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Übersicht

Das aufstrebende Potential neuer Interaktionskonzepte offenbart viele Möglichkeiten für
adaptive Umgebungen. Da die Umgebung immer mehr vernetzt wird und abhängig
vom aktuellen Kontext reagiert, wird es auch komplexer, die Umgebung zu steuern, was
den aktuell etablierten Ansatz, Kontrolldimensionen manuell anzupassen, schwierig und
umständlich macht. Im Gegensatz dazu können andere Modalitäten, wie Smart Agents
und Brain Computer Interfaces diese Herausforderungen bewältigen. Aus diesem Grund
befasst sich diese Arbeit mit der Analyse dieser verschiedenen Interaktionsmöglichkeiten,
die als eine Art Vermittler zwischen dem Menschen und seiner Umgebung fungieren
sollen. Verschiedene Smart Agents, die sich hinsichtlich Eingabemodalität und Intelligenz
unterscheiden, wurden dafür in einem Prototypen für ein intelligentes Büro, Mediated
Atmospheres, integriert. In einer Nutzerstudie (N=33) wurde ihre Gebrauchstauglichkeit
evaluiert und eroiert, ob sie unterschiedlich von den Teilnehmern wahrgenommen
wurden. Das Brain Computer Interface besteht aus einem tragbaren EEG-Stirnband,
für das verschiedene Algorithmen zur Echtzeit-Klassifizierung des Mentalzustandes
vorgestellt wurden, um zu klassifizieren, ob der Benutzer gerade fokussiert oder entspannt
ist. In einer Nutzerstudie (N=11) wurden diese Klassifikatoren evaluiert.

Die Evaluierungsergebnisse der Smart Agents zeigen, dass eine graphische Benutze-
roberfläche das am besten bewertete System ist, gefolgt von den Text- und Sprachas-
sistenten. Beide Arten von Assistenten helfen dem Nutzer mit ihrer freundlichen Art
allerdings dabei, sich besser im Raum zurechtzufinden. Außerdem konnte ein klarer
Unterschied in der Bewertung zwischen Muttersprachlern und nicht Muttersprachlern
festgestellt werden, ebenso wie ein Unterschied zwischen den Erwartungen der Benutzer
an die Systeme, und der tatsächlichen Erfahrung. Die Evaluierung des Brain Computer
Interfaces zeigte, dass der auf der Tsallis-Entropie basierende Algorithmus am besten
zur Klassifizierung des Fokus-Zustandes geeignet ist, wohingegen die Renyi-Entropie
die besten Ergebnisse bei der Klassifizierung des Entspannt-Zustandes erzielt hat. Sensi-
tivitäten von 82.0 % bzw. 80.4 % und Spezifitäten von 82.8 % bzw. 80.8 % wurden bei der
Klassifizierung der beiden Zustände erzielt.

Die Ergebnisse dieser Arbeit offenbaren das Potential von Smart Agents für die
Interaktion mit intelligenten Umgebungen, z.B. einem Smart Office, um die Interaktion
im Arbeitsalltag zu erleichtern. Darüber hinaus zeigt es die Möglichkeit auf, ein tragbares
EEG-System für eine Erkennung des Mentalzustandes in Echtzeit einzusetzen, und es zur
Steuerung von intelligenten Umgebungen, wie z.B. Mediated Atmospheres, zu verwenden.
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Abstract

The emerging potential of new interaction concepts unveils new possibilities for adaptive
environments. By becoming more pervasive and context-aware, the control complexity
increases likewise, making the traditional approach of the user manually adjusting those
dimensions cumbersome and tedious. Other modalities like conversational agents and
brain computer interfaces could cope better with those challenges. Therefore, this work
explores the application of those new interaction concepts as a mediator between occupant
and environment. Different agents were applied as personal assistants for Mediated
Atmospheres, an adaptive smart office prototype, each of them differing in their level of
system intelligence and input modality. Through a user study (N=33), their usability was
evaluated as well as analyzed, whether the agents create a different perception on the
user. The brain computer interface was implemented using a wearable EEG headband.
Therefore, different measures (one naive measure and four entropy-based measures) were
presented for real-time mental state recognition and to quantify the occupants’ current
levels of being focused and relaxed. Classifiers for Focus and Relax state detection, based
on the estimation of probability distributions for the different measures, were developed
and evaluated in a user study (N=11).

Results for the agent evaluation show that a graphical user interface as the most
familiar system is also the most favorable system, followed by conversational text and
voice agents, that both help the user fulfilling the required tasks in an engaging and
friendly way. Furthermore, a clear difference in perception between native and non-native
speaker could be observed, as well as a disparity between the users’ expectations and
experience. The evaluation of the brain computer interface shows that the measure
based on Tsallis entropy performed best for the Focus score, whereas the Renyi measure
performed best for the Relax score. Sensitivities of 82.0 % and 80.4 %, with specificities of
82.8 % and 80.8 %, were achieved for the Focus and Relax scores, respectively.

The findings reveal the potential of conversational agents for the interaction with
adaptive environments such as a smart office to reduce work and information overload.
Furthermore, it demonstrated the possibilities of using a wearable EEG system for
real-time mental state recognition and to control adaptive, context-aware environments
like Mediated Atmospheres.
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Chapter 1

Introduction

Smartphones have become an essential part of our daily life and are deeply embedded
in our everyday actions, in a personal as well as in a professional environment [Smi15].
According to [And15], smartphones are used about 85 times a day, with more than five
hours spent in total with the device. Because interacting with a smartphone mostly
requires to use one or both hands and hence easily distracts from other activities [Smi15],
companies like Apple (Siri, 2011), Google (Google Now, 2012), Microsoft (Cortana, 2015),
and Amazon (Alexa, 2015) have released smart voice assistants that are integrated into
smartphones, computers, or Internet of Things (IoT) devices and enable a hands-free and
more unobtrusive interaction. In 2016, Google announced the Google Assistant as the
successor of Google Now. It was designed as intelligent personal assistant that engages
the user in a two-way conversation, but moreover offers multimodal input: it is not
only possible to talk to the assistant over voice, but also to send text messages using the
messaging service Google Allo [Goo16].

Research groups have been developing agents that answer to questions conversa-
tionally for the past two decades [Gel12]. However, those companies have made them
available for the broad public, following the vision of the HCI community that voice
agents will take their place among the most important human computer interaction
modalities as they will become more conversational [Bre90].

Similarly, recent developments in ubiquitous computing unveiled a new range of
other HCI concepts, such as brain computer interfaces (BCIs) based on measuring the
electroencephalogram (EEG), the electrical activity of the brain using low cost wearable
EEG devices. For instance, recent work used wireless EEG devices for games, or
biofeedback applications [Abu16, Amo16, Bas16].
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2 CHAPTER 1. INTRODUCTION

Therefore, the emerging potentials of conversational agents and brain computer inter-
faces offer new possibilities for the interaction with advanced context-aware applications,
especially smart environments. Equipped with pervasive and ubiquitous technologies,
those environments obtain information about itself and the actions and preferences of
the user, while concurrently increasing the complexity of control dimensions. By sensing
the users’ requests and responding to them, complex, seemingly intelligent tasks may
be performed automatically [Kid99], creating a symbiosis between the space and the
occupant for providing meaningful interactions with his or her surroundings.

For this work, Mediated Atmospheres, proposed by Zhao et al. [Zha17] was used as
one scenario of an intelligent, adaptive environment. It aims to dynamically influence
the users’ abilities to focus on a specific task or to recover from a stressful situation.
Multimodal media – lighting, video projection, and sound – is used to seamlessly
transform the appearance of the workspace. Different environments can be projected into
the room according to the occupants’ preferences or different work scenarios. In order to
unleash the full potential of such an adaptive environment, the user experience should
not be compromised by a cumbersome and tedious interaction with the workspace.
Therefore, the traditional approach of a discrete number of control dimensions that
have to be manually adjusted by the user is obsolete. The vision should rather be a
system that acts as a mediator between person and environment, reducing the work
and information overload [Mae94], and being capable of understanding requests and
seamlessly translating them into a manifestation of lighting, video and sound.

Nowadays, conversational agents still suffer from a “gulf of evaluation” between
the users’ expectations and the system operation [Lug16]. Naturally, users have higher
expectations towards a system that pretends to be capable of conducting a conversation,
and hence tend to be more disappointed if the system provokes wrong actions [Lug16].
However, it can be assumed that the “gulf of evaluation” depends on the input modality,
and is wider for voice-based input than for text-based input.

Therefore, this work explores the application of different agents as personal assistants
for multimodal mediated environments using the Mediated Atmospheres framework. As
each interface has its strengths and weaknesses, and is applicable for different scenarios,
depending on the current task and the user preference, four different systems are presented
and compared. Each of them are integrated into the office environment, intended to
increase both the system usability and the user experience by providing a natural way of
interaction. The best system for the interaction with the smart workspace is expected to
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be found by creating and evaluating agents that differ in their level of system intelligence
(i.e. context-awareness, and variety of features) and input modality (i.e. voice-based
or text-based input). Additionally, the application of brain computer interfaces using a
wearable EEG headband is explored. Information from this device is used to perform
a real-time mental state recognition of the occupant in order to determine the current
levels of Focus and Relax and to transform the appearance of the office space accordingly.
Because this problem requires fast and robust algorithms, different approaches (one
naive and four entropy-based approaches) are implemented and evaluated in order to
determine the most suitable solution.

