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ABSTRACT

Testing sports equipment with athletes is costly, time-consuming, hazardous and

sometimes impracticable. We propose a method for virtual testing of running shoes

and predict how midsoles made of BOOSTTM affect energy cost of running. We

contribute a visco-elastic contact model and identified model parameters based on

load-displacement measurements. We propose a virtual study using optimal con-

trol simulation of musculoskeletal models. The predicted reduction in energy cost

of ∼ 1% for BOOST in comparison to conventional materials is consistent with ex-

perimental studies. This indicates that the proposed method is capable of replacing

experimental studies in the future.
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1. Introduction

Sports products are typically developed in an iterative process by prototyping and

testing. This process suffers from high costs and long lead times, conflicting with

short development cycles. Computer simulations that can predict the effect of design

parameters on human movement and performance will revolutionize the development

process. Different shoe concepts can be studied and validated in the virtual stage, with

the consequence that a more mature concept with higher quality can enter the market.

The sports industry uses virtual prototypes (finite element models) to simulate

the mechanical characteristics of sports products. A few attempts have been made to

integrate a biomechanical analysis in the finite element framework by investigating

dynamic finite element models (Cheung and Zhang 2006; Hannah et al. 2016; Kim

et al. 2012). However, these methods only consider movements of single parts of the

body (like foot or lower leg movements) and can not yet predict full-body human

responses, i.e., kinematic, kinetic, and metabolic changes due to design parameters.

Apart from that, musculoskeletal simulation is employed to study full-/lower-body

kinematics and kinetics of running. For example, Wright et al. (Wright et al. 1998)

and Miller et al. (Miller and Hamill 2009) modeled footwear as nonlinear visco-elastic

elements and examined the human response to changing shoe stiffness. Both studies

were based on measurement data of optical motion capture systems, which was tracked

to derive muscle stimulation patterns of running (Miller and Hamill 2009). Using

these derived muscle controls and given initial kinematic conditions, forward dynamic

simulations were performed with different contact models for varying shoe stiffness.

The predefined muscle controls are inaccurate as muscle activity can change due to

changes in footwear (Wakeling et al. 2002).

We want to predict motion trajectories and muscle controls simultaneously without

the need of predefined kinematic states or muscle controls. Former work has shown

that human motion can be simulated by solving an optimal control problem: Find a

motion trajectory and muscle controls that minimize a physically motivated cost func-

tion such as minimal muscular effort, cost of transport or mechanical loading (van den

Bogert et al. 2011; Wang et al. 2012; Lin et al. 2018). Tracking data of human motion
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was included in the cost function to ensure that the simulated motion was realistic.

van den Bogert et al. (2011) proposed an efficient method for solving such optimiza-

tion problems using direct collocation to make it feasible for design applications. They

were able to predict changes of human kinematics and energy cost due to varying mass

properties of wearable equipment (van den Bogert et al. 2012). The effects of running

shoes and elastic and dissipative material properties were not considered. They eval-

uated energy cost based on positive mechanical work. In addition, we want to predict

metabolic changes to estimate the economy of running with different footwear. If ath-

letes can run with lower energetic cost at a specified velocity, then they should be able

to run faster with their existing physiological capacities (Hoogkamer et al. 2016). Thus,

running economy gives an indication on running performance which is a key objective

in sports product design and should be considered as an evaluation parameter. Miller

and Hamill (2015) examined footfall patterns of shod and barefoot running based on

different optimality principles. They only compared shod and barefoot running and

did not consider differences in footwear. Moreover, they focused on kinematic changes

(rearfoot vs. non-rearfoot running) and did not evaluate performance measures. We

further investigated direct collocation simulation to study footwear effects on running

performance.

A major drawback of most simulation studies is that only one generic model was

used (van den Bogert et al. 2012; Dorn et al. 2015). We want to simulate multiple

musculoskeletal models to ensure that the simulation results are insensitive to model

parameters and to represent a population of runners. Esposito and Miller (2018)

conducted a simulation study with 25 virtual subjects to predict metabolic cost of

walking pre- and post-limb loss. They randomized muscle parameters to represent a

population of young adult males. In the optimal control simulation, they tracked the

between-subjects mean of experimental gait data. Averaging data across multiple sub-

jects could lead to unnatural movement patterns and does not reflect the variability

of human movement. Especially in our case, we want to simulate different running

styles like rear-foot, mid-foot and fore-foot running. The individual running pattern

is hardly affected by small changes in footwear according to the preferred movement

path paradigm (Nigg et al. 2017). Therefore, we propose a new virtual study design
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that uses randomized virtual subjects to represent a population of runners while con-

sidering different movement patterns. We avoid any data acquisition by using a public

available data set for tracking various running biomechanics (Fukuchi et al. 2017).

