
An Overview of the Feasibility of Permanent, Real-Time,
Unobtrusive Stress Measurement with Current Wearables

Stefan Gradl∗
Machine Learning and Data Analytics
Lab, Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
Erlangen, Germany
stefan.gradl@fau.de

Markus Wirth∗
Machine Learning and Data Analytics
Lab, Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
Erlangen, Germany
markus.wirth@fau.de

Robert Richer
Machine Learning and Data Analytics
Lab, Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
Erlangen, Germany
robert.richer@fau.de

Nicolas Rohleder
Chair of Health Psychology,

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Erlangen, Germany
nicolas.rohleder@fau.de

Bjoern M. Eskofier
Machine Learning and Data Analytics
Lab, Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
Erlangen, Germany

bjoern.eskofier@fau.de

ABSTRACT
Negative consequences of stress are a pervasive problem in our
modern society. Recent developments in wearable lifestyle hard-
ware have led to unobtrusive, sensor-packed, always-on devices
that might finally be able to continuously monitor biosignals to
detect, determine or even prevent stress or some of its negative
outcomes. In this work, we give a concise overview of a majority of
biosignals that are in some way relevant for stress classification and
outline state-of-the-art machine learning algorithms for this task.
Additionally, we provide a list of all recent wearables including an
evaluation of their feasibility to implement such algorithms as well
as directions to look for an assessment of the accuracy and validity
of their recorded data with respect to stress tracking.
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1 INTRODUCTION
Hans Selye coined the term stress as the “non-specific response
of the body to any demand for change” [66]. Experiencing per-
manent stress factors like high workload, time pressure or family
responsibilities can negatively influence peoples’ health. Besides
effects on the human brain (e.g. depression or burnout) long-term
prolonged stress can also lead to chronic conditions like obesity,
hypertension or Type II diabetes [17]. In Europe, stress is the second
most frequent work-related health problem [78]. Even though the
awareness of stress as a serious health risk rises, an increase of
stress-based widespread diseases can be observed [89].

When reacting to stress, the body shows symptoms similar to
anger and fear which is reflected in an increased electrodermal
activity or elevated heart rate. To detect stress based on such biosig-
nals, several methods have been evaluated in previous research
work [84]. Applying these procedures in daily life requires consid-
eration of different aspects. First, the level of data quality builds
the ground truth for further computation and deriving valuable
information for the user. Second, since high quality data mostly
requires elaborated procedures and clinical-grade devices for data
acquisition, accessibility and usability for the user also play a key
role for regular stress measurement. Therefore, detecting stress
should not feel like an intervention, but ideally take place in an
unobtrusive and implicit way. This is not only relevant for healthy
subjects interested in quantifying their own stress responses, but
could also increase motivation for long-term observation within
risk groups.

Within this work, we examine the feasibility of current state of
the art wearable technology to facilitate reliable and unobtrusive
long-term stress measurements. For that reason, the biosignals to
be used are identified and evaluated regarding their applicability
for stress detection. Further, established computation approaches
are compared based on a performance matrix (i.e. applied features
and achieved accuracy). Finally, the identified advantages and lim-
itations of current state of the art wearable technology for stress
detection will be discussed based on a concise overview of the most
recent wearable devices available for consumers.
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2 BIOSIGNALS TO MEASURE STRESS
Stress is a complex response mechanism of the human body to
internal or external stimuli. It is promoted by the Sympathetic
Nervous System (SNS) and the Hypothalamus-Pituitary-Adrenal
(HPA) axis, and ultimately by noradrenergic innervation of target
tissues as well as the release of stress hormones such as adrenaline,
noradrenaline, and cortisol [4, 43]. This in turn leads to changes
in physiology and conscious or unconscious behavior [26]. These
changes can be measured and ideally allow determining the current
stress level of a human.

Since concentration changes of hormones define the stress re-
sponse directly, tracking those over time is used as the gold-standard
to determine the current stress state. They can bemeasured in blood,
urine, or saliva [4]. For instance, cortisol or α-amylase can be mea-
sured in saliva and allow a direct quantization of stress [43, 64].
Cortisol fluctuations over the course of a day are very specific
markers of ongoing stress, since the concentration progress is very
specific in healthy, unstressed adults, being highest in the morning
and lowest during the night [4].

Even though those biomarkers provide a ground-truth observa-
tion about the stress level, their measurement can be considered
quite obtrusive and a continuous, real-time sampling is not feasible
with current technology. Therefore, another approach is to look at
indirect markers of stress found in biosignals which reflect the phys-
iological or behavioral changes induced by the stress hormones. It
has been shown that a large array of more or less unobtrusively
recordable biosignals show changes in patterns that can be de-
tected during periods of stress. Most of them have been discussed
in previous literature extensively [72, 80]. Therefore, this work only
provides a list including a brief description and references to look
up for more details.

