
MACHINE LEARNING
&   DATA ANALYTICS

Macro Analysis of free-living Gait in Parkinson’s Disease

Bachelor’s Thesis in Medical Engineering

submitted
by

Stefan Michael Fischer

born 02.06.1996 in Kronach

Written at

Machine Learning and Data Analytics Lab (CS 14)
Department of Computer Science

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Advisors:
Martin Ullrich M. Sc., Dr.-Ing. Felix Kluge, Prof. Dr. Björn Eskofier
(Machine Learning and Data Analytics Lab, FAU Erlangen-Nürnberg)
Dr. phil. Heiko Gaßner
(Department of Molecular Neurology, Univeristy Hospital Erlangen)

Started: 01.12.2018

Finished: 30.04.2019



ii



iii

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
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Übersicht

Durch die stetige Weiterentwicklung von Beschleunigungssensoren und der damit einher-
genden Kostensenkung und längeren Operationszeit werden diese immer häufiger im Umfeld
von Home-Monitoring Ganganalyse-Systemen genutzt. Ziel ist dabei, durch den Anstieg von
Daten vermehrt klinisch relevante Informationen zu generieren, um den Arzt bei Therapie und
Diagnose der Parkinson Krankheit zu unterstützen. Standardisierte Gangtests werden nun nicht
nur im klinischen Ganglabor, sondern mit dem Home-Monitoring System auch im Heim des Pa-
tienten durchgeführt. Ziel der Arbeit sind die Entwicklung von Algorithmen um 1) standardisierte
Gangtests, den 4x10m Test und den zwei Minuten-Lauf, automatisch in den Home-Monitoring
Daten zu erkennen und 2) Macroparameter aus dem freiem Gang der Home-Monitoring Daten
zu berechnen, wobei Ergebnisse, produziert durch zwei verschiedene Definitionen von Gangse-
quenzen, miteinander verglichen werden. Für die automatische Gangtesterkennung wurde ein
Datensatz aus 286 klinischen Ganguntersuchungen genutzt, um den Detektionsalgorithmus zu
trainieren und zu evaluieren. Das Verfahren basiert auf einem Dynamic Time Warping Ansatz,
welcher ein Eingabesignal mit einem vorgefertigten Muster vergleicht und ein quantitatives Ähn-
lichkeitsmaß ausgibt. Der Algorithmus liefert einen F1-score von 93.4 % beim Evaluieren auf
dem Klinikdatensatz. Des Weiteren wurde die Erstellung des Musters analysiert und hinsichtlich
der Dynamic Time Warping Distanzen optimiert, um das Übertragen der Methodik auf andere
Sensorsysteme zu vereinfachen.

Auf der anderen Seite wurden Macroparameter wie Schritte pro Tag, Gangsequenzen pro
Tag und die durchschnittliche Länge einer Gangsequenz pro Tag für einen Home-Monitoring
Datensatz eines Parkinson-Patienten berechnet, welcher über 11 Tage lang aufgenommen wurde.
Gangsequenzen wurden hierbei durch zwei Definition mit maximaler Ruhezeit von 10 oder 2.5
Sekunden generiert. Hierbei unterschieden sich die Macroparameter Gangsequenzen pro Tag
um bis 63 ± 3 % und durchschnittliche Länge einer Gangsequenz pro Tag um 54 ± 8 %. Die
Ergebnisse unterstützen Resultate anderer Studien und verdeutlichen die Benötigung einer festen
Definition von Gangsequenzen innerhalb der Forschung.

Der in der Thesis vorgestellte Algorithmus ist, soweit uns bekannt ist, der Erste in dem
Anwendungsfeld der automatischen Erkennung von standardisierten Gangtest und schafft die
Möglichkeit der einfachen Nutzung eines Home-Monitoring Systems, ohne das Zeitmarker
manuell gesetzt werden müssen, welche Gangtests kennzeichnen.
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Abstract

Due to the continous progress in manufacturing of inertial sensors and therefore sinking of
costs and extention of operation time, those sensors get used more often in the field of home-
monitoring systems for gait analysis. The goal of home-monitoring is improving the clinical
outcomes by acquiring more data to support the clinician with the diagnosis and therapy of
Parkinson’s Disease. Standardized gait tests are not only recorded in the clinical environment,
but also in the patient’s home, as the subject can be recorded with the home-monitoring system.
Goals of this thesis were the development of algorithms that 1) are able to detect standardized
gait tests, which are the 4x10m test and the two minute walking test, from continous sensor
data and 2) to calculate macro parameters from free-living gait, where results of two different
walking bout definitions are compared. For the automatic test detection there was a data set of
286 clinical gait sessions to train and evaluate the algorithm. The method is based on a dynamic
time warping approach, which compares an input signal with a predefined template and quantifies
similarity between both. Therefore, the creation of templates was analyzed and optimized on the
dynamic time warping distances to ease the applying of this method to other sensor systems. The
classification scored a F1-measure of 93.4 % for evaluation on the clinical sessions.

On the other hand, macro parameters like steps per day, walking bouts per day and the mean
walking bout length were calculated on the home-monitoring data of one Parkinson’s disease
patient, recorded over 11 days. Walking bouts were created with two walking bout definitions
of maximum resting time of 10 or 2.5 seconds. The macro parameter number of bouts per day
differs by 63 ± 3 %, while mean bout length differs by 54 ± 8 %. The results support findings
other studies and point up to the importance of a general walking bout definition within research.

The developed algorithm is to the best of our knowledge the first algorithm in the field of
automatic gait test detection and creates the possibilty of easy use of the home-monitoring system,
without manual setting of time stamp annotations, which identify gait tests.
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Chapter 1

Introduction

1.1 Motivation

Parkinson’s Disease (PD) is a neurodegenerative disorder of the central nervous system which also
affects the motor system. Impaired subjects suffer from gait disorders and balance impairments
[Boo08], associated with falls and reduced quality of life [Blo04]. Especially falls can lead to
injuries like hip fractures and average life expectancy is reduced to approximately 7 years, once
recurrent falls are present [Blo01].

To assess movement disorders, PD impaired patients get evaluated by clinical experts with
different rating scales like the Unified Parkinson Disease Rating Scale part III (UPDRS-III)
[Goe08] and the Hoehn & Yahr (H&Y)[Goe04]. Drawbacks of those clinical rating scales are the
time dependence and the subjectivity due to rating by doctors [Klu13]. One alternative evaluation
to ratings by experts is the screening of neurological diseases by different motion recording
systems. Thus, quantitative measures related to motion are available.

Clinical experts use standardized gait tests to assess the patients’ gait. Additionally there are
also specific gait tests which where created for quantitative evaluation of sensor data. Outcome
parameters like velocity, stride length and stride time are good prognostic indicators for fall risk
and bad health outcomes [Bro17, Lor16, Sch14, Ash01, Wil06].

The gold standard sensor systems are optical systems, but they requiere laboratory settings
and are also expensive. To overcome these limitations intertial measurement units (IMUs) are
used by a lot of researchers [Che16, Heg16, Rov17, Esk17]. Low prices and long operating times
of inertial sensors additionally realize the possibility of home-monitoring [Bjo07, Cav07, McD05,
Sab05, Tao12].

Due to an increase of available motion data by long-term monitoring, fall risk prediction
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2 CHAPTER 1. INTRODUCTION

could improve with home-monitoring [Bro17, Zam11, Del17]. The recorded data is processed
differently than the processing of instrumented gait tests. On the one side when evaluating clinical
gait tests, results in calculation of parameters linked to single strides. Those parameters are
called micro parameters in current research [Del17]. On the other side relations between intervals
of linked strides over one day can be calculated. The term macro parameters refers to those
parameters [Del17]. In literature different definitions of intervals of linked strides exists, causing
problems comparing research results easily [Bar15, Del16]. Those specific intervals are called
walking bouts (WB).

Current work on home-monitoring is done at the Machine Learning and Data Analytics Lab
of Friedrich-Alexander-University Erlangen-Nuremberg. In the project ”FallRiskPD” a home-
monitoring concept is being developed to predict falls in PD patients. In this project subjects wear
inertial sensors and also perform gait tests in their home-environment over the time of two weeks.
Furthermore, patients manually set time stamp annotations while performing gait tests. Therefore,
tests can be segmented from the long-term data and the patients’ gait micro characteristics during
those tests can be computed. As PD is age-related, most of the studies participants are elderly
persons, leading to greater amount of incorrect labels [Zar02], which effects outcomes of the
micro analysis.

1.2 Related Work

In this section previous research which is related to topics of this thesis are presented.

1.2.1 Gait Tests in Home-Environments

Considering the fact that clinical gait differs from free-living gait [Bro16], there were studies
which observed if gait tests at home are feasible and reliable. Lim et al. performed timed up and
go tests (TUG) and a timed walking tests in patients’ environments [Lim05]. Three observers
and 26 PD patients (age = 62.5 ± 8.2 years) were part of the study cohort. By calculation of
intraclass correlation and intra/inter observer reliability, their results support the claim that gait
tests in home-environments are feasible. Furthermore Lim et al. suggest standardized practical
guidelines for less optimal circumstances like the home-environment.

Another study concerning those specific gait tests was carried out by Zampieri et al. [Zam11].
One goal was to test feasability of instrumented gait tests at home. Furthermore they investigated
micro parameter differences in home-environments and clinical-environments using inertial
sensors (PhysilogTM ; GaitUp SA; Lausanne; Switzerland). A small study cohort of six PD
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patients (age = 57.3 ± 8.6 years) and eight healthy controls (age = 63.7 ± 5.9 years) performed
instrumented TUG tests. Calculated micro parameters were stride velocity, stride length, cadence
and turning velocity. Statistical analysis was executed with repeated measures ANOVA for groups
PD vs Control subjects. Like the outcomes of Lim et al. outcomes of Zampieri et al. also support
the feasibilty of gait tests at home, in the case of Zampieri et al. also instrumented gait tests. In
the work of Zampieri et al. test-retest reliability was ranging between good and excellent for
five different micro parameters (ρ = 0.83 ± 0.1). Furthermore they detected that PD subjects’
performance are more affected than parameters of the controls. Zampieri et al. also stated possible
reasons. For instance, home-environments are more cluttered and constrained than laboratory
settings. Moreover, most of the subjects feel more comfortable and relaxed at home.