After relevant related work in Section 2 has been explored and discussed, Section 3
describes the infrastructure of the smart office prototype and the different interaction
concepts that were developed within this work. In Section 4, the evaluations, including
experiment designs, procedures, and measures, are presented for both smart agents
and brain computer interface, with the obtained results shown in Section 5. For the
smart agents, subjective measures like the overall usability the different systems, as well
as the perception of intelligence, engagement, trust, and control the agents create on
users exploring their features are of particular interest. Furthermore, objective measures
like fulfillment time, recognition rate, and the number of necessary interactions with
a system to fulfill a certain task are defined and recorded. For the brain computer
interface, the performance of different algorithms for real-time mental state recognition
are compared with regard to parameters like sensitivity, specificity and area under the
Receiver Operating Characteristic (ROC) curve. Leveraging the results, the strengths
and weaknesses of all approaches are discussed in Section 6, followed by a conclusion in
Section 7.
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Chapter 2

Related Work

In the past years, researchers have equipped built environments with pervasive and
ubiquitous technologies in order to control specific properties like lighting [Ros15, Che13,
Ald10, Mag11], glazing regulation [Kal16], HVAC control [Fel10], sound [Kai05], or
information display [Ras98, Ben14, Tom08]. Other research groups have created whole
adaptive ambient environments to enable life-size telepresence [Pej16], or to transform its
appearance and physical shape according to physiological data of the occupant [Sch10].
Another example is the ambientROOM that utilizes subtle cues of sound, light, or motion
to provide meaningful information to the user [Ish98].

Similarly, context-aware systems also been explored within the last two decades.
According to Abowd et al. [Abo99], context-awareness is defined as “the use of context
to provide task-relevant information and/or services to a user”, where context can be
categorized into Activity, Time, Identity, and Location [Per14]. As an example of a context-
aware environment, researchers have created the Aware Home, an entire home equipped
with ubiquitous computing technologies in order to create a living laboratory that is as
realistic as possible [Kid99]. Other examples that aimed to increase convenience are the
Neural Network House [Moz98], or the Adaptive House [Moz05].

Additionally, the EEG has been applied by research groups for context-aware ap-
plications, such as the assessment and quantification of drivers fatigue in order to
increase road safety by using alpha spindles [Sim11] or ratios of EEG spectral compo-
nents [Jap09]. Additionally, other research groups proposed driver fatigue detection and
quantification algorithms using entropy-based measures [Kar10, Zha14]. Steps beyond
the assessment of drowsiness and fatigue are the recognition of different mental states
based on EEG data [Mül08], as well as the analysis of cognitive performance [Kli99]

5
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or attention [Cla02, Kel05]. Many of those experiments used visually evoked poten-
tials that require a distinct visual stimulus in order to segment it from the regular
EEG signal. Furthermore, they were conducted under controlled laboratory conditions
and with clinical, obtrusive EEG systems. In contrast, low cost EEG headsets have
been developed by companies like InteraXon (Toronto, Canada) [Int17], NeuroSky (San
Jose, CA, USA) [Neu17], or Emotiv (San Francisco, CA, USA) [Emo17]. Additionally,
several patents were published, presenting wearable EEG devices, such as US patent
US12716425 [A.1], US patent US12955016 [A.2], or US patent US14216925 [A.3].

In order to evolve from adaptive, context-aware rooms to intelligent environ-
ments [Men14], agents have been integrated into the built environment. They are
supposed to learn the occupants’ preferences and habits and execute appropriate actions
automatically. For instance, MavHome is an agent-based smart home with algorithms to
predict the inhabitants’ actions [Coo03]. Other smart home applications see the benefit
of agents in power management [Abr08] or to mediate the interaction with a smart
grid [Ala16]. In smart offices, agents have been integrated for a virtual secretary [Dan08]
or to accompany and lead persons in an office building [Bag03]. With increasing popular-
ity of smart agents and environments, people have analyzed them in terms of acceptance
and trust [Hos13], dominance and cooperativity [Str16], or personality traits [Men16].

The idea of a having an agent, an artificial intelligence designed to maintain a conver-
sation with a human, has already been envisioned by Alan Turing in the 1950s [Tur50]
and was successfully implemented for the first time by Joseph Weizenbaum with
ELIZA [Wei66]. It is considered the first “chatbot”, a text-based conversational agent
simulating a natural human interaction between the computer and a user. Systems and
methods for conversational agents have also been patented in the past, such as US patent
US8073681 [A.5] and US patent US7019749 [A.4]. Recently, conversational agents have
been created for the touristic domain [D’H15], as a museum guide [Kop05], or in social
networks like Facebook or Twitter [Fer16]. The technology of conversational agents has
even advanced so rapidly that it has become hard to distinguish between humans and
chatbots in social networks [Chu10, Sub16].



Chapter 3

System Description

The present works explores different interaction concepts for a smart office prototype.
Therefore, this chapter first introduces the concept of this smart office, “Mediated At-
mospheres” [Zha17], before the integration of smart agents is described in Section 3.3.
In order to determine the best agent for a smart office scenario, different types were
implemented. As shown in Figure 3.1, they differ in their input modality (visual vs. voice
vs. text) and their system intelligence (basic vs. advanced). All agents communicate
with the Mediated Atmospheres framework, as visualized as a top-level description in
Figure 3.2. Additionally, the integration of a wearable EEG headband as brain computer
interface is explored in Section 3.4. Therefore, different algorithms for real-time mental
state recognition were developed in this work in order to quantify the levels of Focus
and Relax of the occupant.

3.1 Mediated Atmospheres

Mediated Atmospheres is a modular workspace capable of digitally transforming its
appearance using controllable lighting, video projection and sound. The physical layout
of the office space is sketched in Figure 3.3. 20 individually controllable light fixtures
light the walls to the occupants’ left and right (wall-washing fixture), and the occupant
directly (downlight fixture). It is combined with video projection onto a frosted acrylic
display. Without video projection, the display is white and opaque and resembles a wall
divider for cubicles. Furthermore, the room is equipped with a four speaker ambisonic
sound system. If ambisonic sound data is available, it attempts to reproduce the spatial
sound conditions for creating a fully immersive experience.

7
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Figure 3.1: Agent Overview. Overview of agents for the interaction with the Mediated
Atmospheres framework
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Figure 3.2: Top-level description of system. The interaction modalities communicate
with the Mediated Atmospheres framework, which maps input commands to control output
modalities.

3.1.1 Scene Library

All digital output capabilities are combined to design a library of scenes, multimodal
virtual environments, with each of them possibly having a different influence on the
occupant’s physiology or behavior [Zha17]. Examples of the workspace, transformed
into different scenes, are shown in Figure 3.4.

The scene library currently features more than 30 elements, ranging from nature
landscapes, like forests, beaches, mountains, over urban scenes, like walking through a
city or train rides, to indoor spaces, like libraries or cafés. The scenes were selected to
cover a wide range of environments, all creating a different perception on the occupant
of the space. Each of the scenes are identified by a unique identifier (Scene ID) and
a descriptive name, and contain video data, sound data, and lighting configurations.
Furthermore, other different scenes properties were defined, that will later be used by
the agents to filter scenes, like:



3.1. MEDIATED ATMOSPHERES 9

Figure 3.3: Mediated Atmospheres Layout. Physical layout of the office space. [Zha17],
with permission.

• Color Temperature: Color temperature of the scene’s lighting configuration (K)

• Brightness: Brightness of the scene’s lighting configuration, measured as the
horizontal illumination on the desk (lux)

• Primary Color: Dominant colors of the scene’s video content

• Light Direction: Direction of the light scene’s lighting configuration, relative to the
office desk in the middle of the room

• Keywords: Keywords describing the scene’s video content. Keywords were gener-
ated using Clarifai1, which provides an online API for image and video recognition

All scene properties were stored in JavaScript Object Notation (JSON). Listing 3.1
shows an example for one scene configuration file.

The scene library was implemented as an Amazon dynamoDB database, a scalable
and non-relational database web service, that offers APIs for platforms like Python,
Node.js, or Android [Siv12]. It supports multiple indexes, that were utilized to directly
scan the database for scenes with certain properties, like a specific color temperature
range. Listing 3.2 shows an example in Node.js of how to find a scene based on its
descriptive name by performing a query against the scene database, whereas Listing 3.3
shows an example of how to retrieve scenes within a certain color temperature range by
performing a scan on the scene database.

Furthermore, every occupant can create his or her own model with scenes that help
being more focused or being more relaxed. Therefore, Focus and Relaxation coordinates
are assigned to each scene, and individually stored for every user in the scene library.
The model can be created using a website with a graphical user interface, in which scenes

1http://www.clarifai.com/

http://www.clarifai.com/
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(a) Neutral (b) City

(c) Silverman (d) Kites

(e) Library (f) Forest

Figure 3.4: Mediated Atmospheres. The smart office prototype, transforming its
appearance into different scenes. [Zha17], with permission.
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are placed along a two-dimensional coordinate system, with Focus and Relaxation being
the two axes (see Figure 3.5).

1 {

2 "descriptive_name": "Forest",

3 "scene_id": 0,

4 "feature": {

5 "color_temperature": 4600,

6 "lighting_metadata": {

7 "mean_brightness": 943,

8 "number_lights": 2,

9 "light_direction": [ "top left", "botom left" ]

10 }

11 },

12 "primary_color": [ "#b39a6d", "#6b6946", "#b3a39e" ],

13 "labels": [ "nature", "wood", "trees", "landscape", "outdoors",

14 "fall", "river", "no people", "mountains" ],

15 "length": "01:00:03",

16 "rep_frame_path": "rep frame/0000 forest.jpg",

17 "path": "videos/0000 forest.mp4",

18 "lighting": "lighting/0000 forest.json"

19 }

Listing 3.1: Scene Configuration File

3.1.2 Scene Control Server

For controlling the office space in real-time, the Mediated Atmospheres framework features a
Scene Control Server, implemented in Python 3.5. It provides a Websocket Interface in order
to allow other applications to communicate with the server using JSON-based messages.
Possible commands for the Scene Control Server are listed in Table 3.1. As shown in
Figure 3.2, this API is utilized to integrate different applications, that dynamically control
the appearance of the workspace.
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1 function getScenesByName(sceneName , callback) {

2 var docClient = new AWS.DynamoDB.DocumentClient();

3 var params = {

4 TableName: "SceneLibrary",

5 KeyConditionExpression: "#name = :name",

6 ExpressionAttributeNames: { ’#name’: "name" },

7 ExpressionAttributeValues: { ’:name’: sceneName }

8 };

9 docClient.query(params, function(err, data) {

10 if (!err) { callback(data[’Items’]); }

11 });

12 }

Listing 3.2: Query against Scene Library

1 function getScenesByColorTemp(colorTempRange , callback) {

2 var docClient = new AWS.DynamoDB.DocumentClient();