Current literature does not provide methods to predict the effect of footwear on

human performance by computer simulation. Our objective is to present a methodology

for this and evaluate it for a use case. In particular, we predict the influence of midsole

materials on energy cost of running using optimal control simulation (van den Bogert

et al. 2011; van den Bogert et al. 2012). The contribution of this work involves (i) a

novel ground-contact model to capture shoe characteristics (see Sec. 2.1) and (ii) a

virtual study design to replace experimental studies (see Sec. 2.2).

2. Methods

Fig. 1 shows an overview of the proposed methods. We compared the influence of two

midsole materials on running economy: a midsole out of BOOSTTM (SOFT) versus a

common midsole material, ethyl vinyl acetate (CONTROL). We compared two running

shoes that only differed in their midsole material. The same study was performed

experimentally by Worobets et al. (2014). They showed that the more compliant and

resilient shoe midsoles (BOOSTTM (SOFT)) reduce the energetic cost of running by

approx. 1%. We conducted an equivalent simulation study and compared the results

to the experimental results.

2.1. Ground-Contact Model

This section describes the ground-contact model and how we captured the characteris-

tics of the two midsole materials. We performed multiple mechanical force-deformation

measurements to identify the forefoot (FF) and rearfoot (RF) area of the shoes (see

Sec. 2.1.1). The respective visco-elastic behavior (stiffness and damping) was described

by fitting a polynomial regression model to the force-deformation measurements (see

Sec. 2.1.2).
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Figure 1.: Overview of methods: Two identical running shoes with different midsole materials,
SOFT and ethyl vinyl acetate (CONTROL), were characterized by force-deformation measure-
ments with different test setups for the forefoot (FF) and rearfoot (RF) (see Sec. 2.1.1). Based
on the measurement data, we created a contact-response model and identified the model pa-
rameters for forefoot (FF) and rearfoot (RF) of SOFT and CONTROL (see Sec. 2.1.2). Then,
we ran a simulation study with 280 randomized musculoskeletal models and estimated the
change in energy cost for running with SOFT midsoles (see Sec. 2.2).

2.1.1. Force-Deformation Measurements

We performed different tests for the FF and RF to consider the different material

thickness and weight distribution during a gait cycle. Therefore, we mounted the run-

ning shoes in a servo-hydraulic testing machine (Instron R©). The machine can generate

high-dynamic load patterns that are applied to the shoe via a stamp or a last. It fur-

ther determines the resulting deformation of the sole material. We programmed the

machine to simulate typical load and unload patterns of human heel-to-toe running,

where different loads were applied to the FF and RF according to Tab. 1.

Fig. 2a shows the standard setup parameters for RF-1 and FF-1: The maximum

load, Fmax, is reached at loading time, tload, and returns to zero at unloading time,

tunload. We used a haversine function for smoothing resulting in an applied force as

shown in Fig. 2b. We chose the standard setup parameters to imitate a typical loading

pattern of a 75 kg heel-striker with an average ground contact time (Nigg 2010), as

indicated as dotted line in Fig. 2b. Afterwards, we altered these parameters to imitate

running of more lightweight and heavier persons and different running styles resulting

in variations of the ground reaction force (GRF) profile. The maximum loading, Fmax,

was varied to a large extent in between 50% and 200% of the default parameter to allow

for a more general contact model (see Tab. 1). Moreover, we varied tload and tunload

by 75%, 100%, 125% to simulate different running speeds. Additionally, we performed
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Table 1.: Setup parameters of force-deformation tests for the rearfoot (RF) and forefoot (FF)
according to Fig. 2a.