1.2.2 Walking Bouts Definitions in Literature

In literature there are different definitions of one walking bout. The names of those intervals
are also varying, as ambulatory bouts and walking periods are referring to the same meaning
[Del16, Del17, Naj03]. A WB is an interval of successive strides [Del17, Ore08, Dan14, Roo12,
Sch14, Naj03, Del16, TL12]. In most research works those intervals have a minimum number of
strides and end after a specific period of time in which no stride occured. Minimum stride amounts
are sometimes set to two successive strides [Ore08, Dan14] but mostly three successive strides
[Del16, Del17, Roo12, Sch14, Naj03, TL12]. Different definitions appear regarding the amount
of time a resting period lasts till the WB ends. The values range from 2.5 seconds up to more than
60 seconds [Del16, Wei13, Bro15, Bro16, Sch14]. This leads to problems in comparing results
easily. Another factor influencing the WB definion comes with the sensor setup. Orendurff et
al. were using a maximum resting period (MRP) of 10 seconds, limited by the used technology
(Stepwatch Activity Monitor; OrthoCare Innovations; Mountlake Terrace, Washington) [Ore08].

The work of Barry et al. concering different resting time values and how they affect the
outcomes supports that those definitions are crucial [Bar15]. Their study cohort contained 97
older adults (age = 69.2 ± 7.7 years) and gait was assessed using an accelerometer (activPALTM ;
PAL Technologies Ltd; Strathclyde; Scotland) worn on the upper thigh over 7 successive days.
For instance, modifying the MRP has large impacts on volume, patterns and variabilty measures.
By setting the MRP to 6 seconds only 6 % of their study cohort fullfilled public health guidelines.
Despite that by raising the MRP to 30 seconds already 40 % of the subjects fullfilled guidelines.
Therefore, methods to compare studies performed with different walking bout definitions are from
great interest like the regression method of Barry et al. [Bar15].
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1.2.3 Macro Parameters in Literature

Measuring human locomotion can have useful output, as gait varies with overall health [Lor13a],
cognitive decline [Ver07], falls status [Bea09] and longevity [Stu11]. Furthermore gait measure-
ment is noninvasive, relatively low cost and the objective quantitative results can support the
clinician in diagnosis and disease managements [Lor13a]. In addition to micro gait characteristics,
which are recorded in the clinic, free-living behavioural gait characteristics can be quantified
using the same sensors. Analysis of those free-living gait characteristics is also called macro
analysis [Del17]. By examining broader trends of gait signals, different macro parameters can be
quantified. Moreover finding relations between those macro characteristics and clinical outcomes,
like disease diagnosis, disease progression and fall risk, are of great interest.

In the field of macro gait analysis there are different parameters which are of high interest.
By assessing WBs, macro parameters like volume, pattern and variability of those WBs can be
calculated [Del16, Del17]. Del Din et al. showed that there are significant differences in macro
paramters comparing PD patients and age-matched controls. Their study cohort of 47 (age = 69.1
± 8.3 years) PD patients and 50 controls (age = 69.8 ± 7.2 years) was recorded with a single
tri-axial accelerometer (Axivity AX3; York; UK) on the lower back for 7 days. They found that
free-living conditions heightened between-group differences and that those differences are more
prominent in walking bouts of longer durations (WBs ≥ 10 seconds). For comparing those macro
parameters they also suggest laboratory tests of longer walking durations.

1.3 Purpose of the Thesis

The goal of this thesis is to develop tools to process long-term gait data collected in the home
environment during the FallRiskPD study. Besides their usual activities of daily living, the
participating PD patients are instructed to perform specific clinical gait tests in their home
environment. Automatic detection of those gait tests in the continous data will improve usability
of our home-monitoring system by saving up time and easier operation. Furthermore, automatic
test detection will generate more accurate time stamps of start and end of gait tests in the data,
which leads to more precise outcomes by instrumented gait tests.

Moreover by segmentating detected gait tests from home-monitoring data, the remaining
data is free-living gait. Broader trends of movement in this free-living gait are represented
quantitatively by macro parameters. By calculating those parameters additional clinical relevant
informations are collected. A drawback is, that different definitions of WB, which are needed
for macro parameter calculation, are used presently leading to comparison difficulties [Bar15].
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Furthermore, macro parameters are highly depending on the used WB definition. Therefore, two
different WB definitions were used in this thesis to compute WBs and compare their effect on
outcome parameters.
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Chapter 2

Background

In the following sections the relevant background regarding PD, human gait and sensor based
gait analysis will be discussed. The information of this chapter will be used in the following
chapters: On the one side a method for detecting gait tests is investigated. On the other side macro
parameters of PD patients, screened with a home-monitoring system, are calculated.

2.1 Parkinson’s Disease

Parkinson’s disease is a neurodegenerative disease, which is initiated by an interaction of genetic
and exogenous factors [Wei09]. Due to an ongoing dying of specific brain cells which produce
proteins, there is lack of the neurotransmitter dopamin [Bra06]. Resulting from a loss of those
brain cells, located in the Substantia Nigra, the diseased person will develop motion impairments
beside other symtomps [Sni07]. With the progression of the disease those movement difficulties
will increase and are used to determine the disease stage [Ram02]. As nowadays PD is still
incureable, the only way to improve the patient’s situation is to reduce impairments by medication
[Wor13]. Depending on the disease stage the doctor can also adapt the medication to improve
the outcome of the therapy . The current workflow for the patient is to come to a hospital to
get his current status evaluated by a professional, also investigating his motion patterns using
standardized rating scales. One of those scales is the Unified Parkinson’s Disease Rating Scale
(UPDRS), which was developed by Fahn et al [Bra06] and is state of the art [Goe08]. Another
clinical scale is the Hoehn and Yahr (H&Y) scale which can be easily applied [Bhi12]. Those
scales are the basis for medication and rate of the success of the ongoing therapy [Pos07]. Among
all symptoms of PD, some symptoms have an direct impact on the gait pattern of those patients.
Those cardinal symptoms are now described more in detail.

7
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2.1.1 Cardinal Symptoms

The following four symptoms are very common in PD and are observed to stage the disease
progression.

Bradykinesia
Bradykinesia, the slowness of performed movement, is the most characteristic symptom in
PD. Including difficulties in planning, initation and execution of movement, this symptom
leads to increasing reaction time . Especially self-paced movements pose a problem for PD
patients [Ber01].

Resting Tremor
The resting tremor is a noticable symptom giving PD the name shaking palsy. Extremities,
especially in the distal parts of arms and legs start to shake. This symptom is already
recognizable in early stages of the disease [Shu96].

Rigidity
Another PD related symptom is rigidity, which is commonly defined as a stronger resistance
for joint movements like reflexion, rotation and extension [Bro07].

Postural Instability
More prominent in the late stage of PD, postural instability effects the patients postural
reflexes, decreasing the balance. As a result the impaired person tends to fall [Wil06].

2.1.2 Resulting Gait Impairments

As a result PD patients develop characteristic gait disorders, due to cardinal symptoms. Those
impairments lead to reduced step length and step height, resulting in a lower overall walking speed
[Klu15]. Often parkinsonian gait is described as shuffling gait, emphasizing the character of the
small step size walking [Sni07]. Another important aspect is the inscreasing problem of initating
gait [Ros97, Hal98]. Further cardinal symptoms can lead to freezing of gait (FOG), which occurs
mostly in gait initation [Gil01]. FOG can result in falling, leading to the fact that almost 70 % of
the PD patients fall in a time span of one year and recurrent falls occur in about 50 % of all cases
[Blo04]. Figure 2.1 displays the amount of falls of PD patients compared to healthy subjects.
Study controls are age matched to PD patients. Subjects impaired with PD have much higher risks
of falling and recurrence of those events. Hip fractures are the most feared consequences of falls
and 25 % of all patients will develop one hip fracture within 10 years after the diagnose [Blo04].
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Therefore, the quality of life sinks as the fear of falling increases over time and some patients are
largely isolated [Sch00, Sch06, Mus08]. According to Bloem et al. average life expectancy is
reduced to approximately 7 years, once recurrent falls take place [Blo04].

Figure 2.1: Fall Rates in PD. Four different studies [Woo02, Blo01, Ker10, Ash01] of falls
related to PD.

2.2 Sensor Based Gait Analysis

The next section will cover an introduction to sensor-based recording of human gait. First of
all, human gait is defined by its events and the according transitions. Afterwards, important
instrumented gait tests and their output, quantified gait parameters, are discussed. Furthermore,
the principles of inertial sensors are explained.

2.2.1 Human Gait

Human’s upright gait is a complex movement pattern and it is characteristic for the human kind.
To assess human gait as signal, there is a common methodology based on the following definitions
by Beckers et al. [Bec97]. One stride is defined as the sequence between one heel-strike (HS) and
the successive heel-strike (HS) of the same foot. A heel-strike is the moment, the heel hits the
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ground. This gait sequence contains one heel-strike (HS), the mid-stance event (MS), the heel-off
(HO) followed by the toe-off (TO). The last event before the sequence repeats with the next HS is
the mid-swing. This gait cycle is illustrated by Figure 2.2. Next to that a step is defined as a HS of
one foot till the HS of the other foot.

Figure 2.2: Human Gait Cycle. Illustration of the different gait events grouped to two gait
phases. One periodic cycle is one stride [Kan14].

A gait cycle can also be divided into two phases of gait, also illustrated in Figure 2.2. During
the stance phase the foot keeps contact with the ground. The stance phase starts with the HS and
ends with the TO, describing the time during which the foot keeps contact with the ground. On the
other hand is the swing phase, where the whole mass of the human is carried by the contalateral
foot [Bar17]. One phase starts with the end of the other phase, in which the stance phase lasts
around 60 % and the swing phase around 40 % of one gait cycle [Whi91].