We distinguish between directly and indirectlymeasurable biosig-
nals. The first are signals that measure a physical quantity or a de-
rivative thereof, like for example electrical changes on the human
skin surface or frequency of occurrence. The second are signals that
quantify changes in small-/large-scale and conscious/unconscious
behavioral patterns which cannot be measured as a physical quan-
tity directly. Their extraction usually requires much more complex
signal processing and classification methods [19].

2.1 Directly Measurable Biosignals
Arguably the most prominent biosignal of the human body is the
electrocardiogram (ECG). It measures changes in the electrical
field of the human heart’s electric activation system, projected
on the body surface [31]. A multitude of parameters or features
can be derived from it that reflect sympathetic activation. This in-
cludes heart rate (HR), heart rate variability (HRV), heart rate
recovery, respiratory sinus arrhythmia (RSA), or even changes
in the duration of different activation phases, like changes in the
ST-segment or T-wave amplitude [10, 12, 32].

Another measure of heart activity is the blood volume pulse
(BVP), which can be measured using the photoplethysmogram
(PPG) [6]. Furthermore, blood pressure (BP) is also linked to the
functioning of the heart and is widely known for its prominent
correlation to stress in public media. Blood pressure changes by

themselves can be used as a determinant for stress, as well as derived
measures like baroreflex function [12, 80].

The respiration or breathing rate (Resp) can be measured us-
ing chest straps, depth imaging [42], thoracic electrical bioimpedance
[68], or the RSA [12, 80]. Several breathing characteristics, such
as respiration variability, respiratory rate, tidal volume and in-
/expiratory duration change with stress experience as well as the
gas composition of the exhaled breath [49, 84]. Depending on on
the respiration rate and other influence factors, the peripheral
blood oxygen saturation (SpO2) can also provide insights in the
stress state [2].

Temperature changes on the skin surface, skin/surface tem-
perature (ST), in various areas or the core body temperature have
been shown to change with stress [80, 86]. They are usually mea-
sured using thermometers or thermal imaging [4].

Perspiration can be an indicator of experienced stress and can
be measured directly in different ways [93]. Another, more sophis-
ticated, approach of perspiration measurement is the assessment
of the electrodermal activity (EDA), which measures changes in
skin conductance. This is, next to the ECG, the most prominent un-
obtrusively recordable signal for the determination of sympathetic
activation and thus stress [18].

Besides ECG and EDA, stress-related studies also often include
measuring the electromyogram (EMG). It has been shown that
in particular the upper trapezius muscle and the masseter muscle
show specific, unconsciously performed activation patterns during
episodes of stress [4, 36, 50, 88].

The electroencephalogram (EEG)measures the electrical brain
activity through surface electrodes and is a standard, non-invasive
method for monitoring and analyzing the state of the brain [63].
Through changes in certain frequency bands of the EEG signal, in
particular in the Alpha and Beta band, the experiencedmental stress
can be assessed [4]. Additionally, near-infrared spectroscopy
(NIRS) is also capable of measuring human brain activity using
optical determination of the (de)oxyhemoglobin concentration in
the brain [81].

EEG recordings can also be used to derive the electrooculo-
gram (EOG), which allows measuring parameters such as blink
rate and eyemovement. Other parameters, such as pupil diameter
(PD) or gaze characteristics can be measured using eye-tracker sys-
tems and show changes during the experience of acute stress [4, 85].
Gaze properties can be categorized both as direct and as indirect
biosignals. There are directly quantifiable parameters, e.g. duration,
speed and occurrence of saccades, but also general changes in char-
acteristics of gaze and object focus, e.g. attentional selectivity, that
fall into the category of indirectly measurable biosignals [85].

2.2 Indirectly Measurable Biosignals
Not only changes in subconscious behavioral aspects of the eye
can provide stress-related information, also the facial expression
itself as well as the head movement patterns for specific tasks
or in general [4]. Beyond that, the usage of every-day items like the
keyboard ormouse dynamics, mobile phone usage, calendar
events (e.g. meeting behaviors or avoidance) and location change
patterns are different under stress [4]. Additionally, other move-
ment patterns such as body posture [4], recorded for example by
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Classifier Accuracy Signals References

Decision Tree
88.02%
80.9 %
75.2 %

EDA, HR, PD, HRV
EDA, HRV, IMU
EDA, Resp, HRV

[91]
[79]
[40]

Naive Bayesian Network
88.71 %
78.65 %
70.81 %

PD
EDA, HR, PD, HRV
EDA, Resp, HRV

[62]
[91]
[40]