Measurement ID Repetitions Fmax (N) tload (ms) tunload (ms)

RF-1 20 1800 35 95
RF-2 20 900 35 95
RF-3 20 1350 35 95
RF-4 20 1800 35 95
RF-5 20 2250 35 95
RF-6 20 2700 35 95
RF-7 20 3600 35 95
RF-8 20 1800 26 71
RF-9 20 1800 44 119
RF-10 20 1800 100 200

FF-1 20 2000 100 200
FF-2 20 1000 100 200
FF-3 20 1500 100 200
FF-4 20 2000 100 200
FF-5 20 2500 100 200
FF-6 20 3000 100 200
FF-7 20 4000 100 200
FF-8 20 2000 35 95
FF-9 20 2000 75 150
FF-10 20 2000 125 250

0 200

0

500

1,000

1,500

2,000

time in ms

fo
rc

e
in

N

Fmax

tload tunload

(a) Setup

0 100 200

0

500

1,000

1,500

2,000

time in ms

fo
rc

e
in

N

RF-1
FF-1
GRF

(b) Applied force

Figure 2.: Example setup (a) for force-deformation tests for the rearfoot (RF) (blue) and
forefoot (FF) (red), RF-1, FF-1 in Tab. 1. The summation of the applied forces (b) leads to
typical ground reaction force (GRF) patterns of running.
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Figure 3.: Average force-deformation curves of running shoes with two different midsole materi-
als, BOOSTTM (SOFT) (a) and ethyl vinyl acetate (CONTROL) (b). Different measurements
were performed for the rearfoot (RF) (blue) and forefoot (FF) (red) according to Tab. 1.

a slower measurement for the RF and a faster measurement for the FF using the

respective other default setting. This ensured a more valid range of the fitted model in

Sec. 2.1.2 as during the optimal control simulation unrealistically high or low values

could appear. We performed 20 repetitions for each test setup and averaged the trials

afterwards. All averaged force-deformation measurements (Fig. 3) were then used to

identify the stiffness and damping coefficients of the contact elements as described in

the following section 2.1.2.

2.1.2. Curve Fitting

At each contact point, we formulated the vertical contact force, Fy, as a nonlinear

function of the deformation d, and the deformation rate ḋ. We enhanced the contact

model of Gerritsen et al. (1995) by linear and nonlinear terms until the best fit to the

measurement data was obtained. This resulted in the third-order relationship

Fy = α1d+ α2d
2 + α3d

3 + βdḋ, (1)

with the stiffness parameters α1, α2, and α3 and the damping factor β. Four param-

eter sets were determined, for the RF and FF each for SOFT and CONTROL. The

parameter sets were found by least-squares fitting of the corresponding measurements.
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Figure 4.: Schematic representation of the musculoskeletal model with seven rigid segments:
head-arms-trunk-pelvis (HATP), left and right thigh, shank and foot, and 16 Hill-type muscles:
1 - iliopsoas, 2 - glutei, 3 - hamstrings, 4 - rectus femoris, 5 - vasti, 6 - gastrocnemius, 7 -
soleus, 8 - tibialis anterior. The model has nine kinematic degrees of freedom: The joint angles
(Θhip,l/r, Θknee,l/r, Θankle,l/r) and the global position and orientation of the HATP segment
(xHATP , yHATP , ΘHATP ).

2.2. Simulation Study

We compared the influence of the two midsole materials on the running performance of

280 virtual runners. We created 280 musculoskeletal models and simulated running for

SOFT and CONTROL midsoles by solving optimal control problems. First, we explain

the musculoskeletal model and optimal control simulation (see Sec. 2.2.1 and 2.2.2).

Then, we describe the virtual study design in Sec. 2.2.3.

2.2.1. Musculoskeletal Model

Each model consisted of seven rigid segments, one head-arms-trunk-pelvis segment,

and three segments for each lower extremity: thigh, shank, and one segment for the foot

(see Fig. 4). We scaled the segments’ masses, lengths, centers of masses, and moments

of inertia based on the height and weight according to Winter (2009). We applied

Kane’s method using Autolev 4.1 (Symbolic Dynamics Inc., Sunnyvale, California,

USA) to derive multibody dynamics. In addition, the model had 16 muscles, eight for

each lower extremity (see Fig. 4). Each muscle was modeled as three-element Hill-type
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model. The muscle dynamics are described in detail in previous publications (van den

Bogert et al. 2011; van den Bogert et al. 2012).