2.2.2 Gait Parameters

For the evaluation of gait, different gait parameters are examined. A possible subdivision of gait
parameters are micro and macro parameters [Del17]. This subdivision is based on WBs, which are
intervals consisting of successive steps. Micro parameters can be calculated by micro-structural
characteristics, which make up each WB and macro-structural characteristics consisting of all
WBs of a long time-span such as one day. Examples for popular micro and macro parameters are
shown in Table 2.1. As the term WB has no general definition in the literature, authors calculate
different outputs for macro parameters, which leads to a generalization problem [Bar15]. This
aspect will be further disscussed in the following chapters.
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Table 2.1: Micro and Macro-Gaitparameters. Parameters from [Del17, Bar17] .

Parameter Micro/Macro Description

Stride Velocity Micro Velocity of subject during gait

Stride Length Micro Geometric length of one stride (HS to HS)

Stride/Swing/Stance Time Micro Time duration of gait phases

Total Walking Time per Day Macro Time volume of gait of one day

Number of Steps per Day Macro Amount of steps of one day

Number of Bouts per Day Macro Amount of bouts of one day

Mean Bout Time Duration Macro Mean time duration of all bouts

Bout Variability Macro Variability of pattern, length and density

2.2.3 Inertial Sensors

Inertial sensors are small eletrical devices, measuring acceleration and angular velocity of the
device. Part of those sensors is a gyroscope which records angular velocity and an accelerometer
which records the acceleration. Since recent improvements in micro-sensor manufacturing, inertial
sensors have become applicable for a variety of fields. After miniaturization they are now used in
a variety of applications like sports research, video game development and motion analysis for
healthcare. The sensors collect data from the accelerometer and the gyroscope and each of them
measures the three coordinate axes. In this thesis those sensors are used as a strapdown system.
They are tightly attached onto the shoes and record the direct movement of the feet to collect
free-living gait data.

The accelerometer records acceleration in anterior-posterior (aap), inferior-superior (ais) and
lateral-medial (alm) direction. Gyroscope record angular velocities of the rotations in coronal
(gcor), transverse (gtrans) and sagittal plane (gsag).

Accelerometer

Micro-machined electromechanical accelerometers work on the same basis as mechanical ac-
celerometers, which consist of a mass suspended by springs. Figure 2.3 shows a spring-mass
system with pickoff. If the device gets accelerated, the mass is displaced against the springs. In
electrical systems the displacement can be measured using capacitivity or piezoelectricity [Bao05].
By screening the displacement of the mass by the specific pickoff, the force on the mass can be
calculated with the Hook’s law:
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Fd = D ·∆l (2.1)

With the known spring constant D and the measured displacement ∆l the force on the mass
can be calculated by Newton’s second law:

F = m · a (2.2)

Thus, the applied acceleration a along the corresponding axis can be calculated by measuring
the mass’ displacement [Woo02]. During constant velocity or rest, only gravity force has impact
on the mass, giving information about inclination of the sensor regarding the horizontal plane. As
output acceleration is relative to gravity, also the output value is often given relative to gravity.

Figure 2.3: Mechanical Accelerometer. A mechanical accelerometer (spring-mass system).
Acceleration can be measured corresponding the input axis [Woo02].
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Gyroscope

Micro-machined electromechanical gyroscopes are based on the Coriolis effect. This effect
describes that a mass m, which is in motion with the velocity v in a frame of reference, rotating at
angular rate w, experiences a so called Coriolis force FC :

FC = −2m · (w × v) (2.3)

The Coriolis effect can be quantified by measuring vibrating elements in the gyroscope. When
the gyroscope is rotated, a vibration along the perpendicular sense axis is induced. The angular
rate can be computed by measuring the secondary rotation of the vibrating mass [Woo02]. In
electrical sensors the rotation is gauged using capacitive, piezoresistive or electrostatic approaches
[Bao05]. The sensor’s principle is illustrated in Figure 2.4.

Figure 2.4: Vibrating Mass Gyroscope. A gyroscope measuring the angular rate w [Woo02].
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(a) 4x10m Test (b) Two Minute Walking Test

Figure 2.5: Two Gait Tests. Two specific tests for sensor-based assessment of gait.

2.2.4 Standardized Gait Tests

For calculating standardized rating scales subjects perform standardized gait tests. Their perfor-
mance is evaluated subjectively by a clinician according to guidelines of rating scales (UPDRS
motor score, H&Y). Different tests exist to investigate events like movement initation, turning
sequences and stair-climbing.

Furthermore, there are gait tests developed for sensor-based gait analysis such as the 4x10m
test, the two minute walk tests, timed-up-and-go test, stop-and-go test and heel-toe tapping, which
are performed in gait laboratories. Motion is recorded with a sensor system like the inertial
sensors. Resulting micro characteristics can support the expert with additional information in the
form of gait parameters.

4x10m Gait Test

The subject walks 10 meters in a flat environment without any obstacles. After the first 10
meters, the subject turns around clock-wise and walks back to the starting point, turning again
and repeating this procedure for a second time. This test should not include any pause [Ste08].
The focus is on the assessment of gait and especially the turning sequences of the subject [Bar17].
In Figure 2.5 the test is illustrated. Furthermore a typical IMU-ouput for all six resulting signals,
recorded during a 4x10m test, is plotted in the Figure 2.6.

Two Minute Walking Test

The subject walks 25 meters in a flat environment without any obstacles back and forth for 2
minutes at a self-selected speed. Many turning sequences and intervals of straight gait occur in
this test. The amount of covered distance differs and impaired subjects tend to lower speeds than
healthy subjects [Sni07]. In Figure 2.5 the test is illustrated.
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Figure 2.6: IMU-Recorded Gait Signals. All six resulting signals of an inertial sensor recording
a four times 10 meter test. The turning steps after 10 meters of gait can be seen by the high peaks
in the gtrans-signal and the low peaks in the gsag-signal.
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Chapter 3

Methods

At the beginning of this chapter the algorithm pipeline to detect clinical gait tests and calculate
macro parameters is introduced. Figure 3.1 illustrates the methodlogy. The goal of this system is
automatic detection of the specific gait tests 4x10m tests and two minute walking tests in recorded
sensor data. Furthermore, macro parameters are calculated from WBs created with different MRP.
To fit the home-monitoring dataset of the FallRiskPD project those steps are combined to one
system.

Test DetectionGait Interval
Segmention Free­living Gait Parameter

Calculation

Home­Monitoring
Data  Template

Gait Tests

Walking Bout
Definition

Macro Parameter

Figure 3.1: Algorithm Pipeline. The aim is to process home-monitoring data to detect gait tests
and segmentate them from free-living gate. After segmentating intervals of gait, those intervals
are processed to get relevant outcomes. By detecting gait tests, micro parameters during test
performance can be computed. After dividing the home-monitoring data into detected gait tests
and free-living gait, macro parameters can be calculated using a WB definition.

17
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3.1 Gait Interval Segmentation

Before gait interval segmentation can be applied on sensor data, the raw data was preprocessed.
For the data processing the raw sensor data was calibrated to correct the bias, scaling factors and
physical orientation of the sensor. The sensor calibration developed by Ferraris et al was applied
[Fer95].
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Figure 3.2: Gait Interval Segmentation. Possible result of the gait interval segmentation. Grey
rectangulars represent intervals which were segmentated.

After the raw data is calibrated and aligned, segments of walking activity were detected in
the data. This step will save calculation costs of the following processing steps by leaving out
segments of rest and even more important, enabling the following test detection. For this reasons
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sequences of activity were extracted.

The segmentation was performed with a sliding window algorithm, calculating a suitable
measure of the area covered by the window. The algorithm was applied to the 3d-gyroscope g3d
and moving windows w had the length of 5 seconds. The overlap of consecutive windows was
set to 50%. Assuming unsynchronized signals from left and right foot, the respective data was
processed seperately.

Several steps were processed for each windoww. First, windows which contained only rest and
no activity were excluded. If the normalized signal magnitude area (SMA) of gw3d was exceeding a
threshold set to 50 ◦/s, the covered interval was taken into account for further processing [Kar06].
Those segments were assumed to contain walking activity. If overlapping or successive windows
exceed the threshold, they were fused to one interval. The SMA is defined by the following
equation, where gcor, gtrans and gsag are the gyroscope’s signal in coronal, transverse and saggital
plane:

SMA =
1

t

(∫ t

0

|gcor(t)|dt+

∫ t

0

|gtrans(t)|dt+

∫ t

0

|gsag(t)|dt
)

(3.1)

A exemplary output of this algorithm can be seen in Figure 3.2 showing the output of a
3d-gyroscope g3d worn during a clinical session . As the segmentation is applied seperately to
both feet output in both feet differs.

3.2 Gait Test Detection

In the following section an approach to detect standardized gait tests automatically is described.
The tests detection is based on subsequent dynamic time warping (sDTW), a special form of
dynamic time warping (DTW). As DTW algorithms are a form of template matching the generation
of templates is also discussed in Section 3.2.2. Before applying the sDTW algorithm, the activity
segments as well as the template have to be preprocessed. An explanation of this is found in
Section 3.2.1. After peaks of the sDTW distance function have been determined, the possible gait
test candidates get tested against several constraints, described in Section 3.2.3.

The basic concept of this detection algorithm is to create two sequences, template sequence
and an input sequence segmentated by the gait interval segmentation, and measure similarity of
the input to the template sequence. As similarity measure the sDTW distance cost is used. If the
similarity is high enough we label the input sequence as detected gait test.
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Considering the fact that human gait is a very complex movement pattern [Whi91], there is
need to align template and input signal to obtain high similarity. Therefore different preprocessing
steps to generalize input and template signal were made. The following assumptions were
considered for the processing of template and test data:

• The 4x10m test and two minute walking test are made up of similar subsequences.

• This subsequence contains one segment of straight gait and turning steps after covering the
requested length. One section of the 4x10m test is 10m and one section of the two minute
walking test is 25m long.

• Each subject has an individual gait leading to different signal patterns.

• Different amount of steps are needed for one subsequence depending on the subject.