3 var params = {

4 TableName: "SceneLibrary",

5 IndexName: "table_color_temperature",

6 FilterExpression: "#temp between :temp1 and :temp2",

7 ExpressionAttributeNames: { ’#temp’: "color_temperature" },

8 ExpressionAttributeValues:

9 { ’:temp1’: colorTempRange[0], ’:temp2’: colorTempRange[1] }

10 };

11 docClient.scan(params, function(err, data) {

12 if (!err) { callback(data[’Items’]); }

13 });

14 }

Listing 3.3: Scan on Scene Library

3.1.3 Sensor Collection Server

In order to learn about the occupants’ physiology, Mediated Atmospheres is equipped with
a real-time sensor collection infrastructure implemented in Python. So far, the office
prototype supported the Zephyr Bioharness 3 [Med17] (Medtronic, Dublin, Ireland), a chest
strap for physiological monitoring, and Intraface [DlT15], a facial feature tracking software
for videos captured by a webcam (Logitech Quickcam Vision Pro, Apples, Switzerland)
on the desk. From the sensors, features like Heart Rate Variability, Respiration Rate, Head
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Table 3.1: Scene Control Server Commands

Command Description JSON Example

On
Turns Mediated Atmospheres on { type: "ON", name: null , id: -1 }

Off
Turns Mediated Atmopsheres off { type: "OFF", name: null , id: -1 }

Ping
Gets the current scene in Mediated
Atmospheres { type: "PING", name: null , id: -1 }

Switch Scene
Transforms Mediated Atmospheres
into the specified scene { type: "SCENE", name: scene_name ,

id: scene_id }

Orientation, and Facial Expression are extracted and used to compute real-time focus and
relaxation score of the occupant. As described in Section 3.4, additional features from a
Muse [Int17] (InteraXon, Toronto, Canada) wearable EEG Headband were added within
this work.

3.2 Smartphone Control

The smartphone application was developed for Android-based mobile devices using the
Android SDK 7.0 (API level 24). It communicates with the Scene Control Server using
the Websocket API, and is connected to the Scene Library via the Android AWS Mobile
SDK for fetching scene information. Therefore, a DynamoDBWrapper, initialized with an
instance of AmazonDynamoDBClient, is used to map a client-side class to the database.
For the Scene Library, the mapping class maps each item of the database to a Scene Java
object that contains each attributes of the table. In order to establish such a mapping,
DynamoDB defines annotations to identify table properties, such as table name, table
keys, and attributes. Listing C.1 sketches how to create a DynamoDB database client in
Android and how to retrieve all scenes by performing a scan on the Scene Library.

The smartphone application has a straightforward and easy to handle WYSIWYG
(“What You See Is What You Get”) user interface, allowing users to filter the available
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Table 3.2: Feature range of agents. x = available, – = not available.

Agent

Feature / Action Smartphone Basic
Voice

Advanced
Voice

Advanced
Text

Basic Features

Turn on/off
Turns all of the room’s output modalities on/off

x x x x

List scenes
Lists a subset of available scenes to the user

x x x x

Current scene
Tells user the current scene’s name

x x x x

Switch scene [name]
Changes scene based on a descriptive name

x x x x

Advanced Features

Switch scene [properties]
Changes scene based on their properties
(color temperature, brightness, etc.)

x – x x

Switch scene [comparison]
Changes scene based on comparison
with current scene (warmer, brighter, etc.)

x – x x

Switch scene [keywords]
Changes scene based on keywords
characterizing the scene content

– – x x

Context-awareness
Information about occupant,
and about previous interactions

– – x x

Recommend scene [weather]
Changes scene based on
current weather information

– – x x

Recommend scene [time]
Changes scene based on current time of day

– – x x

Recommend scene [mental state]
Changes scene based on desired mental state of
occupant (focus/relaxed)

– – x x

Visual Features

Scene Preview
Displays a preview image of the scene

x – – –
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Figure 3.5: Scene Model User Interface. Visualization of personalized scene model with
Focus and Relax coordinates assigned to each scene.

scenes by their properties using sliders (see Figure 3.6), see preview images for each scene,
and change the environment by selecting a scene. An overview of features available in
the smartphone app is listed in Table 3.2.

3.3 Smart Agents

All agents were implemented using API.AI 2, a platform for building conversational
agents for different applications [API17c]. As sketched in Figure 3.7, it uses Intents for
representing the mapping between the User Input and the Action that should be performed
by the system. API.AI furthermore provides a fulfillment service which allows to connect
the agent to a webhook, that is being executed if an intent was triggered. In this work,
a Node.js based webhook implementation was used to perform further logic, to create
more diversified agent responses, to connect to external APIs, and to communicate with
Mediated Atmospheres. The agents were first developed and tested locally using ngrok 3

which creates a secure HTTPS connection to a local webserver in order to fulfill webhooks

2https://api.ai
3https://ngrok.com

https://api.ai
https://ngrok.com
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(a) No filter (b) Very cold scenes (c) Very warm, very dark
and khaki scenes

Figure 3.6: User interface of the Smartphone Application. Adjustable sliders to filter
scenes for Mediated Atmospheres

locally. The final version was then deployed to the Google Cloud Platform 4.

The agent designed in API.AI can be integrated into different platforms, such as Actions
on Google, Facebook Messenger, Slack, Twitter, Skype, or Microsoft Cortana [API17b]. For the
voice agents, Actions on Google was used. Therefore, API.AI wraps the functionality of the
Google Actions SDK and provides additional features, such as a graphical user interface,
natural language understanding, and machine learning [oG17a]. Integrating the agent
into Actions on Google allows to deploy it onto Google Home, a wireless smart speaker
running the Google Assistant, an intelligent personal assistant designed to engage the user
in a two-way conversation [Pic16]. Because the Google Assistant runs one built-in and
multiple third-party agents, the user has to invoke one particular agent either by Name
Invocation, like “Okay Google, let me talk to {agent name}”, or by Deep Link Invocation, like

“Okay Google, tell {agent name} to {specific action}”. To facilitate a differentiation between
the built-in actions and the actions of the Mediated Atmospheres agents, a different female
voice was used for the agents’ text-to-speech engine, recommended for news, education,
and game applications [oG17b].

The text agent was integrated as a chat bot into the Facebook Messenger plat-
form [Ros16]. The API.AI agent is connected to a Facebook App hosted by a Facebook

4https://cloud.google.com

https://cloud.google.com
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User App / Device API.AI Platform Fulfillment Service

Webhook
Input methods

Output methods

Query

Actionable Data Intent Node.js

External APIs

Mediated
Atmospheres

Figure 3.7: Top-level description of agent implementation. The API.AI platform
processes user input, maps it to intents and performs corresponding actions. Via
Webhook, it is connected to external services and Mediated Atmospheres.

output.switch_scene.keyword

Scene Library

query

len(result) == 0

len(result) == 1

len(result) > 1

Switch to a 
{keyword} scene.

Sorry, I couldn‘t find a {keyword}
scene. Do you want to try 

another one?

Taking you to 
{scene_name}!

Here‘s a 
{keyword} scene.

Yes

No

output.switch_scene.yes

output.switch_scene.no
Switch scene

Switch scenePick random 
scene from results

[scene]

Alright, I'm 
here if you need 

anything.

Which one
do you want to 

pick?

[waiting_command]

[scene]

Figure 3.8: Flow chart of scene switching dialog. The dialog is triggered when the user
wants to switch to a scene based on a keyword. Red – Invoked action; Purple – System
function; Blue – Current context; Orange – User Input; Green – Agent response.

Page. This allows the user to directly text the agent with the desired action, without any
additional invocation. In order to make the agent more engaging, emojis were included
into its text responses.

3.3.1 Basic Agent

This voice agent was designed to cover the basic requirements of an agent for the smart
office prototype, like turning the room on/off, and switching scenes. The whole list of
features is listed in Table 3.2. The Basic Voice Agent is not context-aware, which means
that it has no information about the users’ preferences, or if the current user has been in
the office before. Therefore, it always offers to give an introduction about the features
every time an action was invoked. The basic agent is non-conversational, meaning that
the interaction with the user is based on a simple Request – Action scheme. Therefore, it
ends the conversation after successfully receiving a command rather than engaging the
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Figure 3.9: Example dialog of Advanced Text Agent. The text agent is embedded into
Facebook Messenger and can be accessed via website or Facebook Messenger app.

user in a dialog. As the agent has no information about scenes, users have to directly tell
the agent which scene to switch to using the scene’s descriptive name, either by having
prior knowledge about certain scenes, or by asking the agent to list a subset of scenes.

3.3.2 Advanced Voice and Text Agents

The advanced agents exceed the basic agent in terms of both feature range (see Table 3.2),
and context-awareness. Figures 3.8 shows an example flow chart between user and
agent and possible responses, depending on the users’ input. Further flow charts are
sketched in C.2. The advanced agents are implemented as conversational agents and
incarnate a personal assistant for the smart office. Therefore, they are talking about
themselves in first person and are referring to the occupants by their name. This allows
the agents to remember previous interactions with users and hence skip the introduction
procedure if they are already familiar with the system. As shown in an example dialog in
Figure 3.9, both advanced agents offer a wider range of responses to hold the conversation,
depending on the current context. For example, different responses are provided if users
are leaving the room at the end of the day, or just to have a break, like having lunch.

Because both advanced agents have information about the properties of scenes, users
can not only switch to a scene by specifying its descriptive name, but are also able to select
scenes by more abstract commands, like “Can you switch to a city/nature scene?”, or “Can
you switch to a bright scene?”. It is further possible to to combine scene properties, like
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Figure 3.10: Color temperature of natural light. Depending on the current time of day,
the color temperature of natural light can range between 2, 000 K and 15, 000 K [Lum13].

“Take me to a warm and bright outdoors scene”, or to switch to a scene with properties
relative to the current scene, like “Switch to a warmer/colder/brighter/darker scene”.