In total, each model had 9 kinematic degrees of freedom, the hip, knee and ankle

angles and the global position of the hip. The current state of each model was described

by the state vector:

x =



q 9 generalized coordinates

q̇ 9 generalized velocities

LCE 16 contractile elements lengths

a 16 chemical muscle activations


. (2)

The model was driven by a control vector u comprising 16 neural excitations for all

muscles. We implicitly formulated the system dynamics, i.e., the coupled multi-body

dynamics and muscle dynamics, (van den Bogert et al. 2011):

f(x, ẋ,u) = 0. (3)

For the dynamic equilibrium in Eq. 3, the vertical contact force Fy was computed by

Eq. 1 based on the current state of the model (Eq. 2). Therefore, the deformation

d was derived from the state vector x. The global coordinates of the contact points,

(xc, yc), could be directly computed from the state vector x based on the global coor-

dinates of the hip and the joint angles. The contact points were placed at the heel and

ball area and scaled with the model’s foot length lfoot: (−0.2lfoot,−0.07 m) (RF) and

(0.6lfoot,−0.07 m) (FF) with respect to the ankle location. To ensure that the model

is differentiable twice, as required by the optimal control methods, the deformation d

was computed at each contact point by

d =
1

2

(√
y2c + y20 − yc

)
. (4)

The smoothing parameter was set to y0 = 0.002 m for a continuous transition of Fy

at the ground contact yc = 0 m. Furthermore, we modeled the horizontal forces that
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resist slipping of the shoe relative to the ground as a continuous approximation to

Coulomb friction (Gerritsen et al. 1995):

Fx = −ζFy
ẋc√
ẋ2c + v20

, (5)

with the sliding velocity ẋc and the friction coefficient ζ (we set ζ = 1 according

to Gerritsen et al. (1995)). The smoothing parameter was set to v0 = 0.1 m s−1 for a

continuous transition of Fx at zero velocity ẋc = 0 m s−1.

2.2.2. Optimal Control Simulation

We simulated a half gait cycle assuming symmetric gait by solving an optimal control

problem. The objective function was a weighted sum of muscular effort and deviation

from normal running movement. The constraints were the lower and upper bounds on

the state (xL, xU ) and control vectors (uL, uU ), the dynamic equilibrium (Eq. 3), and

the task fulfillment of periodic forward movement. The motion and control trajectories

were found by solving:

min
x(t),u(t)

1

T

T∫
0

W

16

16∑
i=1

ui(t)
3

︸ ︷︷ ︸
muscular effort

+
1

5

5∑
j=1

(sj(t)−mj(t))
2

σj(t)2


︸ ︷︷ ︸

deviation from normal running

dt

s.t. xL ≤ x ≤ xU

uL ≤ u ≤ uU

f(x(t), ẋ(t),u(t)) = 0

x(0) + vTex − x∗(T ) = 0,

(6)

where T is the duration of a half gait cycle, W is a weighting factor and sj denotes

the simulated variable with the associated measured variable mj . We normalized the

tracking term by the variance σ2j of the measured variable. We tracked the hip angle,

knee angle, ankle angle, and the vertical and horizontal GRF of a public dataset of

running biomechanics (see Sec. 2.2.3). We allowed a deviation of the tracked movement

by increasing the weighting W = [1, 10, 100, 1000] of the effort term in the objective

function (Eq. 6). The weighting W was subsequently increased to allow deviation

from the tracked data. After a half period, the model had to be in the same state

10



mirroring left and right leg x∗(T ) plus a forward translation in direction ex at speed

v. We solved the optimal control problem by direct collocation with Backward Euler

discretization at N time nodes (van den Bogert et al. 2011). The number of collocation

nodes was set to N = 100 according to the sampling rate of the tracked data. We used

a result of an independent running simulation (different contact model and tracking

data) as initial guess. The initial guess was chosen as a good starting point to decrease

computation time. We used the software library for large scale nonlinear optimization

IPOPT (Wächter and Biegler 2006).