• For each turning sequence rotations in the transverse plane are performed.

• Those turning sequences produce peaks in the gyroscope’s transverse plane.

The following preprocessing is based on these assumptions, especially the existance of turning
sequences.

3.2.1 Signal Preprocessing

To achieve accurate outcomes, input sequences have to be preprocessed. This includes nor-
malization, filtering, smoothing and squaring. Signals recorded by the 3d inertial sensor are
continous movement sequenes S with the length N where S = (s0, ..., sN−1). Each sample sn

of S with n ∈ {0, . . . , N − 1} consists of data from accelerometer (aap, ais, alm) and gyroscope
(gcor, gtran, gsag):

S = (s0 . . . sN−1) =


sap,0 sap,1 . . . sap,N−1

sis,0 sis,1 . . . slm,N−1

...
... . . . ...

ssag,0 ssag,1 . . . ssag,N−1

 (3.2)
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For the detection algorithm only samples of the sequence strans,n with n ∈ {0, ..., N − 1}
of the gyroscope’s transverse plane is used. For this reason the signal sequence strans(n) was
defined:

strans(n) = [strans(0), ..., strans(n− 1)] (3.3)

Figure 3.3 shows the workflow of preprocessing for two segementated intervals of activity.
Both activities contain a 4x10m test. The goal of preprocessing is to align those two sequences to
obtain high similarity and therefore low sDTW distance costs.

Normalization

To process data from sensors that differ in range, the input data was normalized to a numerical
range of [-1; 1]. Normalization is done by dividing the transverse plane signal strans by the
positive values of the sensor range of the gyroscope gtrans,range:

strans,norm(n) =
strans(n)

gtrans,range
(3.4)

Filtering

The concept of filtering is to differentiate between different bands of frequencies. Filters are mostly
classified by their frequency selectivity like lowpass, highpass and bandpass filters. Each filter
can completely be defined by two sets of specifications, the frequency specifications describing
the passband or stopband and the gain characteristic [The05]. For the test detection input signals
are low-pass filtered with a butterworth filter of first order and cutoff frequency of 0.5 Hz. This
frequency is the lower bound for the human ”lokomotor” band [Bac10]. Thus, frequencies related
to straight gait get suppressed. Afterwards the low frequency content of the repeating turning
sequences is strongly prominent. For this step the Python (Python Software Foundation, Delaware,
USA) functions butter lowpass and lfilter were used for filtering signals. Equation 3.5 shows the
formula for filtering the signal strans,filtered by convolution with the impulse response hbutterworth

of a specific butterworth filter.



22 CHAPTER 3. METHODS

strans,filtered(n) = (strans,norm ∗ hbutterworth)(n) (3.5)

Smoothing

One assumption for this algorithm was that each peak in the gyroscope’s gtrans-axis signal is
referring to one step. To diminish differences in the signal due to different amount of steps the
signal was smoothed. On the one hand tall peaks which represent turning sequences should be
preserved and fused to one peak as it is illustrated in (C) and (G) of Figure 3.3. On the other side
small peaks representing straight steps should be erased. Therefore, a median filter was applied,
as it preserves sharp changes [Ata81], referring to turning, and also removes impulsive content
[Ata81], which are the straight stride’s peaks. The median filter smooths the input by taking the
median value of all sample values which are covered by the median filter’s window size w. The
signal s̃(n) is defined as the signal s(n) which lies within the interval [−w

2
; w
2

] around the sample
n. The window size w was set to 2 seconds. In the algorithm this processing was realized by the
Python function medfilt. The function median in Equation 3.5 is performing the computation of
the median value in the input sequence s̃trans,filtered.

strans,smoothed(n) = median(s̃trans,filtered(n)) (3.6)

Squaring

The last step of preprocessing is squaring the signal point by point. This nonlinear amplification
of the input signal intensifies the effect of the previous smoothing and filtering [Pan85]. Peaks of
the turning sequence remain, while activity of straight gait hardly remains:

strans,preprocessed(n) = strans,squared(n) = [strans,smoothed(n)]2 (3.7)

The resulting signal after preprocessing is defined as strans,preprocessed(n). For reasons of
simplicity the index trans and preprocessed are ommited in the next sections although only
preprocessed transverse-plane inputs are used for the following sDTW algorithm.
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Figure 3.3: Preprocessing of Input Signals. This example shows the workflow to align two
sequences which contain a 4x10m test. In (A) and (E) signals which are segmentated by the
activity segmentation of section 3.1 are shown. Both signals are normalized to numerical values
of [-1; 1]. Furthermore, in (E) there is activity in form of turning steps right after the test ends.
As activity proceeds those steps are also added to the segment by the gait interval segmentation
of Section 3.1. After normalization values of (A) and (E) get low-pass filtered and with taking
the absolute value, outputs like (B) and (F) are created. Afterwards a median filter is applied
to smooth the signal. Smoothed signals are (C) and (G). The last step is squaring the smoothed
sequences. The preprocessed output signals (D) and (H) are containing the characteristic three
peaks representing the turning sequences of the 4x10m test. The fourth and fifth peaks in (H) are
resulting from additional activity after the end of the gait test.
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3.2.2 Subsequent Dynamic Time Warping

DTW is used to indentify patterns that vary in time or speed by matching them nonlinearly
[Mye81]. It is a template-matching approach with the benefit of being time invariant [Mül16] and
can compute a similarity measure between two time series [Sil16]. One sequence is the test signal
and the other one the input signal, possibly containing gait tests. By warping the template in the
time domain an optimal fit between input and template is achieved [Bar17].

It is a commonly used technique for quantifying similarity and has been previously introduced
to the field of gait analysis. One example is the work of Derawi et al. which extracted strides from
subjects and compared them to refernce strides by DTW for user idenfication [Der10]. Another
application is automatic stride segmentation which was developed by Barth et al. [Bar17].

In this work a special form of DTW algorithms is employed. The sDTW is used to find a
subsequence of a continous signal sequence similar to a given reference pattern [Mül16].
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Figure 3.4: Template Matching Workflow. Workflow to measure similarity between movement
sequence s and template t. After the sDTW algorithm is applied, a distance measure related to
similarity between both input sequences is returned. If the distance measure is smaller than a
predefined threshold θ the processed movement sequence is a candidate for gait tests and will be
checked against postprocessing constraints of Section 3.2.3.
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Template Generation

The template ttrans was created based on the assumptions made in section 3.2. Due to the fact
that 4x10m tests and two minute walking tests are made up of similar subsequences the goal was
to identify them by the same procedure simultaneously. A subsequence is a signal containing
the interval of straight gait covering the whole track of 10m (4x10m test) or 25m (two minute
walking test) and turning strides of the 180◦ turn around at the end of each segment.

As sDTW is time invariant, the different durations between turning sequences for the two
tests can be neglected. Templates were generated from 4x10m tests transverse-signals. Since the
pattern of the 4x10m test is contained in a two minute walking test, sDTW will also give in this
case useable output values.
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Figure 3.5: Generated Template. This is a template generated of 50 different 4x10m gait tests.

Furthermore, several signals were used and averaged to create a generalized template t. For
this reason an additional resampling step was introduced to the preprocessing stage described in
Section 3.2.1. Normalization, filtering, smoothing and squaring was applied with same parameters
as for input signal preprocessing. The resampling was performed using the Python function
resample. Figure 3.5 shows an example of a generated template from 50 manually labeled 4x10m
tests. Only data of the left foot was used for this template.
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Calculation of Distance Matrix
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Figure 3.6: Calculation of Distance Matrix. Distance Matrix of template from Figure 3.5 and
input sequence (D) from Figure 3.3.

The first process of the sDTW algorithm was to construct a distance matrix D. It contains
similarity measurements between the movement sequence strans and the template t sequence. The
resulting matrix D is from the dimension M ×N , where M is the length of template t and N is
the length of the input sequence s. For a sample point t(n) the distance to a sample point s(m)

is calculated. This distance value is the value of the point (m,n) of the distance matrix D. As
distance norm the Euclidian norm is used. Each entry in the distance matrix D is defined as:

D(m,n) =
√

(t(m)− s(n))2 ∀m ∈ {0, ...,M − 1}, n ∈ {0, ..., N − 1} (3.8)
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If the local Euclidian distance
√

(t(m)− s(n))2 is small, the similarity between both samples
is high. The bottom row of the distance matrix D represents the distance between the first template
sample t(0) and every sample of the input sequence s(n). While the top row shows the distances
to t(N − 1) accordingly.

In Figure 3.6 an example of a distance matrix calculation was performed. Dark values in the
matrix show small distances and thus a high similarity between sample t(m) and sample s(n).
Bright values represent a higher distance and less similarity.

Calculation of Accumulated Cost Matrix

In the accumulated cost matrix C the sum of distances between template and movement sequence
and the accumulated costs of warping the template t to parts of the movement sequence s is
represented. The accumulated cost matrix has the same dimensions as the distance matrix D. The
bottom row of C is filled with the values of the bottom row of distance matrix D, as there is no
warping for the first sample of t. From this row the cost matrix C can be filled.

C(0, n) = D(0, n) ∀ n ∈ {0, ..., N − 1} (3.9)

The first column of C is computed by summing up all values from bottom to the current
sample n of the first column of the distance matrix D. Each sample of the first column C(m, 0) is
initialized by the following equation.

C(m, 0) =
m∑
i=0

D(i, 0) ∀m ∈ {0, ...,M − 1} (3.10)

All remaining samples of C are calculated recursively. The element C(m,n) is the sum of
the respective element D(m,n) and a cost element of a continuity condition which defines local
constraints. For this, different step size conditions are used in literature [Mül10]. Therefore, in
this algorithm only samples left, below and left below of C(m,n) are investigated to search the
minimum warping costs. The accumulated cost matrix has to be filled from left bottom to right
top of the matrix, while accumulated costs only include minimal costs.
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C(m,n) = min{C(m− 1, n− 1),C(m− 1, n),C(m,n− 1)}+ D(m,n)

∀m ∈ {0, ...,M − 1}, n ∈ {0, ..., N − 1}
(3.11)

The step size condition used in this work is plotted in Figure 3.7, which illustrates the
calculation of one sample C(m,n) of the accumulated Cost Matrix by Formula 3.11.