However, these features are also more or less present in the smartphone application,
and still require the user to map his or her scene expectation to the different properties.
For that reason, the agents are also capable of recommending scenes based on the current
context, or the user’s preferences, such as:

• Weather: Recommending a scene according to the current weather is based on
the mapping of real-time weather information to scene properties as described
in Table 3.3. The general weather situation was mapped to the scene’s color
temperature to approximate the current lighting situation outside. Because high
levels of humidity were found to be a key factor for concentration loss and
sleepiness [How84], the relative air humidity was linearly mapped to the brightness,
with high levels of humidity resulting in scenes with high brightness.

• Time: Recommending a scene according to the current time is based on the change
of the natural light’s color temperature over the day (see Figure 3.10) [Lum13].
Therefore, warmer scenes are recommended in the afternoon and evening, and
scenes with colder or neutral color temperature in the morning and noon in order
to match the human circadian rhythm [Duf09].

• Desired mental state: The advanced agents are aware of the current occupant,
allowing them to recommend scenes to based on his or her preferences, like scenes
that help users being more focused or relaxed. As described in Section 3.1.1, users
can create their own models that can be then accessed by the agent.
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Table 3.3: Mapping of weather information and scene properties

Weather information Scene property

Weather summary:
clear
(partly) cloudy
rain, snow, fog

Color temperature:
warm
neutral
cold

Relative humidity Brightness

Temperature:
> 25 ◦C
< 0 ◦C

Keywords:
summer
winter

3.4 Brain Computer Interface

3.4.1 EEG Basics

The electroencephalogram (EEG) is a noninvasive method for monitoring and analyzing
the brain activity. Traditionally, EEG is a standard method in neuroscience and cognitive
science, with clinical applications for sleep and memory research, epilepsy monitoring,
or attention deficit hyperactivity disorder (ADHD) [Tha13]. It is usually acquired with
electrodes placed along the scalp and measures the activity of the brain as oscillations of
electrical potential in the cortex. The electrodes are placed according to the 10-20 system,
a standardized method for describing and applying electrodes on the scalp [Kle99].

The EEG consists of a variety of frequencies that are associated with different mental
states and are traditionally divided into five frequency bands [Cla98]. Table 3.4 shows the
division used by the Muse headband with its corresponding frequency ranges. Example
signals for each frequency band are visualized in Figure 3.11. Alpha waves occur in the
EEG of almost all healthy persons when they are awake but in a quiet, resting mental
state and when their eyes are closed, whereas theta waves can be observed in the EEG
of adults during phases of drowsiness and hypnagogia. As soon as the person focuses
attention to a specific task or mental activity, synchronous alpha waves are replaced
by beta and gamma waves of higher frequency. Beta waves occur when performing
basic cognitive tasks, whereas gamma waves especially arise during phases of high
level mental processing like binding of senses or being focused. The EEG signal is
additionally overlaid by both high frequency and low frequency artifacts. Whereas high
frequency noise occurs due to thermal noise and power frequency noise (at 50 Hz or



3.4. BRAIN COMPUTER INTERFACE 21

0 0.2 0.4
Time [s]

0.6 0.8 1

(a) Delta waves

0 0.2 0.4
Time [s]

0.6 0.8 1

(b) Theta waves

0 0.2 0.4
Time [s]

0.6 0.8 1

(c) Alpha waves

0 0.2 0.4
Time [s]

0.6 0.8 1

(d) Beta waves

0 0.2 0.4
Time [s]

0.6 0.8 1

(e) Gamma waves

Figure 3.11: EEG waveforms. Example signals with durations of 1 s for each frequency
band.

Table 3.4: EEG frequency bands provided by Muse headband [Int17].

Name Frequency range Associated Mental State
[Tha13, Row85, Sch77]

δ (Delta) 1 - 4 Hz Deep sleep

θ (Theta) 4 - 8 Hz Drowsiness, hypnagogia

α (Alpha) 7.5 - 13 Hz Awake, but quiet and relaxed

β (Beta) 13 - 30 Hz Basic cognitive tasks

γ (Gamma) 30 - 44 Hz
High levels of mental processing,
binding of senses

60 Hz, respectively), low frequency noise mainly origins from eye movement and muscle
artifacts [Tha13].

3.4.2 Data Acquisition

The EEG data is recorded using a Muse Headband (InteraXon Inc., Toronto, Canada) [Int17] 5.
It is a commercially available and portable EEG system with four active electrodes (de-
noted as channels 1-4) located at 10-20 positions TP9, AF7, AF8, and TP10, and a common
mode reference electrode at Fpz, which also acts as driven right leg (see Figure 3.12).

The headband initially oversamples the EEG signal at a sampling rate of 12 kHz and
subsequently downsamples it to yield an output sampling rate of 220 Hz. An on-board
digital signal processor (DSP) performs noise filtering operations and applies Fast Fourier

5http://www.choosemuse.com

http://www.choosemuse.com
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Figure 3.12: Electrode positioning of Muse headband. Electrodes are placed according
to the 10-20 system. Green: Channel electrodes; Red: Reference electrode.

Transform (FFT) on the raw signal using a 256-sample window with an overlap of 90 %,
resulting in an output sampling rate of 10 Hz [Int17]. Relative frequency band powers are
computed in hardware from raw FFT values as percentages of linear-scale band powers
in each frequency band (see Table 3.4).

The acquired data are streamed to a computer running an instance of the MuseIO
application included in the SDK 6. It handles the communication with the Muse headband
and passes EEG data, formatted as Open Sound Control (OSC) messages, to a client
via User Datagram Protocol (UDP). In this work, a Score Processor, implemented in
Python, acts as client and receives the data from the MuseIO application for further
data processing. The final score values are transmitted to the Sensor Collection Server of
Mediated Atmospheres via OSC messages. Additionally, a smartphone application was
developed for both data acquisition and processing, and the visualization of the raw
EEG signals as well as the final Focus and Relax scores. The smartphone application also
transmitted the score values to the Sensor Collection Server, as sketched in Figure 3.13.

3.4.3 Data Processing

Live data received from the Muse headband were first preprocessed before different
methods of computing Focus and Relax scores (a naive as well as entropy-based measures)
were performed.

6http://developer.choosemuse.com/research-tools/museio

http://developer.choosemuse.com/research-tools/museio


3.4. BRAIN COMPUTER INTERFACE 23

Mediated Atmospheres

Sensor 
Collection Server

Scene Library

Scene
Control Server

Muse Headband

Bluetooth 
LE

Smartphone
Application

Computer

OSC

OSC

UDP
Muse.IO

Score 
Processor
(Python)

Score 
Processor

(Java)

Figure 3.13: EEG Data Acquisition Pipeline. The raw signals from the Muse headband
can either be streamed to a computer or a smartphone application. The computed score
values are then transmitted to the Mediated Atmospheres framework.

Preprocessing

Only relative band power samples of channels 1 and 4 (see Figure 3.12) were considered
and dropped if the signal quality indicator (one integer value per channel, provided by
the headband) was not sufficient. Histograms were created for each frequency band
and each channel, respectively. They were updated with each valid sample being added
using the P2Algorithm [Jai85], which allows a dynamic calculation of percentiles and
histograms without having to store all observations. Samples falling between the 10th
and the 90th percentiles of the histogram were normalized between 0 and 1, whereas
other values were considered as outliers and therefore rejected. The subsequent score
computations were performed on the mean value of the last 10 samples (further denoted
as processed samples), hence corresponding to a score update rate of 1 Hz.

Naive score computation

The naive approach for the computation of Focus and Relax scores was purely based on
the relative alpha and gamma band powers of the recorded EEG data. Therefore, the
Naive Relax score was derived from the alpha band by averaging the processed samples for
channel 1 and 4. Similarly, the Naive Focus score corresponded to the processed samples in
the gamma band, averaged over the two channels. Finally, a 20-point-moving-average
low-pass filter was applied to the output values in order to filter out short-time mental
state fluctuations.
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Entropy-based score computation

In general, entropy serves as a measure for randomness or uncertainty of an information
source [Sha48] and is very effective in detecting nonstationary events like peaks and
bursts [Ton03]. Hence, in this probabilistic concept the EEG signal was considered as the
result of a random process. The processed samples for each channel were interpreted as
random variables pi, i ∈ {δ, θ, α, β, γ} emitted by an information source and satisfying the
conditions pi ≥ 0 and

∑
i pi = 1,∀i.

Normally, an EEG signal with relatively equal band power distribution has a high
degree of randomness and thus exhibits a high entropy. In comparison, an EEG signal
with high relative band power in one specific frequency band indicates a decrease of
randomness in the signal and therefore results in a lower entropy [Kar10]. Leveraging
this, the Relax score computation was performed using processed samples from alpha and
theta frequency bands, whereas gamma and beta band samples were used for the Focus
score, respectively.

The Shannon entropy HSh [Sha48] can be computed by:

HSh = −
∑

i

pi · log2(pi). (3.1)

Furthermore, other entropy-related measures were tested for the quantification of
being focused or relaxed. A generalization of the Shannon entropy is the Rényi entropy
HRe [Ren61] of order α, where α ≥ 0 and α , 1. It is defined as:

HRe =
1

1 − α
· log2

∑
i

pαi

 . (3.2)

Tsallis entropy HTs [Tsa88] is a non-logarithmic parameterized entropy measure defined
as

HTs =
1

α − 1
·

∑
i

(
pi − pαi

)
. (3.3)

In this work, HRe and HTs entropies of order α = 3 were used because they have shown
to work well on EEG signals with short-range rhythms [Kar10].

The Kullback-Leibler divergence DKL [Kul51] serves as a measure of the difference
between two probability density functions p and q and is defined by
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DKL(p||q) =
∑

i

p(i) · log
p(i)
q(i)

, (3.4)

where p and q refer to the processed samples of the alpha and theta bands for the Relax score
and to the processed samples of the gamma and beta bands for the Focus score, respectively.