LDA 90.00 %
81.82%

HRV
EDA

[53]
[48]

SVM
98.00 %
92.60 %
90.10 %

Thermal Images, EEG
Speech
EDA, HR, PD, ST

[24]
[45]
[91]

kNN 93.8 %
80.9 %

HRV, EDA, ST
HRV

[41]
[92]

HMM 96.40 %
87.00 %

HRV
EDA, PPG, HRV

[46]
[55]

ANN
99.00 %
89.23%
84.59 %

EDA, ECG, Resp
EDA, PPG
Breath

[5]
[70]
[16]

Table 1: Summary of themost common classifiers Decision tree, Naive Bayesian Network, Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), k-Nearest Neighbours (kNN), Hidden Markov Model (HMM) and Artificial Neural Networks
(ANN) for stress recognition including their used signals and achieved accuracy.

inertial measurement units (IMUs) that measure acceleration and
angular velocity, and potentially gait characteristics change as well.
Furthermore, speech characteristics have been shown to change
while in stressful situations [4, 68].

2.3 Further Biosignals Relevant for Stress
Classification

Although not directly linked to stress, other signals can be help-
ful to be recorded in order to improve stress detection in the di-
rectly and indirectly measurable signals. Since the emergence of
autonomic response classification, it has been acknowledged that
stress quantification yields most accurate results if it is generated
from the profiling of direct and indirect biosignals across multiple
response domains and across time [12]. For example, lactate or Am-
monium concentrations in sweat might allow to discard phases of
high intense physical activity [94], which cannot be distinguished
from pure mental stress in other biosignals, while, at the same time,
analyzing HRV, EDA, respiration and head movement patterns. Sim-
ilarly, analysis of sleep patterns can be used to determine phases of
bad sleep which result in a worse stress reaction or limited ability
of the body to cope with it [52].

3 SYSTEMATIC COMPUTATION
Developing wearable devices that generate trustworthy stress mea-
surements encompasses different challenges that need to be tackled.
Besides acquiring valuable data and gaining user trust, a major
aspect is the performance (e.g. accuracy) of the embedded signal
processing algorithms. With constantly increasing computational
power, it is possible to not only apply classifiers that show a shallow
architecture like for example Naive Bayes or Decision Trees, but
also complex models like Artificial Neural Networks (ANN).

Therefore, in this section we compare current state of the art
algorithms for stress measurement. For this purpose, we use a tax-
onomy consisting of the selected signals and classification accuracy
and compiled them in Table 1. The overview is based on the struc-
ture of previous review research work [4, 21, 69] and updated with
state of the art research insights.

4 WEARABLES
In the last years, a lot of wearable lifestyle devices were introduced
in a commercial setting. These wearables often contain biosignal
sensors that measure one or several of the abovementioned direct or
indirect signals. On the one hand, these wearables provide the merit
that their users are usually very engaged in using and recording
data with them. On the other hand, the quality and accuracy of the
measured biosignals is rarely thoroughly scientifically validated.

In Table 2, we give an overview of the most recent wearables and
possible validation studies either originating from the manufacturer
or from independent researchers. Due to the fast development pace
of new wearables and the dilemma that listing the newest devices
also means chances are very low to find scientific studies using
those, we also include references of validation studies for previous
hardware models, where we assume that the actual sensing tech-
nology has not changed much and the study still seems applicable
for the current version.

In order to identify the included wearables we searched for re-
views from 2018 and 2019 found in the literature databases Scopus,
Google Scholar and IEEE Xplore that contained the terms ‘wearable’,
‘review’ or ‘validity’. We identified and used four recent review
articles [13, 33, 59, 65].

Additionally, we used the Google search with the term ‘fitness
health wearables’ and ‘stress tracking wearables’, restricted results
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Device name Available sensors SMP References

H
R

EC
G

BP Re
sp ST Sp
O
2

ED
A

EM
G

EE
G

GP
S

M
ic

IM
U

Apple Watch Series 4 x x x x x x 4 [8, 34]
Artinis PortaLite/OctaMon x 4 [9, 77]
Biostrap/Wavelet Wristband x x x x x 6 [14, 20, 39, 75]
Casio Pro Trek Smart WSD F30 x x x 1 [15]
Empatica E4/Embrace2 x x x 6 [22, 27, 44, 51, 61]
Fitbit Charge 3/Versa/Ionic x x x 2 [25, 30, 38]
Garmin Vivosmart 4/Fenix 5 Plus/Instinct x x x 2 [28, 73]
Hexoskin x x x x 5 [1, 3, 35]
Lief x x x x 5 [47]
Lowdown Focus x 4 [74]
Misfit Vapor 2 x x x x 0 [54]
Muse 2 Headband x x x x x 5 [7, 11, 56, 63]
Omron HeartGuide* x x 2 [57]
Oura Smart Ring x x x 0 [29, 58]
Polar Vantage V x x x 0 [23, 60]
Samsung Galaxy Watch/Active* x x* x x x 1 [38]
Sentio Feel x x x 6 [67]
Skagen Falster 2 x x x x 0 [71]
Spire Health Tag/Stone x x x 1 [37, 76]
TicWatch (Pro/S2/...) x x x 0 [83]
VivaLNK Vital Scout x x x x 5 [87]
WellBe Bracelet x x 0 [82]
Withings Move ECG*/Steel HR Sport x x x x x 4 [90]