C(n­1,m­1)

C(n,m­1) C(n,m)

C(n­1,m)

Figure 3.7: Step Size Condition. Cost matrix elements can be computed with this step size
condition.

This recursive procedure has to be performed row by row. Therefore the top row of the
accumulated cost matrix C represents the accumulated costs of warping t to s. An example of the
distance matrix D and the respective accumulate cost matrix C is visualized in Figure 3.8. The
distance matrix is identical with the matrix from Figure 3.6. Outgoing from the distance matrix a
accumulated cost matrix can be computed.
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Figure 3.8: Calculation of Accumulated Cost Matrix. Accumulated cost Matrix computed
with C template t from Figure 3.5 and input sequence s. The signal s is signal (D) from Figure
3.3. Dark samples represent low cost, bright samples represent high cost for warping the template
t to the input signal s.

Distance Function

The top row of the accumulated cost matrix C represents the accumulated costs for warping the
template t to the input signal s. The warping costs for the last sample of the template sequence,
which is the end of the template’s gait test, are in the top row of the cost matrix C. As this row
represents the accumulated minimal warping costs, it is also called the distance function δ. To find
cheap alignments of template to the input signal, local minima of the top row have to be found
and are used as starting points p0 for warping [Mül16]. In Figure 3.9 the distance function of cost
matrix of Figure 3.8 is displayed.
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∆(n) = C(M − 1, n) ∀ n ∈ {0, ..., N − 1} (3.12)

Local minima from ∆ are possible starting points for low cost warping with the sDTW costs
of ∆(n). Low values of ∆(n) signalize low cost and therefore a high similarity. In this algorithm
only the global minimum of ∆ was compared to a threshold θ, since one assumption was that only
one gait test was contained in the segmentated sequence, which was the input signal of the sDTW
algorithm. If the value of sDTW distance function ∆(n) was less than the threshold θ the input
signal was a gait test candidate. The minima were computed by the Python function find peaks.

For 4x10m tests this distance function will have at least three local minima as there a three
proposed turning sequences contained in the test. In the two minute walking test the amount of
local minima changes from subject to subject. By checking if the sDTW distance is less than the
threshold one can tell if the input is a gait test or is no gait test. Wheter the gait test is a 4x10m test
or a two minute walking test needs additional postprocessing in this implementation, described in
Section 3.2.3. As start and end of the gait test the respective start and end of the segmentated gait
interval was used.

An example of identifying a 4x10m test is illustrated in Figure 3.9. For detecting a gait test
first the global minimum of the distance function ∆ is computed. If this minimum is lower than
the predefined threshold θ the current input sequence is recognized as a gait test. The threshold
θ was set to 0.015. Input is sequence (A) from Figure 3.3 and template from Figure 3.5. Figure
3.10 represents a detection of a two minute walking test. More turning sequences can be seen in
the distance function. The cheapest warping path can cover each subsequence of three turning
sequences in the two minute walking test.

Warping Paths

For this algorithm there is no need for computing the warping path, which is usually the next
step for DTW. The template t is warped by the warping path for alignment to the input signal s.
With this path the start of the first turning sequence included in the optimal warping path could be
computed. Due to the fact that the sDTW cuts off the segments of rest on the outer parts, right
of the last turning sequence or left of the first turning sequence, a different approach was used.
Further problems would have been occured with the two minute walking test. Asigning the whole
segmentated gait interval was found to be a good alternative. For sake of lucidity the warping
paths are plotted in Figure 3.9 and Figure 3.10. An explanation for warping path calculation can
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be found in the work of Müller et al. [Mül16].
After applying the sDTW algorithm the segments which sDTW distance are less than the pre-

defined threshold θ are checked for several constraints, described in the following postprocessing
section.
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Figure 3.9: Calculation of Warping Path 4x10m Test. This graphs represents the detection of
a 4x10m test. By observing the global minima of the distance function ∆ the decision wheter it is
recognized as a gait test or not was made.
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Figure 3.10: Calculation of Warping Path two Minute Walking Test. This graphs represents
the detection of a two minute walking test. By observing the global minima of the distance
function ∆ the decision wheter it is or is not a gait test is made. The cheapest warping path covers
the best fitting three turning sequences.
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3.2.3 Postprocessing
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Figure 3.11: Counting of Turning Sequences. In (A) three peaks were detected, while in (B)
six peaks were detected. Amount of turning sequences was found to be a good discriminating
feature between free gait, 4x10m tests and two minute walking tests for the segmentated intervals.

After possible gait tests were detected, they were observed for some constraints. By checking
the amount of turning sequences test candidates were classified into 4x10m tests and two minute
walking tests. Each turning sequence lead to an local maxima in the distance function ∆, hence
the distance function was used to count turnings in the test candidates

If the candidate contained three turning sequences then it was recognized as a 4x10m test. Due
to the fact that after performance of gait tests, there was often turning activity also four peaks in
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the distance function were accepted as 4x10m tests. Furthermore the amount of strides of a single
foot contained in the candidate’s segment had to exceed 18 steps. This value is the average value
minus the double standard deviation of all 4x10m tests contained in the template creation data set
of Figure 4.2, introduced in Section 4.2. Strides were segmentated with the sDTW algorithm of
the stride segmentation of Barth [Bar17] without any stride constraints.

On the other hand for classifying candidates as two minute walking tests, there was no fixed
amount of turning sequences, but a defined amount of time. Therefore the candidates which lasted
from 110 seconds to 180 seconds and contain more than three turning sequences were labeled as
two minute walking tests. Also there was a lot of turning activity after the test ends, which was
the cause to set the maximum time to 180 seconds.

Turning sequences were identified by searching for peaks in the first deviation of distance
function ∆. For this the Python function gradient was used. This deviation was observed for
maxima with find peaks, where distance between successive peaks had to exceed 650 samples
and the peaks values had to be at least 5 % of the maximum peak to erase peaks due to noise. In
Figure 3.11 (A) the deviation of the distance function ∆ from a segment containing a 4x10m test
is seen. Three turning sequences were detected. In Figure 3.11 (B) a two minute walking test with
six turning sequences was detected. An examplary output of the test detection is illustrated in
Figure B.2.

Since gait tests can be detected automatically ,further the data can be divided into gait tests and
free gait. Another important aspect of analyzing home-monitoring data is calculation of macro
parameters, which are computed on free-living gait data. The next section is covering this topic.

3.3 Macro Parameter Calculation

To generate clinically relevant outcomes, calculation of macro parameters was performed. Macro
parameters quantify broader trends of gait observed over long time [Del17]. These parameters
describe relations between WBs like volume, pattern and variability of those WB.

3.3.1 Walking Bout Definition

For comparing different WB definitions and their effect on the outcome parameters two definitions
from literature were used. The first definition is originally from Del Din et al [Del17]. They set
the MRP to 2.5 seconds and a minimum amount of three steps. The second WB definition had
also a minimum of three steps, but a MRP of ten seconds and was used by Orendurff [Ore08].
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3.3.2 Calculation Of Parameters

As macro parameters were calculated from WBs, firstly WB had to be generated from the gait
intervals, segmentated by the method of Section 3.1. A WB definition was used to compute WB
from those intervals. This was done by a sDTW based single straight stride detection algorithm
developed by Barth, which returns all strides detected by the sDTW, which do not exceed a
specific threshold optimized for PD patients [Bar17]. Afterwards a event detection algorithm was
applied which is partly based on the works of Rampp et al. [Ram14]. Each detected stride was
observed. If time between stride end, which was a MS event, and stride start, the previous MS
event, did not exceeded the respective MRP given in Section 3.3.1, those strides were fused to a
list. Those MS events were calculated with the method of Skog et al. [Sko10]. If the amount of
strides in this list were higher than two strides, a WB was generated, which lasts from the list’s
first stride’s start to last stride’s end.

With these WB generation, calculation of different macro parameters were performed. The
set of macro parameters observing each day contained number of steps per day, number of WBs

per day and the mean WB length. Furthermore macro parameters based on the total number of
WBs of all days were calculated, which were frequency of WB with different WB durations and
frequncy of WBs with different numbers of steps in a row.



Chapter 4

Experiments

In this chapter the used data sets are introduced. Due to a lack of sufficient home-monitoring data,
the gait test detection algorithm was trained and tested on test sessions in a clinical environment.
For the calculation of macro parameters another small home-monitoring data set was used.

4.1 Gait Test Detection

To improve the results of the gait test detection, optimization of detection related parameters,
especially the generation of templates and the optimal threshold for the sDTW distance, were
performed.

Figure 4.1: Shimmer 2R Sensor. IMU-sensors attached to the shoe and all the signals which are
recorded by accelerometer (A) and gyroscope (G) [Bar17].
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4.1.1 Study Design

For training and testing the gait test detection algorithm, there was a data set of patients with
idiopahtic PD, which was aquiered at the movement disorder outpatient unit of the University
Hospital Erlangen. As sensors they used Shimmer 2R (Shimmer Sensing, Dublin, Ireland), inertial
sensor units (IMU), which were attached on the lateral side of the shoes. In Figure 4.1 this
attachment is illustrated. The sensor’s recording rate was 102.4 Hz and the IMUs consist of a 3-d
accelerometer (range ± 6g) and a 3-d gyroscope (range ± 500 ◦/s).

Table 4.1: Subject Characteristics

Age [years] 63.0 ± 10.8

Height [cm] 171.2 ± 15.8

Weight [kg] 78.8 ± 16.5

UPDRS motorscore 17.6 ± 9.6

H&Y 2.2 ± 0.8

Sex (m/f) 106 / 63

The data was recorded during clinical gait sessions, while the subjects performed different
batteries of gait and movement tests. Gait tests included: 4x10 meter test at self-preferred speed,
two minute walking tests, two times 10 meter test with and without dual task, 10 meter obstacle
steps, timed up and go test and two times 10 meters stop and go. Movement test included: heel-toe
tapping, sit to stand transition and stand on one leg. The tests were performed in a clinical setting
and observed by a physician. The subjects performed the battery of tests, while the physician set
time stamp annotations for the sensor data manually. Those labels contain the test type and start
and stop of the specific test. Between different tests there were short resting times. One resulting
data set is shown in Figure B.1.