After computing the entropy measures, they were normalized between 0 and 1
(denoted as Hnorm). As an increase in being focused or relaxed yields to an decrease of
entropy and vice versa, the output values were computed by subtracting Hnorm from 1. In
the same way as for the Naive score computation, the entropy-based score values were
finally obtained by applying a 20-point-moving-average filter to the output values.
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Chapter 4

Evaluation

The goal of this work was to explore the application of smart agents and brain computer
interfaces for the interaction with a smart office prototype. Therefore, two experiments
were performed individually. In the first experiment (see Section 4.1), different smart
agents were analyzed in order to assess whether they are superior to conventional
methods, like a smartphone-based graphical user interface (GUI), or a non-conversational
voice user interface (VUI). In the second experiment (see Section 4.2), different EEG
algorithms were evaluated with regard to their suitability for providing a real-time
mental state recognition. Information obtained from the occupants’ EEG are used as
additional input for the Sensor Collection Server for a better estimation of the current Focus
and Relax scores.

4.1 Agents

4.1.1 Experiment Design

The population of interest for Mediated Atmospheres is office workers. Therefore, uni-
versity students, researchers, and local office workers were recruited as subjects for the
experiment. The panel consists of N = 33 people (61 % Female), with an average age of
27.5± 3.5 (M ± SD). 52 % of the participants named English as their native language. The
experiment consists of two parts: Agent Exploration and Task Fulfillment.

27
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Agent Exploration

For this part of the experiment, participants interacted with all agents (Smartphone, Basic
Voice, Advanced Voice, Advanced Text) in randomized order. For every agent, subjects
were asked to fulfill the following list of tasks using all possible agent features, with the
task order being randomized within the agents:

1. Turn Mediated Atmospheres off because you’re about to get lunch, followed by Turn
Mediated Atmospheres on after returning from lunch

2. Find a scene that has warm color temperature

3. Find an indoors scene

4. Find a scene that helps you focus

5. Find a scene that matches the current weather

Primarily, the Agent Exploration part should make the subjects familiar with the usage
of each agent and allow them to explore the range of features. Furthermore, the users’
subjective responses were collected in a survey to measure overall usability, perception of
intelligence and engagement, as well as perception of trust and control. These measures
are explained in detail in Section 4.1.3.

Task Fulfillment

After the first part, the participants should have the same knowledge on how to
communicate with every agent, which allows to measure quantitative information about
the agent interaction. Each subject was assigned to one randomly selected agent, with
nine subjects being assigned to the Advanced Voice Agent, eight subjects being assigned to
each of the other agents. For the experiment, they were asked to fulfill the following list
of tasks utilizing the agent’s features in a randomized order:

1. Find a city scene

2. Find a scene that shows mountains

3. Find a bright and blue scene

4. Find a scene that is warm and shows a forest

5. Find a scene that matches the current time of day

6. Find a scene that helps you relax after a rough day
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The tasks were selected to have an equal number of tasks for the different features
listed in Table 3.2, with (1) and (2) corresponding to Switch scene [keywords], (3) and (4)
corresponding to Switch scene [properties], and (5) and (6) corresponding to Recommend
scene [time] / [mental state], respectively. For each task, objective measures like fulfillment
time, number of interactions, and recognition rate were collected. These measures are
explained in detail in Section 4.1.4.

4.1.2 Procedure

Both parts of the experiment were performed in the Mediated Atmospheres office space
and consecutively in one sitting. Each sitting began with a tutorial, during which the
study personnel first described the concept of Mediated Atmospheres and its capability of
transforming the appearance of the office space using different scenes. Furthermore, the
study protocol was explained, followed by an introduction into the different agents, their
range of features, and the way of interacting with them. Subsequently, the participants
were left alone in the workspace, and a website showing the task list for the currently
selected agent guided them through the first part of the experiment. After completing
all tasks with one agent, subjects were asked to answer give their feedback in form of a
questionnaire and advance with the next agent. Both the order of agents, as well as the
order of tasks for every agent were randomized to avoid possible adaption effects. After
exploring all agents and giving feedback, the participants were asked to rank the agents
according to their preferences.

For the Task Fulfillment part, the subjects were left alone in the workspace, again with a
website showing a list of tasks to fulfill with the agent assigned to them. The participants
were asked to press a button once they successfully accomplished a task to advance with
the next one in order to precisely collect task fulfillment times.

4.1.3 Subjective Measures

Overall Usability

For a subjective measure of the usability for each agent, the System Usability Scale
(SUS) [Bro96] was used. It consists of a 10 item questionnaire with a five-level Likert
scale (1 = Strongly Disagree, 5 = Strongly Agree), and yields a high-level subjective view
of the usability as a linear scale of 0 − 100. Based on research, a SUS score of above 68
would be considered above average, whereas a SUS score of below 68 would be considered
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as below average [Bro96]. At the end of Part I, participants were asked to directly compare
the agents by ranking them according to their preference, with 1 being the most favorite,
and 4 being the least favorite agent.

Intelligence and Engagement

The perceived levels of intelligence and engagement were recorded using the questions
listed in Section B.1. Additionally, the reasons why the agent were found to be (not)
intelligent or engaging, respectively, were of interest.

Trust and Control

As some of the agents recommend scenes based on a certain context, and therefore
autonomously make decisions, the perception of trust in the system, and the feeling
of being in control, can be affected by the rate of automation error or misautomation.
Therefore, the perception of trust and control towards the different agents was measured
with a survey proposed by Hossain et al. [Hos13], and adapted to fit the setup of this
work. The survey is listed in Section B.2, consisting of an equal number of questions
having a negative and positive implication, respectively.

4.1.4 Objective Measures

Fulfillment Time

The fulfillment time for each task was computed as the absolute time for the participants
to successfully accomplish one task, i.e. finding a scene that matches the given task in
their opinion.

Number of Interactions

For the voice and text agents, the number of interactions was computed by counting how
many times the user invoked one of the agents’ actions in Table 3.2. For the Smartphone
Application, the number of interactions was computed by counting how many times the
user pressed the Search for scenes button per task.
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Figure 4.1: Subject wearing a Muse headband during the study.

Recognition Rate

For the voice and text agents, the recognition rate per agent and task was defined as the
number of actions correctly mapped to the specific actions, relative to the total number of
interactions. For the Smartphone Application, the recognition rate was assumed to be 100 %
as the user directly changes the scene parameters without any further level of abstraction.

4.2 Brain Computer Interface

4.2.1 Experiment Design

The panel for the evaluation of the BCI consists of N = 11 people, with an average age
of 28.1 ± 4.6 (M ± SD). The study was conducted in the Mediated Atmospheres office
space. During the procedure, the subjects wore the Muse headband as proposed by
the manufacturer (as shown in Figure 4.1). The data were transmitted to a computer
and processed by the Score Processor. The study procedure is listed in Figure 4.2 and
consisted of multiple tasks. Each of them were associated with one of three possible
categories, corresponding to different mental states: Neutral, Focus, Relax. The phases
labeled as Neutral were used as reference measurements with no specific instructions
given, except not to close their eyes. During the phases labeled as Focus, the subjects were
asked to perform different tasks that were all supposed to generate high levels of mental



32 CHAPTER 4. EVALUATION

Tutorial Intro OutroMental
Arithmetic

Pause
(nature scene) Dictation Pause

(nature scene)
Where‘s
Waldo

Pause
(nature scene)

Figure 4.2: Study protocol for EEG data acquisition. Each task has a duration of 3
minutes; Red tasks are assigned to the Focus category, Green tasks to the Relax category.

processing and binding different senses [Cha14, Fer95]. During the phases labeled as
Relax, the subjects were asked to relax themselves. Additionally, they were able to choose
between different nature scenes (e.g. beach, forest, mountain) which had been proven to
have a positive effect on achieving a relaxed mental state [Ulr81]. The selected scenes
were then displayed to the subjects using a laptop computer.

4.2.2 Measures

The acquired data for each measure were evaluated in order to find the one with best
performance. Every data sample was labeled with the associated task during which it
was recorded (Neutral, Focus, Relax).

The classification was performed by estimating the probability distributions for each
score and measure. Therefore, histograms were computed iteratively for each measure
and score, respectively, and were updated in real-time with every new sample using the
P2-Algorithm. Subsequently, a binary classification (Focused / not Focused for the Focus
score and Relaxed / not Relaxed for the Relax score, respectively) was applied using a
quantile-based threshold. As this method only relied on the data of the subject itself and
hence did not require a previously trained classification model, a separation into training
and test sets was not necessary and thus, no cross-validation had to be performed.

For determining the best performing measure and the optimal quantile, a Receiver
Operating Characteristic (ROC) curve was generated for every measure by computing
sensitivity and specificity for quantiles in the interval [0.05, 0.95] with a step size of 0.05.
The optimal quantiles for each measure were obtained by selecting the quantile value on
the ROC curve with the smallest Euclidean distance to the optimal classifier (1.0 True
Positive Rate and 0.0 False Positive Rate). The best measure for each score was determined
by selecting the score measure corresponding to the ROC curve with the highest Area
Under the Curve (AUC) value.



Chapter 5

Results

5.1 Agents

5.1.1 Subjective Measures

Overall Usability

As visible from Figure 5.1, the Smartphone Application achieved on average the highest
System Usability Scale (SUS) score (79.8 ± 9.9 (M ± SD)), followed by the Advanced Text
Agent (76.3 ± 10.0), the Advanced Voice Agent (61.3 ± 10.2), and the Basic Voice Agent
(47.0 ± 12.0). Only the Smartphone Application and the Advanced Text Agent have achieved
SUS scores above 68, which is considered as being above average. Furthermore, the
Advanced Voice Agent has achieved a significantly higher SUS score for non-native speaker
(66.9 ± 9.6) than for native speaker (56.0 ± 10.0). For subjects more than 30 years old,
both advanced agents yielded almost the same SUS score, with the Advanced Voice Agent
achieving a slightly higher SUS score than the Advanced Text Agent (70.0±5.0 vs 68.3±12.1).
For subjects less than 30 years old, the Advanced Text Agent even achieved a higher SUS
score than the Smartphone Application (79.8 ± 8.3 vs 78.8 ± 10.7).