2.2.3. Virtual Study Design

The aim of the virtual study design was to simulate a population of runners to

predict the average effect of the midsole material. Therefore, we created multi-

ple musculoskeletal models and tracked a variability of running patterns including

fore-foot, mid-foot and rear-foot striking. In this work, we used a public dataset

that comprises processed biomechanics variables of 28 subjects running at 2.5 m s−1,

3.5 m s−1, and 4.5 m s−1 (Fukuchi et al. 2017). The distribution of the height and weight

(175.2± 5.7 cm and 70± 7.1 kg) compares well to the experimental study of Worobets

et al. (2014) (174.9 cm (168-186), and 71.6 kg (63.6-76.4)). This allows a direct compar-

ison of the simulation results. First, we created 28 musculoskeletal models according

to the height and weight of Fukuchi et al. (2017) using the default muscle parameters.

In addition, we created 9 models for each of the 28 subjects by randomly changing

the default muscle parameters to ensure that the prediction outcome is insensitive to

the muscle parameters. The muscle parameters (maximal isometric force, fiber length

at maximal isometric force, muscle-tendon length at neutral skeleton pose, and the

moment arms at each joint) were independently drawn from a normal distribution

around their default value with a standard deviation (SD) of 10%. We chose a stan-

dard deviation (SD) of 10% as a reasonable estimate of the variance between human

subjects (Hasson and Caldwell 2012; Esposito and Miller 2018). The ratio between the

slack length of the serial elastic element to the muscle-tendon length at neutral skele-

ton pose (all joint angles are zero) were fixed to a constant value. The right and left

muscle parameters had always the same value. The number of randomized subjects was
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increased until the simulated change in energy cost converged. We tracked the running

patterns of pace v = 3.5 m s−1 for comparison to Worobets et al. (2014) who recorded

an average speed of 3.3 m s−1. We used the mean and SD of the hip, knee and ankle

angle, and vertical and horizontal GRF of each individual subject of Fukuchi et al.

(2017). In total, 1120 optimal control problems were solved (W = [1, 10, 100, 1000] for

280 subjects).

2.2.4. Performance Estimation

We considered three different metrics to estimate energy cost of running. We compared

the muscular effort, Emus, that was minimized in the objective function, i.e. the sum

of the cubic muscle excitations. We compared the mechanical costs, Emech, which we

computed as average rate of positive work generated by the contractile elements across

one gait cycle (van den Bogert et al. 2012). Moreover, we estimated the metabolic cost,

Emet, based on a thermal energy model Umberger et al. (2003) and Umberger (2010).

We computed the relative change of these performance parameters,

∆Emus
=

(
Emus,SOFT

Emus,CONTROL
− 1

)
100%, (7)

∆Emech
=

(
Emech,SOFT

Emech,CONTROL
− 1

)
100%, (8)

and

∆Emet
=

(
Emet,SOFT

Emet,CONTROL
− 1

)
100%, (9)

and compared it to the measured change in steady-state oxygen consumption, ∆EV O2
,

of Worobets et al. (2014). We applied a one tailed paired-sample t-test for significance

analysis. We examined whether running with SOFT midsoles requires less energy than

running with CONTROL midsoles. Therefore, we tested the hypothesis that the mean

of Emus, Emech and Emet for SOFT midsoles is significantly less than for CONTROL

midsoles using a significance level of 5%.

Finally, we estimated the dissipated energy (energy loss) in footwear calculating
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Table 2.: Curve fitting results: Square of the multiple correlation coefficient, R2 and result-
ing model parameters for the midsole materials BOOSTTM (SOFT) and ethyl vinyl acetate
(CONTROL), for the contact points at the rearfoot (RF) and forefoot (FF).

R2 α1

(
N
mm

)
α2

(
N

mm2

)
α3

(
N

mm3

)
β
(

Ns
mm2

)
SOFT-RF 0.990 27.48 2.80 0.14 0.03
SOFT-FF 0.993 111.50 −6.63 1.67 0.15
CONTROL-RF 0.986 42.28 4.01 0.24 0.07
CONTROL-FF 0.988 111.30 −3.24 2.02 0.29
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2,000

deformation in mm

fo
rc

e
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SOFT-RF fit
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CONTROL-RF fit

Figure 5.: Fitting of the ground-contact model (Eq. 1) to measurements for the rearfoot (RF)
of the two midsole materials, BOOSTTM (SOFT) and ethyl vinyl acetate (CONTROL) (RF-1
in Tab. 1).

the enclosed area by the hysteresis loop of the force-displacement graphs. This was

done for the measurements in Tab. 1 adding the energy loss of the related RF and

FF tests. In addition, we estimated the energy loss for the 280 simulations adding up

the enclosed areas of the vertical force Fy over the displacement d of the two contacts

points at the right foot. We tested for significance between the two midsole materials

using a one tailed paired-sample t-test and a significance level of 5%.