To gain high generalisation, different hyperparameters of the test detection were optimized
seperately with different data sets. Figure 4.2 shows the splitting of data sets, which is used to
suppress overfitting.
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Figure 4.2: Data Set Split. The available data of 286 clinical gait sessions was splitted in three
data sets, each for a different optimization matter.

4.1.2 Template Creation

Optimizing the template was one parameter to improve the outcome results. It was assumed that
the sDTW distance is the quality measure for templates, small values represent high similarity
and therefore good quality. If the sum of all sDTW distances of one single template to each gait
test of a list was small, the template was considered to be good. A small value of the summed up
sDTW distances signals, signals that the template is similar to the average input signals.

For this reason, two different data sets were used, one from which templates were created and
another to evaluate the templates with the sDTW distance. To obtain general outputs an optimal
number of sequences used for template creation had to be found. Therefore, six template groups,
each group containing templates generated from the same number of test sequences, were defined.
Templates were created like described in Section 3.2.2. The sequences which were taken for
template generation are 70 different 4x10m tests from the template creation data set which is
shown in Figure 4.2. For accurate template generation, the template creation data set was labeled
manually by the author.
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Every template group contained 20 different templates. Each template of one group was
generated with the same amount of test sequences, where the number of test sets used for one
template generation are j and j ∈ {2, 5, 10, 20, 50, 60}. Each group is refered as G2, G5, G10,
G20, G50 and G60 and each group contains templates tj,1, tj,2,...,tj,20. So group G2 contains the
templates t2,1, t2,2,...,t2,20.

To create one template, the respective amount of already preprocessed test signals was summed
up and divided by the amount of test signals used for creation. Each test signal was preprocessed,
which consisted of normalization, filtering, smoothing and squaring. This was the same process as
for an input sequence for sDTW computing described in Section 3.2.1. Furthermore all templates
were resampled to 4096 samples, while the mean 4x10m test length of the 70 template creation
test sets is 3800 samples. Only data from the left foot was taken into account to create the template.
The averaged template is now refered to as tj,m, with m ∈ {0, 1, ..., 20} and for each of the 20
templates, a set of j randomly chosen test sets of the 70 test creation data set were taken.

To obtain the sDTW performance of each group Gj , with j ∈ {2, 5, 10, 20, 50, 60} the mean
of sDTW distances to a test set was computed. For a template tj,m the sDTW distance to all input
segments s of a list S was calculated. A list contains the 108 manually labeled 4x10m gait tests
of the template group evaluation data set of Figure 4.2. Those 108 distance values were then
averaged to the value dj,m. This was done for each template tj,m of every group Gj .

These averages of sDTW distance measures dj,m were used to calculate an average group
distance measure d̄j , which is assumed to quantify the overall test detection performance of the
group Gj . The group Gj with the lowest sDTW mean of all groups is now refered as Gopt. A
Welch-test were computed for the mean sDTW distances to observe if the mean of each group
differs significantly between template groups Gj . The group with the lowest number of test sets
used for template creation and the lowest mean sDTW distances after which no significant changes
of the distance occur, was asigned as the template group Gopt.

4.1.3 Performance Assessment

As performance assessment for threshold adjustment of the maximal permissible sDTW distance
between template t and input sequence s, the F1-score was applied. The threshold θ was introduced
in Section 3.2.2. Maximizing the F1-score, by adjusting the threshold θ two aims are satisfied.
Minimizing the number of missed tests, while keeping the amount of falsely detected segments as
low as possible. The F1-score is calculated from precision and recall value. A high precision 4.2
represents that the ratio of detected tests to falsely detected free-living gait segments is high. On
the other hand a high recall value 4.3 means that only few gait tests are omitted. The F1-measure
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4.1 is the harmonic mean of precision and recall, where missed gait tests and wrongly detected
gait tests are taken equally into account:

F1-score = 2 · precision · recall
precision+ recall

(4.1)

The detection positives are the gait intervals, which were recognized as gait tests by the
detection algorithm. Whereas the true positives are all detected intervals, which are also real gait
tests in the gold standard data. Thus, if the precision is equal to one if all detected gait tests are
4x10m tests and two minute walking tests.

precision =

∑
true positives∑

detection positives
(4.2)

On the other hand, the recall or sensitivity value gives information on how many contained
gait test were not recognized by the algorithm. The false negatives are those missed tests. If the
recall is equal to one no gait test was missed. The following equation is the defintion of the recall
value:

recall =

∑
true positives∑

true positives+
∑

false negatives
(4.3)

4.1.4 Threshold Adjustment

The threshold parameter θ, introcuded in Subsection 3.2.2 for checking the sDTW distance
measure, was trained to distinct between free-living gait and gait tests using the generated optimal
template topt.

The test detection evaluation data set consisting of 108 manually labeled clinical sessions,
each containing one 4x10m test and one two minute walking test besides some other motion tests
was used for threshold adjustment. The data set is shown in Figure 4.2.

Results of the gait test detection were compared to ground thruth labels set by the physicans. If
the borders of the detectioned test labels were within 15 seconds (4x10m test) or 60 seconds (two
minute walking test) from the manual labeled test borders, the gait test was recognized correctly.
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To optimize the threshold θ a 5-fold cross-validation was applied. Cross-Validation is a popular
method estimating the accurancy of a classifier and adjusting hyperparamters to obtain outcomes
of high generality [Koh01]. For each fold the threshold θ is trained on one fold’s data, while the
other folds are held out.

Therefore, the threshold is linearly increased in range of 0.001 to 0.033 in steps of 0.004. The
threshold which led to the highest F1-score is the optimized threshold θfold.

After optimization on the single fold, the F1-score was calculated for the computed threshold
θfold for all four held out folds. This was done for each fold seperately generating five thresholds.
The mostly occured threshold θfold is the optimal threshold θopt.

4.2 Macro Parameter Calculation

For the calculation of macro parameters a data set of 11 recorded day, screening one single
PD patient was used. The patient wore the mobile GaitLab system (Portabiles HealthCare
Technologies GmbH, Erlangen, Germany) for different durations (time = 5.5 ± 1.7 hours)in his
home environment. The IMUs were integrated in the midsole of special shoes. Figure 4.3 shoes
the sensors used for home-monitoring. Their recording rate was 99.9 Hz and the IMUs consist of
a 3-d accelerometer (range ± 8g) and a 3-d gyroscope (range ± 1000 ◦/s).

Table 4.2: Subject Characteristics

Age [years] 77

Height [cm] 182

Weight [kg] 83

UPDRS motorscore 31

H&Y 2.5

Sex (m/f) 1 / 0

In this study the subject was instructed to do test battery in their home environment. One test
battery consists of three 4x10 meter tests, one at preferred speed, one at slow speed and one at
fast speed.
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Figure 4.3: Mipod Sensors. These are the sensors which were used for home-monitoring
recording. They are integrated in the sole of shoes.

In the given data set only one sensor worked accurately, the following macro parameter
analysis is based only on right foot data. Hence, the WB definition of Del Din et al. [Del17] had
to be adapted to single foot data. The following assumptions, regarding counting steps from single
foot data were made from Orendurff et al. [Ore08]:

steps = (2 · right foot strides)± 1 (4.4)

Therefore, detection of 2 single, right or left, foot strides are 4 ± 1 steps. For this thesis right
foot data was observed:

• Left, Right, Left, Right, Left = 2 detected right foot strides = 5 steps

• Left, Right, Left, Right, or Right, Left, Right, Left = 2 detected right foot strides = 4 steps

• Right, Left, Right = 2 detected right foot strides = 3 steps

As home-monitoring data of consists of gait tests and free-living gait, the data has to be
devided. WBs which are containing a detected gait test were left out. Therefore, the free-living
gait WBs remain.
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Chapter 5

Results

In the following chapter the results of the gait test detection algorithm and macro parameter
outcomes are presented.

5.1 Gait Test Detection

For optimization of the test detection, template creation and threshold adjusting were performed,
which is shown in the next sections.

5.1.1 Template Creation

As described in Section 4.1.2, an evaluation of template groups Gj was made, which differ in the
amount of used test sets, which were averaged for the creation of templates. The mean sDTW
distance for each template tj,m introduced in Section 4.1.2 was plotted in Figure 5.1 for each
template group Gj .

Results of the Welch-test showed that only group G2 shows significant differences for the
mean of sDTW distances to all other groups. Also group G2 has a much higher variance, while the
standard deviation is sinking for higher numbers of tests used for template generation. Standard
deviation of group G5 was contrarily lower than of group G10. The mean distance values of
group G2 are the highest (dmax = 0.0366) and also the lowest (dmin = 0.0041), also leading to
the highest value of standard deviation (SD2 = 0.0082). The lowest mean of the group sDTW
distances was d̄60 = 0.0055 of group G60, while group G50 had the lowest standard deviation with
SD50 = 0.0001.

Group G5 was asigned to be the optimal template group Gopt, as it has a lower group mean
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sDTW distance and groups with higher numbers of test sets used for template generation show no
significant difference.
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Figure 5.1: Template Group Evaluation. For each template of the Groups Gn with n ∈
(2, 5, 10, 20, 50, 60) the mean sDTW distance to all sessions in the template evaluation test sets
was calculated. Outliers above values of 0.03 were excluded. Red dots represent the mean of
sDTW distances of one template t. Only template group G2 showed significant differences of the
values to all other groups.