Table 2: Overview of most recent wearables from various manufacturers that have the potential to track stress continuously.
For each wearable the available hardware sensors and/or possibility to measure a specific biosignal are given, the resulting
potential tomeasure stress (SMP) based on the amount of algorithms in Table 1 that could be computed on the available signals,
and references to the manufacturer’s product page and references to independent scientific papers that assessed some aspects
of their accuracy. A star (*) at a product or feature indicates that this has not been released yet at the time of writing.

to pages not older than one year and gathered device names from
the first five websites reviewing or comparing wearables in articles
that were posted within the last three months (December 2018 to
February 2019). The wearables found were merged with those from
the review articles. Themost recent one for eachmanufacturer were
included into our list. Wearables which are no longer produced,
had a clear successor, or tracked IMU signals only, were excluded,
e.g. the Myo armband from Thalmic Labs (retired) or the Bellabeat
Leaf/Time (only IMU). We then searched for articles trying to val-
idate any aspect of those wearables. For this we used the search
terms ‘validity’, ‘accuracy’ and ‘study’ in combinations with the
respective wearable name or manufacturer name in addition to the
combination of recent model names. We also looked at the product
pages of the wearables for any validation research papers.

Finally, we provide a score of how many of the algorithms pre-
sented in the previous section could be implemented using those
devices. This can be seen as a very coarse assessment metric of their
current or future use for the detection and/or continuous recording
of stress and provides a better approach to using Table 2 as an
overview.

5 DISCUSSION
With the trend of increasing computational power and the pos-
sibility to unobtrusively integrate sophisticated sensors, e.g. an
one channel ECG into the Apple Watch Series 4, the approach of
enabling real-time, user-friendly stress monitoring in daily life be-
comes more and more feasible. Beyond this, the potential of deep
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architecture algorithms (e.g. deep learning) also seems to be very
promising when it comes to classification accuracy.

Nevertheless, current technology still needs further innovation,
since only few devices (e.g. Omron HeartGuide or Apple Watch)
are able to provide reliable measures for stress analysis (e.g. BP or
ECG). We listed validation study references for most of the wear-
ables. However, we do not provide a scientifically critical discussion
for each of these papers. To give one example, the Biostrap/Wavelet
device uses the PPG signal to calculate the HRV. In a validation
paper, the HRV measure was evaluated using two other PPG-based
devices [39]. Scientifically, such an approach is not without ques-
tions, as one would expect that in order to validate the HRV, a
clinically validated ECG system needs to be used as reference. Fur-
thermore, the HRV does not allow a strong real-time stress feedback,
as it requires computations over a window of several seconds. It
also doesn’t make much sense to feed back stress information to
the user in strong real-time, since it usually is a somewhat slowly
increasing and long-lasting state of the body. It could be argued,
that real-time stress tracking could already mean to inform the
user within minutes when high stress levels are detected and give
options on how to reduce the stress (e.g. guided breathing, already
available in many smartwatches and smartphone health apps).

6 CONCLUSION AND OUTLOOK
From a technical point of view, current wearable technology is
ready to provide good and continuous insights into stress-related
parameters. However, few devices particularly focus on this topic
and instead try to address all possible customer needs. To reach a
broad view on stress across the population, it is in general necessary
for prominent manufacturers like Apple or Samsung to integrate
EDA and reliable HRV measurement capabilities into their mass
production devices. EDA and ECG can be measured from the wrist
in an acceptable quality [8, 18, 22, 67], and it would be the logical
next step to include it into the standard array of sensors for wrist
wearable devices as has happened with the PPG sensor.

Another possibility would be to use interactions with the user
to allow a determination of stress variables, for example, asking
about subjective measures of stress, based on traditional stress
questionnaire items, as unobtrusively as possible.

The next steps in this line of work would be trying to assess all
state-of-the-art algorithms for stress detection and assign profiling
information for each wearable. However, due to the fast paced
nature of new wearable releases, this will remain a continuously
ongoing process in research.
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