3. Results

3.1. Ground-Contact Model

The goodness of fit and the fitted coefficients of Eq. 1 are listed in Tab. 2. Fig. 5 shows

an example of the model identification for the setting RF-1 of SOFT and CONTROL

(Tab. 1).

13



Figure 6.: Musculoskeletal model simulated at v = 3.5 m s−1.

3.2. Virtual Study

We solved the optimal control problem (Eq. 6) for 280 musculoskeletal models. All sim-

ulations converged within ∼1min-1h (increasing with W ) on an Intel Xeon E5-1660

v4 processor. Fig. 6 shows an exemplary resulting running movement. The average

pattern across all models of the GRF, joint angles, moments, and muscle forces is

depicted in Fig. 7 (for W = 100). The mean and one SD are plotted in blue and red

for SOFT and CONTROL midsoles, respectively. One SD of the mean tracked vari-

ables is shaded in grey. The maximum knee moment is significantly higher for running

with CONTROL for all considered values of W . The movement patterns for W = 1

follow more closely the tracked data with higher muscle excitations. For W = 1000,

the movement patterns of musculoskeletal models were outside the measured SD of

all subjects of (Fukuchi et al. 2017). Fig. 8a shows the according mean and SD of

metabolic cost across all virtual subjects for varying W . The values for W = 100 were

realistic for human running at 3.5 m s−1 (∼ 3 J/m/kg - 4.5 J/m/kg; Rubenson et al.).

The relative change in percentage of the performance measures for W = 100 were:

∆Emus
= −1.7 ± 1.8%, ∆Emech

= −0.6 ± 1.9% and ∆Emet
= −0.7 ± 1.5%. The boxplot

in Fig. 8b illustrates the relative change for W = 100 and shows the comparison

to Worobets et al. (2014) (shaded in blue). The performed ttest indicated that the

mean of the performance parameters is significantly higher for CONTROL than for

SOFT (p < 0.05) for all considered W for Emech (p = 8.5e-09, 2.9e-06, 1.2e-07, 4.3e-03)

and Emet (p = 5.4e-06, 9.0e-12, 3.2e-12, 2.0e-07) and for W = 100 and W = 1000 for

Emus (p = 0.5, 0.4, 4.6e-19, 1.8e-16). To explain the energy savings, Tab. 3 summerizes

the results for each individual muscle. The average muscle activation, Emech and Emet
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Figure 7.: Average ground reaction force (GRF), joint angles, joint moments, muscle excitations
across all virtual runners. The mean and one standard deviation (SD) of simulated running
with BOOSTTM (SOFT) and ethyl vinyl acetate (CONTROL) midsoles are plotted in blue
and red, respectively. One SD of the mean tracked variables is shaded in grey.
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(c) Boxplot differentiating 28 tracked running patterns including fore-foot (F), mid-
foot (M) and rear-foot (R) striking (W = 100).

Figure 8.: Comparison of simulated and measured decrease of energy cost when running with
SOFT compared to CONTROL midsoles. Fig. 8a shows the mean and standard deviation
(SD) of metabolic cost, Emet, across all virtual subjects. In Fig. 8b, the transparent box plots
show the simulated change of muscular effort (Emus), mechanical work (Emech) and metabolic
cost (Emet). The shaded box plot shows the measured change of oxygen consumption (EV O2)
for treadmill running taken from Worobets et al. (2014). Fig. 8c depicts the changes in Emet

separately for the different tracking data of Fukuchi et al. (2017).
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Table 3.: Across one gait cycle: Average muscle activation (a), average rate of positive work
generated by the contractile element of each muscle (Emech) and average metabolic cost (Emet).
Significant lower values for either of the two materials are printed in bold (p < 0.05).