Furthermore in Figure 5.2 three different exemplary templates are shown. Template (A)
contains three smooth peaks, while template (B) also contains three peaks, where on top of all
peaks small edges are recognizable. In template (C) there are 5 bigger peaks and 1 smaller peak
prominent. Groups of two peaks are somehow connected and are fused partly. For all templates
the peaks occur in frequent distances, while peaks of template (A) have wider base, than peaks of
both other templates. Moreover the second peak is taller for template (A) and (B).
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Figure 5.2: Individual Impacts on Templates. Templates from different Template Groups Gn

are shown. While in template (A) of group G60 and template (B) of group G5 the three peaks due
to turning sequences are prominent, in template (C) of group G2 there are six peaks.
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5.1.2 Threshold Adjustment

After an optimal template topt of the group Gopt was generated, the test detection algorithm was
performed on all 108 clinical test sessions of the test detection evaluation data set shown in Figure
4.2. In total there were 216 gait tests contained in the clinical sessions, as one session includes one
4x10m test and one two minute walking test. The detection was applied on each foot seperately so
in total there were 432 tests, which should be detected. In Table 5.1 the optimal threshold and the
corresponding performance measures are given for the gait test detection without postprocessing
and with postprocessing.

Table 5.1: Gait Test Detection Results

Precission Recall F1-score Threshold

without Postprocessing 85.2 % 91.4 % 86.9 % 0.013

with Postprocessing 91.9 % 91.7 % 93.4 % 0.029
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Figure 5.3: Generated optimal Template topt. One examplary template topt of group G5. This
template was used to optimize the thresholds in Table 5.1.
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5.2 Macro Parameter Calculation

The WB definitions of Orendurff et al. [Ore08] and Del Din et al. [Del17] were used for generating
WB sequences in the home-monitoring data which was introduced in Section 4.2. In Figure 5.4
those both definitions have been applied to the same sequence, generating different outcomes.
The upper subfigure shows a result with WB definition, now referred to as WB2.5,2, of Del Din et
al. [Del17], leading to two WBs, as the resting phase between the walking activity exceeds 2.5
seconds. On the other hand, the lower subfigure was computed with WB definition, now referred
to as WB10,2 of Orendurff et al. [Ore08], resulting in only one WB, as the resting phase is shorter
than ten seconds.
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Figure 5.4: Outcomes of different WB Definitions. WBs generated on the same gait ata of the
left foot. In the upper plot the WBs were compute with the WB definition WB2.5,2, while the
lower plot was computed with WB10,2. For WB2.5,2 two WBs were created and for WB10,2 one
WB was created.
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Figure 5.5: Effect of different WB Definitions on Number of WBs. Due to different MRPs
of the WB definitions the number of generated WBs differ. The upper plot is calculated with
WB definition WB2.5,2 of a shorter MRP of 2.5 seconds and the lower plot with WB definition
WB10,2 with a longer MRP of 10 seconds.
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Figure 5.6: Effect of different WB Definitions on Number of Steps in a Row. Effect of differ-
ent WB definitions (upper plot: WB2.5,2, lower plot: WB10,2) on the amount of steps in a row. A
higher MRP, which is used in the lower plot, led to a more spread distribution.
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Figure 5.7: Macro Parameters on each Day. Differences that occur by using different WB
definitions. The blue samples are generated by a WB definition WB10,2 with a higher MRP value
than the orange samples of WB2.5,2.
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Results of the macro parameter calculation can be seen in Figure 5.5, 5.6, Figure 5.7 and
Figure 5.5.

For different WB definitions the outcomes of macro characteristics differ. Regarding the
number of WBs, WB definitions with higher RMS result in a smaller total number of WBs. While
definition WB2.5,2 generated in total 1685 WBs, the definition WB10,2 only generated 1068 WBs,
which is only about 63 % of the other amount.

Frequency of different WB durations is illustrated in Figure 5.5 using two different MRP
values. In the upper subplot the WB definition WB2.5,2 of Del Din et al. is used, which has a
RMS value of 2.5 seconds. Furthermore, the lower subplot was computed with the WB definition
WB10,2 of Orendurff et al. [Ore08].

Using the WB2.5,2 definition, WBs of small durations (0-20 seconds) are highly dominant.
WBs with a duration between zero and ten seconds already made up about 76 % of all WBs.
Including the next interval, WBs in the range of zero to twenty seconds contain about 94 % of the
total amount of WBs. Sequences of longer walking ( 100 seconds) share 2 % of the total amount.

Contrary, observing a WB definition of higher RMS values as it is in the lower subplot of
Figure 5.5, the output differs. The sum of WBs in the iterval of zero to twenty seconds contains
only 74 % of the total number. The trend is tending to a more wider distribution of WB regarding
WB durations.

Observing the characteristic of steps in a row for these two walking bout definitions a similar
trend is obtained. Due to the used WB definitions, the minimum number of steps was set to 3
steps, as explained in Section 4.2. Most prominent are three to ten steps in a row, which contain 85
% for WB2.5,2 and 66 % for WB10,2. For both definitions sequences of long walking, containing
of more than 100 steps, made up about 2 % of all WBs.

Furthermore, the macro parameters number of WBs, number of steps and mean WB length are
compared for WB2.5,2 and WB10,2 for each day seperately. In Figure 5.7 these parameters are
plotted over each day. The blue lines are the parameters created with WB10,2 and the orange lines
of WB2.5,2 respectively.

The number of WBs is increasing for lower MRP values. For some days the number of WBs

almost doubles. The number of WBs range between 65 and 337 for WB2.5,2 and between 40 and
213 for WB10,2, which is a decline of 63 ± 3 % for each day.

The daily number of steps differs only in a slight way, where the number of steps is higher for
WB10,2. In total for WB10,2 the amount of steps is 30441, while for WB2.5,2 29894 steps were
detected, which are 547 steps less.

The third macro parameter is the mean WB lenght. Here the WB definitions of higher RMS
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values obtain higher mean WB lengths. Values ranged for WB10,2 between 14.4 and 130.5
seconds, while values for WB2.5,2 ranged between 6.0 and 74.9 seconds, which is a decline of 54
± 8 %.



Chapter 6

Discussion

The results for the gait test detection and the macro parameter calculation will be discussed in the
next chapter.

6.1 Gait Test Detection

One goal of this thesis was the automatic detection of gait tests. The results of the detection
algorithm will be discussed in the following section. The algorithm works on a signal processing
basis. The gait test detection obtained good results, performing with a F1-score of 93.4 % on
clinical data, applying the sDTW to a new application field.

Besides that, the DTW algorithm has already been used for stride segmentation, for example
Barth et al. [Bar17]. They achieved a F1-score of 98 % for stride segmentation observing a gait
test, while many other researchers used a peak detection approach for stride segmentation like
Salarian et al. [Sal04], which have 5 to 15 % lower scores than the DTW method. Furthermore
the DTW approach of Barth et al. shows a higher robustness also performing quiete well on
free-living gait data obtaining a F1-score of 97 %.

Comparing this DTW-method to the gait test detection of this thesis, several differences occur.
While the signals of one single step all share a very similar pattern, the gait test can differ in
patterns in more different ways. Varying numbers of steps appear between the turning sequences,
also the number of turning steps can change. Both patterns, stride and gait test differ in speeds for
each subject. This problem is tackled with the use of DTW, as it is an algorithm to compare two
signal sequences which vary in time or speed [Mye81]. Aligning the signal on the time axis by
warping will create high similarity between those patterns.

For comparing the template with input sequences, a preprocessing substep was developed to
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suppress patient-individual aspects, that lead to differences between different gait test signals.
Therefore input sequences were segmentated with a gait interval segmentation.

The gait interval segmentation process was needed for two reasons. Firstly, DTW algorithm
is a very memory-consuming algorithm which may lead to a processor error, as the processor
can not acquire enough memory. Therefore, the complete gait signal is sliced in junks of gait
intervals, which are processable. On the other hand, this segmentation was also used for accurate
segmentation of gait tests. The window size of five seconds used for the gait interval segmentation
detected gait test’s start and stop setting soft gait test borders. In this step problems will occur, if
the patient do not stops motion for at least five seconds. In the case of no rest a segment would
span over multiple gait test and therefore only one gait test will be detected.

After the sDTW distance is calculated and is lower than the threshold θ a postprocessing step
is applied on the remaining test candidates. This was done to distinguish between the different test
types and also to check several constraints. Those constraints were needed as the DTW method
also recognized non-test sequences which contain three turning sequences. Those false detected
intervals are included in the Table 5.1 for the gait test detection without postprocessing. Adding
those constraints results in an increase of the F1-score by 6.5 %.

6.1.1 Template Creation

Another aspect of this study was creating a template which can distinguish well between gait tests
and free-living gait in general. The aim was to generate a template, which have accurate outcomes
for unseen data and can be reproduced for different sensor systems or new types of gait tests.

Therefore, the different template groups Gj were created and evaluated by their group mean
sDTW distance to the 4x10m tests of the template evaluation data set. A low mean distance is
assumed to identify a good template group as lower sDTW distances represent a high similarity
between input and template sequence.

In Figure 5.1 all those sDTW distances are plotted. The lowest group mean was the one of
group G60, but there was no significant difference between all groups except for group G2. Our
assumption is that no new information is gained by adding more preprocessed tests to the template.
As this sDTW based test detection should be easily applied to new systems, also the required
amount of data should be as small as possible. Therefore, template group G5 was found to be the
optimal group Gopt, as it had lowest number of test sets used for generation and the lowest group
mean, that signifantly differs from previous template groups (G2).

Furthermore, the decreasing standard deviations for higher number of tests can partly be
explained by the size of the template creation set from Figure 4.2, which contained 70 test sets.
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As more often the same test sets are used to create templates, also the mean sDTW distance will
scatter less and less.

Moreover, the template with the lowest mean of sDTW distances is in group G2. For optimiza-
tion on specific systems, the author suggests to use the best template tj,m, which has the global
minimum of sDTW distances. This template may achieve the best perfomance.

In Figure 5.2 there are different examplary results of templates illustrated. Template (A) has
the smoothest pattern, as it contains the highest number of test sets for creation. As more sets
are used for averaging the template, the template illustrates a more general shape of all templates.
There is also an effect of smoothing recognizable, that lead to smaller amplitude and wider bases
of the peaks. Template (B) was made up of 5 different test sets. Small edges at the top of the
peak refer to small distances along the time axis of the different test sets’ peaks to respcetive other
peaks. This effect is even more prominent for template (C), which was generated of two test sets.
Three pairs of peeks occur, leading to higher sDTW distances. Those peaks may be explained
by different walking speeds during test performance and also varying angular velocity of turning
steps in the turning sequence.

