix, Table B.10).

Figure 8.4: In�uence of more than 5 h of extra work per week;
� p < 0:05, �� p < 0:01, ��� p < 0:001.
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Sleep Quality

The sleep quality score obtained from theWHIIRS questionnaire led to no signi�cant differences

between individuals with good or bad sleep (see Appendix, Table B.9).

Sleep Diseases

In addition, it was investigated whether sleep-related diseases in�uence classi�cation performance.

The MESA dataset included information about the diagnosis ofRLS, INS, and sleep apnea.

However, no signi�cant effects were found (see Appendix, Table B.8).

Age

Figure 8.5 shows the relationship between age and accuracy forXGB, all trained on different

modalities. It is visible that the classi�cation performance does not depend on age for the

actigraphy- and only little for the multimodal approach but increasing age tends to decrease the

accuracy for theHRV-based approach.

Figure 8.5: Sleep/wake detection accuracy as a function of age.Green line: Linear regression
slope with 95% con�dence interval; predictor: age; dependent variable: accuracy.

AHI

Figure 8.6 presents the relationship betweenAHI , which serves as an indicator for apnea and

hypopnea frequency and severity, (Section 3.2) and classi�cation performance withXGB. The

correlation indicates worse classi�cation for individuals with higherAHI , with a similar effect for

all three modalities.
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Figure 8.6: Sleep/wake detection accuracy as a function ofAHI . Green line: Linear regression
slope with 95% con�dence interval; predictor:AHI ; dependent variable: accuracy.

8.2 Classi�cation on Real-World Data

The second major part of this thesis was to evaluate the algorithms used for the benchmarking

approach on a real-world data set. For that, different analysis approaches were conducted that will

be presented in this section: First, results of applying machine learning models, pre-trained on the

benchmark dataset, on the real-world dataset, are outlined. Second, all algorithms were re-trained

on the real-world dataset and evaluated. For both evaluations, rawIMU data were converted to

activity counts to allow comparison with the benchmark dataset. In the third evaluation, it was

assessed whether classi�cation performance on the real-world dataset can be further improved by

using features extracted from rawIMU data instead of activity counts.

Since the dataset acquired for this work is highly imbalanced, mostly containing sleep, ranking

the results by accuracy is not very meaningful. Therefore, the performance evaluation was mainly

focused on Cohen's� .

8.2.1 Classi�cation using Pre-trained Pipelines

Table 8.3 provides an overview of the performance, sorted according to input modality. Machine-

and deep learning algorithms are separated by a line. The best performance of every metric and

every modality is written in bold. Because the heuristic algorithms are not trainable, only the

machine-learning- and deep learning algorithms presented in Chapter 5 were used.

Comparing the different modalities, the deep learning algorithms perform worse than machine

learning algorithms in all three approaches. While theLSTM in the motion-based approach

reached a� of 0:12� 0:15, all other approaches resulted in� values very close to zero or negative,
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