a (%) Emech (W) Emet (J/kg/m)

SOFT CONTROL SOFT CONTROL SOFT CONTROL
iliopsoas 37.62±5.19 37.58±5.29 32.64±5.32 32.76±5.27 0.294±0.046 0.295±0.045
glutei 14.80±2.78 14.75±2.72 41.32±10.13 41.45±10.32 0.335±0.073 0.336±0.074
hamstrings 18.15±3.08 18.01±3.08 30.38±9.02 30.02±8.91 0.205±0.050 0.203±0.049
rectus femoris 11.28±3.61 11.22±3.59 3.22±1.28 3.21±1.28 0.035±0.013 0.035±0.012
vasti 15.60±2.59 15.83±2.60 32.79±9.20 33.45±9.55 0.379±0.075 0.385±0.076
gastrocnemius 30.19±4.97 30.38±4.97 23.54±6.50 23.70±6.31 0.206±0.043 0.208±0.043
soleus 13.55±2.58 13.51±2.58 15.92±5.59 16.34±5.72 0.115±0.037 0.117±0.038
tibialis anterior 21.19±4.77 21.55±4.70 13.41±4.54 13.52±4.52 0.110±0.031 0.111±0.031

of each individual muscle are listed for W = 100 and significant energy savings are

marked bold. In Fig. 8c, the relative change in Emet is shown separately for the 28

tracking data sets of Fukuchi et al. (2017). For four tracking data sets (all rear-foot

strike patterns), the relative change of Emet was greater than zero. In total, SOFT

midsoles reduced Emet for 218 out of 280 virtual subjects. This is equivalent to (Woro-

bets et al. 2014) who measured a positive effect for ∼ 80% of their subjects. However,

they did not screen their subjects for foot-strike style.

The measured energy loss in the midsole material was significantly different (p=5.7e-

04): 7.5±3.2J for CONTROL and 6.2±2.4J for SOFT (14.9±8.1% lower). The simu-

lated energy loss was also significantly different (p=2.7e-123): 5.2±1.3J for CONTROL

and 4.4 ± 1.2J for SOFT (15.4 ± 5.5% lower).

4. Discussion

Previous work (Gerritsen et al. 1995; Wright et al. 1998) was limited to the im-

pact phase of running and assumed that muscle activations remained the same when

footwear was changed. Full cycle running was simulated by Hamner et al. (2010)

and Hamner and Delp (2013), but they generated a subject-specifc simulation based

on measured marker trajectories and ground reaction forces. The simulation was not

predictive and thus not suitable for our purpose. We simulated a symmetric gait cycle

and predicted muscle activations and motion trajectories simultaneously for different

midsole materials.
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4.1. Ground-Contact Model

We presented a novel ground-contact model to capture shoe characteristics. We chose

discrete visco-elastic elements for modeling the contact mechanics. Our approach is

based on previous work (Gerritsen et al. 1995; Cole et al. 1996; Wright et al. 1998). The

proposed contact model yields better fitting results than the model presented by Ger-

ritsen et al. (1995). It leads to similar fitting results as the model presented by Wright

et al. (1998), but the presented model is differentiable as required for optimal control

simulations. In section 2.1.1, we described the performed load-displacement measure-

ments to imitate heel-to-toe running. We used 10 different measurement setups to cover

a high variety of ground reaction force patterns (Nigg 2010). We chose a wide range

for Fmax to ensure that the model is valid in its edge regions. The hysteresis curves in

Fig. 3 show that the material response is almost identical for the varied un-/loading

velocities. Thus, the three measurement setups with different impact velocities seem

to be sufficient for identifying the model. This work is a first evaluation of predictive

simulation in sports shoe design. Future work will consider more complex contact mod-

els which incorporate the coupling between contact points, e.g., using finite element

models. Moreover, we would like to identify a model capable to represent a variety of

running shoes. Then, the product developer can optimize design parameters by adding

them as unknowns to the state vector of the optimal control simulation.