Results of the participants’ ranking of the agents are visualized in Figure 5.2. It shows
that, on average, the Smartphone Application has achieved the best ranking (1.88 ± 0.42
(M ± SD)), followed by the Advanced Text Agent (2.21 ± 0.51), the Advanced Voice Agent
(2.61 ± 0.49) and the Basic Voice Agent (3.24 ± 0.55). Although the average rating yields
the same order among native and non-native speaker, a clear difference can be observed
between both groups. Non-native speaker tend to have a clearer aversion towards the
Basic Voice Agent than native speaker, where the average rankings of the voice and text
agents are closer together.
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Figure 5.1: Bar charts of System Usability Scale (SUS). The bold, horizontal line
represents a SUS score of 68. Error bars have the length of one standard deviation.
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Figure 5.2: Bar charts for the Agent Ranking. Error bars have the length of one standard
deviation.
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Figure 5.3: Bar charts for User Expectations. A score greater than the bold, horizontal
line indicates that the agent exceeded the expectations, a smaller score indicates that the
agent did not meet them. Error bars have the length of one standard deviation.
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Figure 5.4: Bar charts for Context-Awareness. Scores represent the perceived levels of
context-awareness of the agents. Error bars have the length of one standard deviation.
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Figure 5.5: Bar charts for Intelligence. Scores represent the perceived levels of intelli-
gence of the agents. Error bars have the length of one standard deviation.

Intelligence and Engagement

Figure 5.3 shows the response to the question whether the agents met the expectations of
the the participants. It suggests that for both native and non-native speaker, the Basic
Voice Agent is the only condition where the expectations were not met, i.e. where a scoring
smaller than 3.0 was achieved. All other systems met the expectations of the participants
(Advanced Voice Agent) or exceeded them (Smartphone Application and Advanced Text Agent).
For participants more than 30 years old, the Advanced Voice Agent also did not meet their
expectations, whereas the agent exceeded the expectations of participants less than 30
years old.

The perceived levels of context-awareness are visualized in Figure 5.4, indicating
that both advanced agents offered the highest context-awareness. Results also yield that
native speaker found the Basic Voice Agent to be more context-aware than the Smartphone,
whereas it was the other way around for non-native speaker.

Figures 5.5 and 5.6 show the perceived levels of intelligence and engagement. Both the
Advanced Text Agent and the Advanced Text Agent achieved the highest levels of intelligence
and engagement, with a clear difference between native and non-native speaker.
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Figure 5.6: Bar charts for Engagement. Scores represent the perceived levels of engage-
ment of the agents. Error bars have the length of one standard deviation.

Table 5.1: Correlation between positive and negative Trust and Control implications.
Pearson’s correlation coefficient (PCC) and p-value (p). Significant correlations (p < 0.05)
are highlighted.

Smartphone Basic Voice Advanced Voice Advanced Text

PCC -0.711 -0.503 -0.635 -0.273

p 3.54 · 10−6 2.83 · 10−3 7.15 · 10−5 0.12

Trust and Control

The results of the perceived levels of trust and control for the agents are listed in Table 5.2.
Overall, the Smartphone Application achieved the highest levels of trust and control,
followed by the Advanced Text Agent, the Advanced Voice Agent and the Basic Voice Agent.
Whereas the difference between native and non-native speaker is relatively low for the
Smartphone Application and the Basic Voice Agent, non-native speaker reported a higher
level of positive implications the Advanced Text Agent. Similarly, the Advanced Voice Agent
shows higher positive and lower negative implications for trust and control among non-
native speakers than for native speakers. Furthermore, Table 5.1 indicates a significant
correlation (p < 0.05) between positive and negative trust and control implications for all
conditions except the Advanced Text Agent.
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Table 5.2: Perceived levels of Trust and Control. Mean (M) and standard deviation
(SD). Significant differences between native and non-native speaker are highlighted.

Smartphone Basic Voice Advanced Voice Advanced Text

M SD M SD M SD M SD

Positive Implications
- All participants
- Native Speaker
- Non-native Speaker

4.15
4.22
4.08

0.91
0.85
0.97

2.78
2.74
2.83

1.13
1.12
1.14

3.20
2.91
3.50

0.85
0.82
0.78

3.92
3.66
4.19

0.90
1.03
0.62

Negative Implications
- All participants
- Native Speaker
- Non-native Speaker

1.42
1.35
1.48

0.78
0.61
0.93

2.34
2.33
2.35

1.16
1.20
1.12

2.15
2.31
1.98

0.87
0.82
0.89

1.63
1.66
1.59

0.80
0.86
0.73

5.1.2 Objective Measures

Fulfillment Time

Fulfillment times for the tasks in Part II are visualized as box plots in Figure 5.7. The
mean fulfillment times are further listed in Table 5.3. Results yield that the fastest
accomplishment of tasks was on average performed with the Smartphone Application, and
that the fulfillment times show lower variance compared to the other agents. With the
Advanced Text Agent and the Advanced Voice Agent, users needed 1.2 and 1.6 times longer,
respectively, whereas the Basic Voice Agent had an almost twice as high mean fulfillment
time than the Smartphone Application.

Furthermore, results show that participants using one of the advanced agents had
trouble finding a “warm forest scene” (2.4 and 1.9 times slower, compared to using the
smartphone), whereas participants using the Basic Voice Agent had particularly difficulties
finding a “scene that shows mountains” (3.4 times slower). It is also visible that advanced
agents are more susceptible to outliers than other agents. However, on average, three
out of the six tasks were performed faster with the Advanced Text Agent than with the
Smartphone Application, and one task was performed faster with the Advanced Voice Agent.

Number of Interactions

Figure 5.8 and Table 5.4 show the number of interactions participants needed to fulfill
a certain task. In total, the Advanced Voice and Advanced Text agents required 9 % and
25 % less interactions to fulfill the same tasks than the Smartphone Application, whereas
participants using the Basic Voice Agent required 31 % more interactions. Results also yield
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(d) Advanced Text

Figure 5.7: Box plots of Fulfillment Time per task during Part II. Central mark -
Median; Box - 25th and 75th percentile; Whiskers - Minimum and Maximum which are
not considered outliers; Dot - Outliers.

Table 5.3: Mean Fulfillment Time per task and agent during Part II. Tasks, that were on
average fulfilled faster by an agent than with the Smartphone Application, are highlighted.

Task Smartphone Basic Voice Advanced Voice Advanced Text

Bright and Blue 20.5 39.0 38.9 36.3
City 26.6 35.4 26.0 16.6
Current Time 27.6 47.4 39.4 37.2
Mountains 28.1 96.0 35.0 27.0
Relax 26.8 51.8 43.9 24.8
Warm Forest 25.5 37.6 59.8 48.4

Total 155.1 307.2 243.0 190.3

that the variance in the necessary interactions is higher for both voice agents compared
to the Advanced Text Agent and the Smartphone Application.

Additionally, the advanced agents required less interactions for five and four out of
six tasks, respectively, and the Basic Voice Agent still required less interactions for two of
the six tasks.

Recognition Rate

The mean recognition rates for each task and agent are listed in Table 5.5. The highest
recognition rate was achieved by the Advanced Text Agent, followed by the Advanced Voice
Agent and the Basic Voice Agent. Whereas finding a “city scene” achieved high recognition
rates throughout all agents, commands leading to finding a “mountain scene” were well
recognized by both advanced agents (96.9 % and 88.9 %, respectively), but very poorly
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Figure 5.8: Box plots of Number of Interactions per task during Part II. Central mark -
Median; Box - 25th and 75th percentile; Whiskers - Minimum and Maximum which are
not considered outliers; Dot - Outliers.

Table 5.4: Number of interactions per task and agent during Part II. Tasks that required
on average less interactions using an agent than using the Smartphone Application are
highlighted.

Task Smartphone Basic Voice Advanced Voice Advanced Text
M SD M SD M SD M SD

Bright and Blue 1.75 0.66 2.63 1.22 1.67 0.67 1.88 1.05
City 2.63 0.99 2.38 1.32 2.00 1.25 1.50 0.71
Current Time 2.50 0.87 2.75 1.48 1.89 0.99 1.88 1.17
Mountains 3.50 1.00 6.38 4.06 2.22 1.69 1.75 0.97
Relax 3.00 0.71 2.88 1.54 2.44 1.57 1.75 0.97
Warm Forest 2.13 0.78 3.38 2.00 3.89 2.77 2.88 1.36

Total 15.50 2.29 20.38 5.98 14.11 5.63 11.63 2.83

by the Basic Voice Agent (55.1 %). In contrast, the Basic Voice Agent achieved a higher
recognition rate for the task of finding a “warm forest scene” (81.3 %) than the advanced
agents (74.6 % and 71.0 %, respectively). Also, the Advanced Voice Agent had difficulties
recognizing commands to find a “bright and blue scene”, compared to the Advanced Text
Agent (68.4 % vs. 89.6 %).

5.2 Brain Computer Interface

Focus and Relax scores recorded for one subject while performing the study protocol are
visualized in Figure 5.9. The ROC curves for the different measures of Focus and Relax
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Table 5.5: Recognition Rate per task and agent during Part II. Minimum and maximum
recognition rates for each agent are highlighted.

Task Smartphone Basic Voice Advanced Voice Advanced Text
M SD M SD M SD M SD

Bright and Blue 100.0 0.0 71.9 23.3 68.4 28.9 89.6 18.5
City 100.0 0.0 87.5 25.0 88.1 23.1 93.8 16.5
Current Time 100.0 0.0 64.5 28.7 82.4 26.8 78.1 30.3
Mountains 100.0 0.0 55.1 20.8 88.9 17.5 96.9 8.3
Relax 100.0 0.0 66.6 27.7 74.1 30.5 96.9 8.3
Warm Forest 100.0 0.0 81.3 24.2 71.0 28.2 74.6 25.2

Mean 100.0 0.0 71.1 12.7 78.1 14.2 88.5 9.27

(a) Focus (b) Relax

Figure 5.9: Course of Focus and Relax score measures. The scores were recorded from
a typical subject during the experiment.

scores are shown in Figure 5.10, with the corresponding AUC values in Table 5.6. ROC
results indicate that the Tsallis-based measure performed best for the Focus score, whereas
the Renyi-based measure performed best for the Relax score. The optimal quantiles
of each measure with their respective sensitivity and specificity are listed in Table 5.7,
suggesting that the Tsallis score measure offers the highest sensitivity for both Relax and
Focus scores, whereas the Renyi measure achieved the highest specificity. Results also
yield that 0.65 is the best performing quantile for the Focus score, compared to 0.55 for
the Relax score.
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(a) Focus (b) Relax

Figure 5.10: ROC curves for Focus and Relax score measures. The best performing
quantile for each measure is denoted by an x.