6.1.2 DTW Algorithm Limitations

A problem that occurs, is based on the time independency of the sDTW algorithm. If the
segmentated gait interval is containing three turning sequences like they appear in the 4x10m test
or the two minute walking sequence, those segments are also likely to be detected as a gait test,
no matter if the turning sequences appear in a periodic distance. Here the introcution of a local
weight vector to the recursive cost calculation may achieve more accurate outcomes [Mül16]. By
raising the costs for vertical and horizontal steps, the diagonal direction gets favorized, making
stretching and squeezing of the temporal axis more expensive.

Furthermore, it is not granted that the cheapest warping path, produced by the sDTW algorithm,
includes three peaks. In some cases, the turning sequences of the input sequence can be cut off,
due to assignment of a single template sample to many consecutive samples of the input sequence
and vice versa [Mül10]. This is the case if the warping path is stuck in one of the sequences while
moving on in the other sequence. The peak due to the turning sequence is then eleminated by
warping and the output sDTW distance is not meaningful in those cases. An optimal warping path
would be a diagonal line without any vertical or horizontal steps, which would mean that template
and input sequence are identical. To tackle this problem a different step size could be used, that
forbids steps in horizontal or vertical direction. A step size which is able to do so is illustrated in
Figure 6.1.
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C(n­2,m­1)

C(n,m)

C(n­1,m­2)

Figure 6.1: Alternative Step Size Condition. This step size condition suppresses time degener-
ations.

6.2 Macro Parameter Calculation

Outcomes of measuring the free-living gait data support the work of previous research done in the
field of macro gait analysis. Due to the fact that only data of one PD patient was available, the
results are compared to already existing research findings.

The results of the parameters steps in a row and number of WBs over one week can be
compared to the results of Orendurff et al. [Ore08], as the WB definition WB10,2 is used in both
works. For both parameters the results of both studies differ slightly, as our PD patient tended to a
higher number of shorter WBs (< 20 seconds), which also affected the parameter steps in a row

[Ore08]. Lower numbers of linked steps had higher frequency in our study. Number of WBs of
healthy subjects of Orendurff et al. between 0 - 30 sechonds was 60 % of the total WB amount.
Our patient’s share of those Wbs from the total was already 84 % [Ore08]. This is in agreement
with the work of Lord et al. [Lor13a] that PD patients tend to walk short WBs (< 30 seconds),
which also affects the number of steps in a row.

Besides that, also Del Din et al. observed the frequency of WBs of different durations with the
WB definition WB2.5,2. The total share of WBs shorter than 10 seconds was 59 % for their PD
patients, while the respective share of our study was 76 %. This difference may result from the
fact, that our patient did not wear the sensor the whole day, possibly excluding walking activity.
Another aspect is that our study only contains one single PD patient, which may tend to shorter
WBs.

Comparing outcomes of macro parameters for the two WB definitions WB2.5,2 and WB10,2

with MRP of 2.5 and 10 seconds, the findings support the outcomes of Barry et al. that different
MRP values lead to strong differences in outcome parameters [Bar15].
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Two different MRPs were used to calculate the three parameter seen in Figure 5.7. The number

of WBs were increasing for WB definitions of shorter MRP like it is illustrated in the upper subplot
of Figure 5.7. Two effects can lead to different outcomes. On the one hand, small gait sequences
which are near get fused to a longer WB for higher MRP values. This effect decreases the amount
of WBs. And on the other hand, single steps with a small distance get fused to one WB, even if
they are not linked to each other. This effect leads to a small increase of WBs. As the number of

WBs decrease for higher MRP values, the first effect is outweighing the second one.

The number of steps was almost the same for both WB definition, while WB2.5,2 had slighty
lower values. This was due to the effect that more intervals containing single strides with small
time gaps were fused to one WB.

Furthermore, the number of steps per day illustrates the subjects activity level performed on
that day. The outcomes of those data is also depending strongly on the duration and type of
activity the subject wore the sensors. Observing number of WB values, the first impression would
be that the subject was very inactive on day 9, as this was one of the lowest values for number of

WBs of all days. In contrast, this was the day the subject was most active as the number of steps

was the highest. This is due to very long WBs, here multiple occuring of linked gait lasting about
30 minutes, which have a huge amount of steps. On the other hand those long WBs led to smaller
numbers of short WBs, as long WBs took a big share of the recorded time. The number of steps

per day is therefore a good indetifier of how active the subject is and which type of activities the
subject performs.

For the mean WB length, WB definition WB10,2 produced higher values, for the same reasons
mentioned before. Furthermore, this parameter also gives informations about the performed type
of gait. Higher mean WB lengths indicates occurence of long gait sequences, like outdoor walking.
Small values could represent home-environmental gait.

As macro parameters are generated by WBs also the macro outcomes change with different
WB definitions, thus comparing results is quite difficult [Bar15]. For different MRP values the
computed macro parameters differ in values, but both indicate the same relations and show the
same trends recognizable in Figure 5.7.

Moreover, the subject wore the sensors for varying durations (time = 5.5 ± 1.7 hours) which
also affects outcomes, as the study cohort of Del Din et al. and Orendurff et al. wore the sensors
constantly over 7 or respectively 10 days. Thus, for our PD patient’s data there may not be all
daily life activities included, which affect outputs.

The existance of several different WB definitions create comparison problems and hender the
progress of research in the field of macro gait analysis. To erase the comparison problem a general
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WB definition should be established. This definition should satisfy the goal of gait analysis
which is supporting the clinician with meaningful quantitative parameters [Lor13b]. Therefore,
a WB definition should lead to outcome parameters which distinct well between impaired and
non-impaired subjects. Some relations between outcome parameters and disease type, disease
stage, fall history and fall prediction have been found already [Sch14, Del16, Del17, Bar17].



Chapter 7

Conclusion and Outlook

One purpose of this thesis was to develop tools to process home-monitoring data automatically.
Furthermore the effect of two different WB definitions on the outcomes of macro parameters was
observed.

The task to process home-monitoring data is seperating free-living gait from performed gait
tests. To tackle this aspect an automatic gait test detection algorithm had to be developed. The
algorithm was based on sDTW, where preprocessed segments of gait were compared to a specific
generated template. If the calculated sDTW distance was lower than a predefined threshold and
the input segments also fullfills several constraints, the segment was detected as a gait test.

Two different gait test had to be detected, which are the 4x10m test and the two minute walking
test. Due to the fact that DTW algorithms is time-invariant, those two test types were detected
simultaneously, hence both tests contain the same sequences only differing in length.

As there was a lack of home-monitoring data, this algorithm was developed and evaluated
with data recorded during clinical sessions. The test detection obtained good outcomes on the
clinical data, therefore applying the algorithm on home-monitoring data should be possible, even
though home-monitoring’s free-living gait data is unpredictable and much more complex as
clinical gait data. Furthermore the performance of the gait test is highly depending on the subject’s
home-environment, as room barriers affect the feasibility of gait tests.

For applying that algorithm to a new sensor system a proper template from gait test data
recorded with those sensors has to be generated, as computed in Section 4.1.2. Furthermore the
threshold has to be optimized for this new template.

For the best of my knowledge, this is the first algorithm detecting gait test in motion data.
With a F1-score of 93.4 % the outcomes are valuable to facilitate the use of the home-monitoring
system, as the patients do not have to set time stamps to label the gait tests. Thus, outcomes of gait
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tests in home-environments in form of micro parameters will improve as they are more accurate.
On the other hand free-living gait data, which is the total home-monitoring data that remains

after excluding the gait tests, is used to calculate macro parameters, that illustrates broader trends
of gait signals. Those parameters quantify free-living gait characteristics. Furthermore free-living
gait is said to heightened differences of PD patients and healthy subjects, in comparison to clinical
gait [Del17].

For this reason different WB definitions and their effects on macro parameters were observed,
as WBs are the basis on which macro parameters are calculated. Longer MRP values led to lower
number of total WBs and increased the overall mean bout length. Considering the fact that in the
work of Del Din et al. only WBs of durations lasting longer than 20 seconds, showed significant
differences in macro parameters. A proper general WB definition should result in outcome macro
parameters which distinguish between healthy and impaired subjects.

Future applications of the gait test detection are automatisation of home-monitoring systems.
This could include automatic test detection and calculation of macro parameters, signalizing
critical trends of the patient’s disease stage, in form of macro and micro parameters. Furthermore
the prediction of fall risk could be improved by an increase of data, especially free-living gait
data. Besides that, preprocessing and sDTW subsections of the test detection may be applied to
applications handling detection of turning sequences. Currently, only 4x10m tests and two minute
walking tests are recognized, as those are the tests our home-monitoring and clinical test battery
are containing of.
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Appendix B

Additional Figures
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Figure B.1: Recorded clinical gait session. This clinical gait session contains seven different
gait tests, which were manually labeled by the physician. One recatangular is one test with name,
start and stop. Used sensors are Shimmer 2R, introdueced in Section 4.1.1.
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Figure B.2: Detection of Gait Tests. On the data of Figure B.1 the gait test detection algorithm
was applied. The occuring 4x10m test and two minute test were detected correctly. For detection
the optimized threshold θ = 0.025 from Section 5.1.2 was used and as template topt on which the
threshold was optimized.



Glossary

DTW Dynamic Time Warping

FOG Freezing of Gait

H&Y Hoehn and Yahr

HO Heel-Off Event

HS Heel-Strike Event

IMU Inertial Measurement Units

MRP Maximum Resting Period

MS Mid-Stance Event

PD Parkinson’s Disease

sDTW subsequent Dynamic Time Warping

TO Toe-Off Event

TUG Timed Up and Go Test

UPDRS Unified Parkinson’s Disease Rating Scale.

WB Walking Bout
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