4.2. Virtual Study

We presented a methodology how to perform a virtual study in order to replace or

complement experimental studies. The optimal control simulation predicts the same

trend as experimental studies: running with SOFT decreases energy cost of running

by about 1%. In experimental studies, a decrease of steady-state VO2 (mol kg min−1)

of ∼ 1% was measured (Worobets et al. 2014). Unfortunately, no VCO2 measures were

available for direct comparison of metabolic cost. Moreover, it needs to be examined

how this difference affects race times. However, the purpose of this work was to eval-

uate whether the simulation framework can predict the same trend as experimental

studies. Future work can run different simulations without prescribing the speed and
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minimizing the race time in the objective function.

We simulated a study with 280 virtual runners by changing the models’ height,

weight, and muscle parameters. We showed that the results are insensitive to model

parameter variations. Changing the muscle parameters with a SD of 10% proved to

be adequate as the resulting change in energy cost had a similar SD as measured

by Worobets et al. (2014) and only few outliers were apparent. A subject-specific

prediction would require a more differentiated model scaling. However, this study

aimed to predict a general effect of midsole materials and we will examine subject-

specific effects in the future for individualizing footwear.

The simulation is not purely predictive as we used a tracking term in our objective

function. We are not aware of any simulation method that can predict realistic running

patterns without tracking data. However, with proper weighting of an effort term,

data tracking can produce simulations that are both realistic and predictive (van den

Bogert et al. 2012). In this study, the weighting of the effort term W (in the objective

function) was varied to find a trade-off between realistic movement and prediction of

new motion patterns. We increased the weighting on the effort term to allow more

deviation from the tracking data. Equal weighting of tracking and effort term, W = 1,

yielded unnatural on/off switching of the muscles to match the tracking data. The

models expended much more energy to cushion the first impact, because the impact

peak in the tracked data was smoothed by averaging multiple gait cycles. The predicted

metabolic cost was in a realistic range for W = 100. The weighting W = 1000 led

to running movements that were outside the range of measurements and delivered

unrealistically low metabolic cost. In future work, we will investigate new cost functions

like the direct minimization of metabolic energy and inverse optimal control (Mombaur

et al. 2010) to avoid tracking. In this work, we used a wide range of tracking data to

make sure that the performance measures are insensitive to the tracked motion.

The simulation gives insight to several parameters which are not directly measur-

able or not considered during experiments like muscle controls, joint kinematics, and

kinetics. The simulation suggests that the peak knee extension moment is significantly

reduced for the SOFT midsole while increasing hamstrings contraction. The models

ran with greater forward trunk lean. They landed further back on their foot, but
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shifted their weight faster to the forefoot. This required more force in the hamstrings

but less force in the vasti muscles. This was not yet evaluated in experiments. More-

over, we found that iliopsoas, glutei, vasti, gastrocnemius, soleus, and tibialis anterior

muscles produced less mechanical energy cost. The virtual subjects could benefit from

SOFT midsoles during the whole gait cycle. Most energy was saved during propulsion

(15− 35% of the gait cycle) as vasti, gastrocnemius and soleus muscles were less acti-

vated in this phase. This is probably due to the fact that about 15% less energy was

dissipated in the midsole material for the SOFT midsole and thus more mechanical

energy was returned compared with the amount of energy applied. Furthermore, the

model pushed off the ground easier with SOFT midsoles as the peak eccentric power

in the tibialis anterior muscles was ∼ 9W lower. In the swing phase, energy cost was

slightly reduced in iliopsoas muscles.

In the future, the simulation can be used as indication which design parameters have

most impact on energy cost and injury risk. Experimental studies can be conducted on

these findings to save time and costs. We will investigate athlete-specific simulations

to optimize design parameters individually. In addition, the method can be transferred

to other domains, e.g. for designing prostheses or other medical devices. In conclusion,

our approach has the potential to replace or complement experimental studies and

to increase the product quality, as effects of novel design concepts could be predicted

before they have been prototyped and tested.

Acknowledgement

The authors thank Anne Koelewijn, who implemented the model of muscle en-

ergy expenditure. This study was supported by a contract from adidas AG with

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. Eva Dorschky grate-

fully acknowledges the support of the Bavarian Ministry for Economic Affairs, Infras-

tructure, Transport and Technology within the Embedded Systems Initiative (ESI).

Björn Eskofier gratefully acknowledges the support of the German Research Founda-

tion (DFG) within the framework of the Heisenberg professorship programme (grant

number ES 434/8-1).

20



Conflict of Interest Statement
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