Table 5.6: Area Under The Curve (AUC) value for each score measure. The highest
AUC values are highlighted.

Measure Focus score Relax score

Naive 0.603 0.622

Shannon 0.624 0.614

Renyi 0.702 0.703

Tsallis 0.723 0.690

KL 0.493 0.493
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Table 5.7: Performance evaluation for each measure. The highest sensitivity and
specificity values are highlighted.

Measure Focus score Relax score

Naive Quantile: 0.55
Sensitivity: 67.7 %
Specificity: 67.5 %

Quantile: 0.50
Sensitivity: 75.4 %
Specificity: 74.4 %

Shannon Quantile: 0.55
Sensitivity: 69.8 %
Specificity: 71.3 %

Quantile: 0.50
Sensitivity: 70.7 %
Specificity: 70.9 %

Renyi Quantile: 0.65
Sensitivity: 79.8 %
Specificity: 82.8 %

Quantile: 0.55
Sensitivity: 79.3 %
Specificity: 80.8 %

Tsallis Quantile: 0.65
Sensitivity: 82.0 %
Specificity: 78.9 %

Quantile: 0.55
Sensitivity: 80.4 %
Specificity: 79.6 %

KL Quantile: 0.50
Sensitivity: 55.3 %
Specificity: 60.0 %

Quantile: 0.50
Sensitivity: 59.1 %
Specificity: 55.4 %
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Chapter 6

Discussion

6.1 Agents

6.1.1 Smartphone Application

As apparent from the study results, the smartphone application as the simplest and most
familiar system was also the most favorable system. It achieved the highest SUS score,
the best overall ranking, and was also the system that exceeded the users’ expectations
the most. They liked the simple, clear and familiar graphical user interface that facilitated
quick and efficient interactions, and especially appreciated the visual preview of scenes.
The system provided a comprehensible mapping of user input to scene output with no
hidden system actions. Therefore, it also achieved the highest perception of trust and
control. On the other hand, the lack of autonomy required users to resolve the tasks and
map their requests to scene properties all by themselves. Accordingly, users reported that
using the smartphone application felt more like just controlling the output modalities of
Mediated Atmospheres rather than having an actual interaction and hence made the office
space appear inanimate and lonely.

On average, the smartphone application had the smallest task fulfillment time and
required the least number of interactions. It outperforms other systems for tasks that
could directly be mapped to the sliders of the user interface, such as finding a bright
and blue or a warm forest scene. Whereas both advanced agents also offer the feature
of filtering scenes based on scene properties, they had trouble correctly mapping a
combination of parameters to the appropriate action.

However, users criticized that adjusting the sliders can be time consuming and not as

45
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Table 6.1: Strengths and Weaknesses for each agent.

Strengths Weaknesses

Smartphone - Quick, familiar interaction
- Predictable actions
- Visual scene preview
- Efficient filtering of scenes

- No hands-free interaction
- No interaction with room
- No autonomy
- Disrupts workflow easy

Basic Voice - Hands-free interaction
- Manageable feature range,

no overtaxing of user

- Rigid, inanimate, time-consuming
interaction

- No intelligence or context-awareness
- Strong familiarity with system required

Advanced Voice - Hands-free interaction
- Engaging, conversational
- Abstract scene description

possible

- Bad smalltalk handling
- Wide gulf of user expectation and

experience
- False recognition increases with

complexity of request

Advanced Text - Fast interaction, especially in
office scenario

- Engaging, conversational
- Abstract scene description

possible
- Narrow gulf of user expectation

and experience

- No hands-free interaction
- Bad smalltalk handling
- False recognition increases with

complexity of request

intuitive for more abstract tasks, like finding a relaxing scene. Additionally, in an office
scenario, users tend to be more distracted, because it disrupts their workflow as they
have to switch from the computer to the smartphone and back.

6.1.2 Basic Voice Agent

In general, the basic agent creating the impression of being very rigid and time consuming,
and often reminded users of talking to a customer service hotline. Furthermore, the
additional problems with voice recognition, causing the user to repeat the same commands
over and over, made them feel uncomfortable when interacting with the agent. Combined



6.1. AGENTS 47

with the missing intelligence and context-awareness, it led to the lowest overall usability,
and also the lowest perceived levels of intelligence and engagement.

However, some users appreciated the limited range of features. This made the basic
agent appear structured and led to predictable results – as long as the voice recognition
worked correctly. The interaction space was basically reduced to asking the agent to list
scenes, and switching to one scene either by its descriptive name or by using the “next
scene” command. Therefore, users were able to accomplish some tasks equally fast or
even faster with the basic agent than with the advanced agents. For example, for the
“Warm Forest” task, they selected a scene based on its descriptive name (e.g. “Forest”),
and then switched to another scene using the “next” command until they found a forest
scene with warm color temperature.

6.1.3 Advanced Voice Agent

Users reported that the advanced voice agent was very friendly and cooperative in
finding a matching scene. The possibility of transforming the workspace using a more
open command list, such as providing a high level description of scenes, or by letting the
agent autonomously recommend scenes, was appreciated throughout all users, and was
often found to be time saving although the net fulfillment time was higher than with the
smartphone application.

In addition, the agent tried to conduct a normal conversation by referring to the
users by their names, using a more informal language, and providing different replies
depending on the current context. During the experiment, some users referred to the
agent as “she” instead of “it”, because it appeared emotional and engaging, and even
made the users laugh occasionally.

However, the SUS score yields that the advanced voice agent was rated worse than
the average score, which was mainly due to the voice recognition. It was reported
as the main bottleneck that impairs the user experience, creating a gulf between the
user expectations towards a seemingly intelligent system, and the inability to correctly
recognize commands such as “find a bright and blue scene”, which was often falsely
recognized as “find a bride and blue scene”. Especially native speaker appear to be
more critical towards voice recognition. As results indicate throughout the experiment,
their judgement is more determined by correct voice recognition and a smooth, natural
conversation than by the actual range of features. Therefore, native speakers rated
the advanced agent more similar to the basic agent, mentioning that the lack of voice
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recognition accuracy made it feel dumb. In contrast, non-native speaker noticed a clear
difference between both voice agents. Moreover, users reported that the interaction over
voice could be time consuming because sometimes it took too long to get a response from
the agent, especially when it did not understand the command.

6.1.4 Advanced Text Agent

Compared to the advanced voice agent, the interaction with the advanced text agent
was perceived to be more smooth and straightforward as the agent instantly provides a
response over text. Similarly, it was on average rated as being more engaging, especially
among native speaker. Users reported that the use of emojis was an effective compensation
for the missing voice interface. Therefore, the text agent achieved the second highest
overall usability and was the only agent with a SUS score greater than the average score.

Both advanced agents required on average less interactions than the smartphone
application and can more easily be integrated into a smart office environment. This allows
users to interact with the agent while performing other tasks in the meantime. Moreover,
the radius of interaction at the workplace is usually more restricted to the computer on
the desk, compared to a smart home scenario. Therefore, it might be easier to interact
with a text agent over the computer by simply switching to the agent’s conversation
window rather than having to speak out loud to a voice agent.

During the experiment, it could be observed that users utilized different wordings
between the two advanced agents. For instance, when trying to find a relaxing scene,
they asked the voice agent “Can you find me a scene that makes me relax?”, whereas they
used more informal and shorter commands when communicating with the text agent, like
“Relaxing scene” or even just “Relax”. Users reported that it felt strange talking to an agent
in such an informal manner, but it did not when they texted the system, since it is also
usual for them to text their friends in the same way. However, participants emphasized
that they were confused by both advanced agents of being conversational on the one
side, but offering only limited understanding for small talk and filler language. While the
experiment was conducted, API.AI released a new feature that allows to integrate several
small talk capabilities into the agent [API17a], which should be added to all agents in
future work in order to improve the user experience.
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6.2 Brain Computer Interface

For the entropy-based measures, input from two adjacent EEG frequency bands (α
and θ for the Relax score, γ and β for the Focus score) were used, whereas the Naive
measure only used the relative band power from the α and γ bands, respectively. Because
the association of certain tasks or mental states with EEG frequency bands are only
considered as guidelines and thus might not completely coincide for every person [Cla98],
using information from two adjacent frequency bands might increase the classification
performance. Additionally, entropy-based approaches for EEG analysis had proven
to achieve better results than solely using the relative frequency band power or ratios
of relative band powers [Tha13]. Therefore, the results indicate that entropy-based
measures Tsallis and Renyi outperform the Naive approach for both Focus and Relax
scores. Accordingly, previous work had shown that Tsallis and Renyi entropies are more
effective in characterizing the complexity of the brain [Ton03] than Shannon entropy,
because the entropic index α for HRe and HTs in Eq. (3.2) and (3.3) can be tuned to emphasize
either background activity or bursts in EEG frequency bands. For this application, the
entropic index was selected with respect to short-range interactions [Kar10].

The Neutral phase at the beginning of every recording was necessary in order to
provide a first estimation of the histograms for the different measures. This allowed the
classification of the respective mental state to be performed without using any training
data acquired beforehand. The results of the experiment built on the assumption of equal
prior probabilities for both Focus and Relax, as the study consisted of equal numbers
of tasks associated with each class, leading to a bimodal histogram. When applying
this method to other scenarios exhibiting a non-equal class distribution, the histogram
would be skewed. Therefore, the experiment design should be adapted in order to
obtain a better histogram estimation for mental state recognition. Because subjects were
confronted with concrete and demanding Focus tasks, they reported that they felt more
focused than they felt relaxed during the Relax phases, where a video of a nature scene
was presented to them and they were instructed to relax. Therefore, the AUC values in
Table 5.6 indicate that the proposed measures perform better for the Focus score than
for the Relax score. Furthermore, as visible in Figure 5.9, the measures achieved higher
amplitudes and more distinct peaks during Focus tasks then they did for Relax tasks,
also leading to higher quantiles for the Focus score (as denoted in Table 5.7). In general,
both Tsallis and Renyi show appropriate results for a real-time mental state recognition
and prove to be a valuable additional input for the Mediated Atmospheres framework.
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Chapter 7

Conclusion

In this work, different concepts for the interaction with a smart office prototype were
introduced, such as a smartphone application, different versions of smart agents, and
a brain computer interface. When using an agent, users can dynamically change the
appearance of their workspace either by switching to particular scenes, by describing
scenes in an abstract way, or by having the agent recommend scenes based on a certain
context. With the brain computer interface, users can project their mental state into their
environment by mapping the current levels of Focus and Relax to an appropriate scene.

For the smart agents, an experiment was conducted with the aim to evaluate their
usability and to analyze whether the agents created different perceptions on the user.
Results show that the Smartphone Application as the most familiar system is also the
system that achieved the highest usability and the best overall ranking. It is followed
by the Advanced Text Agent and the Advanced Voice Agent, which were both perceived as
very friendly and engaging conversational agents that facilitate finding the right scenes.
However, the results also indicated that especially the Advanced Voice Agent created a
clearly different perception among native and non-native speaker. It could be observed
that non-native speaker more considered the range of features into their decision, whereas
the overall impression of native speaker was more influenced by correct voice recognition
and a smooth, natural conversation. In general, the findings show that all agents have
their strengths and weaknesses, with the Advanced Text Agent offering a well appreciated
trade-off between a quick and easy interaction, a natural, engaging and entertaining
conversation, and an open command list with the possibility to let the agents recommend
scenes based on an abstract description.
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Additionally, the application of a brain computer interface based on a wearable EEG
headband was evaluated in a separate experiment. Therefore, algorithms for providing
real-time mental state recognition and a classification of being focused or relaxed were
presented. A data-driven approach was used by estimating the probability distribution
for each person and updating it in real-time. The classification was then performed by
using quantiles of the estimated histogram as threshold. A Naive approach was compared
to different entropy-based approaches, showing that the measures using Renyi and Tsallis
entropy performed better than the Naive or the Shannon measure. By finding a trade-off

between sensitivity and specificity, the best quantile was 0.65 for the Focus score with
a sensitivity of 82.0 % (Tsallis) and a specificity of 82.8 % (Renyi). The best performing
quantile for the Relax score was 0.55, with a sensitivity of 80.4 % (Tsallis) and 80.8 %
(Renyi). Therefore, results show that a mental state recognition can be performed in
real-time and without building a classification model using previously recorded training
data. It also indicates that alternative entropy measures other than Shannon entropy or
KL divergence have to be established in order to assess specific applications. In general,
it proves the possibility of applying this system as a brain computer interface for a
context-aware system, such as Mediated Atmospheres.
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Patents

A.1 Method for controlling device by using brain waves

Publication Number US12716425

Date of Publication Mar. 3, 2010

Inventor(s) Yoshihisa Terada, Osaka (JP);
Koji Morikawa, Kyoto (JP)

Assignee Panasonic Corp, Osaka (JP)

Abstract The control method for a device includes steps of: presenting
a visual stimulation concerning a manipulation menu for a
device; measuring event-related potentials after the visual stim-
ulation is presented, where event-related potentials based on a
timing of presenting the visual stimulation as a starting point
are measured from a potential difference between each of elec-
trodes and at least one reference electrode respectively worn
on a face and in an ear periphery of a user; from each of the
measured event-related potentials, extracting electroencephalo-
gram data which is at 5 Hz or less and contains a predetermined
time section, and combining the extracted electroencephalo-
gram data into electroencephalogram characteristic data.
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A.2 Electroencephalogram interface system

Publication Number US12955016

Date of Publication Mar. 24, 2011

Inventor(s) Yoshihisa Terada, Tokyo (JP);
Koji Morikawa, Tokyo (JP)

Assignee Panasonic Corp, Osaka (JP)

Abstract An eyeglass-type electroencephalogram interface system is
worn on the head of a user. The system includes: an output
section for presenting a visual stimulation to the user; an ear
electrode portion disposed at a position coming in contact with
an ear of the user when the system is worn; a facial electrode
portion disposed at a position coming in contact with the face
below a straight line connecting an external canthus and an
internal canthus of an eye of the user, such that the mass of the
system is supported at the position, when the system is worn;
and an electroencephalogram measurement and determination
section for measuring an event-related potential on the basis of
a potential difference between the ear electrode portion and the
facial electrode portion based on the visual stimulation being
presented by the output section as a starting point.
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A.3 Wearable computing apparatus and method

Publication Number US14216925

Date of Publication Mar. 17, 2014

Inventor(s) Christopher Allen Aimone, Toronto (CA)
Ariel Stephanie Garten, Toronto (CA);
Trevor Coleman, Toronto (CA)

Assignee InteraXon Inc., Toronto (CA)

Abstract A method is provided, performed by a wearable computing
device comprising at least one bio-signal measuring sensor, the
at least one bio-signal measuring sensor including at least one
brainwave sensor, comprising: acquiring at least one bio-signal
measurement from a user using the at least one bio-signal
measuring sensor, the at least one bio-signal measurement
comprising at least one brainwave state measurement; pro-
cessing the at least one bio-signal measurement, including at
least the at least one brainwave state measurement, in accor-
dance with a profile associated with the user; determining a
correspondence between the processed at least one bio-signal
measurement and at least one predefined device control action;
and in accordance with the correspondence determination,
controlling operation of at least one component of the wearable
computing device, such as modifying content displayed on a
display of the wearable computing device. Various types of
bio-signals, including brainwaves, may be measured and used
to control the device in various ways.
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A.4 Conversational interface agent

Publication Number US7019749

Date of Publication Jul. 31, 2003

Inventor(s) Baining Guo, Bellevue, WA (US);
Bo Zhang, Beijing (CN);
Heung-Yeung Shum, Beijing (CN)

Assignee Microsoft Corp, Redmond, WA (US)

Abstract A video rewrite technique for rendering a talking head or agent
completely simulates a conversation by including a waiting or
listening state. Smooth transitions are provided to and from a
talking state.
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A.5 System and method for a cooperative conversational

voice user interface

Publication Number US8073681

Date of Publication Apr. 17, 2008

Inventor(s) Larry Baldwin, Maple Valley, WA (US);
Tom Freeman, Mercer Island, WA (US);
Michael Tjalve, Bellevue, WA (CN);
Blane Ebersold, Seattle, WA (US);
Chris Weider, Everett, WA (US)

Assignee VoiceBox Technologies Inc., Bellevue, WA (US)

Abstract A cooperative conversational voice user interface is provided.
The cooperative conversational voice user interface may build
upon short-term and long-term shared knowledge to generate
one or more explicit and/or implicit hypotheses about an intent
of a user utterance. The hypotheses may be ranked based on
varying degrees of certainty, and an adaptive response may be
generated for the user. Responses may be worded based on the
degrees of certainty and to frame an appropriate domain for a
subsequent utterance. In one implementation, misrecognitions
may be tolerated, and conversational course may be corrected
based on subsequent utterances and/or responses.
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Appendix B

Survey Questions

B.1 Measure of Intelligence and Engagement

1. Did the system meet your expectations regarding its intelligence?
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

2. Why did the system meet or not meet your expectations?

3. I think the system is intelligent
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

4. Why do you think the system is or is not intelligent?

5. I think the system is engaging
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

6. Why do you think the system is or is not engaging?

7. I think the system is aware of the current context
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

8. Why do you think the system is or is not aware of the current context?
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B.2 Measure of Trust and Control

Positive implications

1. The system’s actions are deceptive
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

2. I am suspicious of the system’s action or output
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

3. I am wary of the system
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

4. The system is intruding
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

Negative implications

5. I am confident in the system’s actions
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

6. All actions of the system are comprehensible
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

7. The system is reliable
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)

8. I feel in control while using the system
(Strongly Disagree) -2 | -1 | 0 | +1 | +2 (Strongly Agree)



Appendix C

Supplementary Material

C.1 Android Client for Amazon DynamoDB

1
2 @DynamoDBTable(tableName="SceneLibrary")

3 public class Scene {

4 private String name, primaryColor;

5 private int id, brightness, colorTemp;

6
7 @DynamoDBIndexRangeKey(attributeName="name")

8 public void setName(String name) { this.name = name; }

9
10 @DynamoDBIndexRangeKey(attributeName="name")

11 public String getName() { return name; }

12
13 @DynamoDBHashKey(attributeName="id")

14 public void setId(int id) { this.id = id; }

15
16 @DynamoDBHashKey(attributeName="id")

17 public int getId() { return idid }

18
19 @DynamoDBAttribute(attributeName="brightness")

20 public void setBrightness(int brightness) {this.brightness = brightness;}

21
22 @DynamoDBAttribute(attributeName="brightness")

23 public double getBrightness() { return brightness; }

24
25
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26 @DynamoDBAttribute(attributeName="color_temperature")

27 public void setColorTemp(int colorTemp) { this.colorTemp = colorTemp; }

28
29 @DynamoDBAttribute(attributeName="color_temperature")

30 public double getColorTemp() { return colorTemp; }

31
32 @DynamoDBAttribute(attributeName="primary_color")

33 public void setPrimaryColor(String primaryColor) {

34 this.primaryColor = primaryColor;

35 }

36
37 @DynamoDBAttribute(attributeName="primary_color")

38 public void getPrimaryColor() { return primaryColor; }

39
40 }

41
42
43 private DynamoDBMapper mMapper = new DynamoDBMapper(dynamoDbClient);

44 public void getSceneList(SceneDbCallback callback) {

45 final DynamoDbScanExpression scanExpr = new DynamoDbScanExpression();

46 new Thread(new Runnable() {

47 public void run() {

48 PaginatedScanList <Scene> result = mMapper.scan(Scene.class, scanExpr);

49 Scene[] sceneList = result.toArray(new Scene[result.size()]);

50 callback.onSceneListLoaded(sceneList);

51 }

52 }).start();

53 }

Listing C.1: DynamoDB client in Android
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C.2 Advanced Agent Dialogs
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