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Robert Richer M. Sc., Arne Küderle M. Sc., Prof. Dr. Björn Eskofier
(Machine Learning and Data Analytics Lab, FAU Erlangen-Nürnberg)
Prof. Dr. Nicolas Rohleder
(Chair of Health Psychology, FAU Erlangen-Nürnberg)

Started: 01.09.2018

Finished: 31.01.2019



ii



iii

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
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Übersicht

Das Potential von Maschinellem Lernen ermöglicht neue Ansätze zur Analyse psychologischer
Daten. Machinelles Lernen bietet viele Vorteile im Vergleich zu traditionellen statistischen
Methoden. In der Gesundheitspsychologie besteht großes Interesse daran, Prozesse zu erforschen,
die durch akuten Stress ausgelöst werden. Daher wird mit dieser Arbeit eine Methode vorgestellt
verschiedene Stressreaktionsmuster automatisch zu klassifizieren. Die Basis dafür bilden Daten,
die von einem Experten der Stressforschung ‘gelabelt’ wurden. Drei wichtige stresssensible
Marker wurden dabei berücksichtigt: Cortisol und alpha-Amylase im Speichel, sowie Interleukin-6
(IL-6) im Blutserum. Hierfür wurde eine zuverlässige Stressbelastung durch einen standardisierten
Test, den Trier Social Stress Test, sichergestellt.

Mit Hilfe von Support Vector Machines konnten hohe Genauigkeiten bei der Zuordnung der
Klassen erreicht werden. Bei der Klassifikation von vier verschiedenen Reaktionsmustern im
Cortisol lag die mittlere Genauigkeit bei 92.2 % ± 9.7 %. Drei verschiedene IL-6 Reaktionen
konnten mit einer mittleren Genauigkeit von 91.2 %± 6.3 % zugeordnet werden. Des weiteren
lag die mittlere Genauigkeit für die Klassifizierung von vier verschiedenen Amylase-Mustern bei
61.2 %± 12.3 %.

Außerdem wurden die statistischen Zusammenhänge der Muster der jeweiligen Parameter
untersucht. Mögliche interessante Korrelationen treten für folgende Kombinationen auf: ‘Amylase
keine Gewöhnung’ - ‘Cortisol keine Antwort’ (r = 0.28, p = 0.004), ‘Amylase keine Antwort’
- ‘Cortisol antizipierter Stress’ (r = 0.27, p = 0.006), ‘IL-6 keine Gewöhnung’ - ‘Cortisol keine
Antwort’ (r = 0.25, p = 0.01), ‘IL-6 Sensibilisierung’ - ‘Cortisol antiziperter Stress’ (r = 0.26, p =
0.007) und ‘IL-6 Sensibilisierung’ - ‘Amylase keine Antwort’ (r = 0.25, p = 0.008).

Limitierungen traten dabei unter anderem aufgrund der relativ kleinen Datenmenge (63
Personen mit vollständigen Cortisol-Daten) auf. Des weiteren wurde die Differenzierung der
einzelnen Klassen durch eine große Varianz innerhalb der Klassen erschwert.

Der in dieser Thesis vorgestellte Ansatz zur Klassifizierung verschiedener Stressreaktions-
muster kann in zukünftigen Arbeiten dazu verwendet werden ein System zur Vorhersage dieser
Muster zu entwickeln.
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Abstract

The potential of machine learning techniques enables new possibilities for the analysis of psy-
chological data. Machine learning has many advantages compared to the traditional statistical
methods. In the field of health psychology, there is a huge interest in exploring the processes which
are triggered by acute stress on a systemic level. Therefore, this work introduces a method for the
automatic prediction of stress response classes based on learning from data labeled by an expert.
Three important stress-sensitive markers were used: Salivary cortisol, salivary alpha-amylase, and
the Interleukin-6 concentration in the blood serum. The stress was induced using a standardized
test protocol, the Trier Social Stress Test.

With the help of Support Vector Machines it was accomplished to label the classes with a
high accuracy. For the classification of four different cortisol responder types a mean accuracy
of 92.2 %± 9.7 % was accomplished. Three different IL-6 reactions could be classified with a
mean accuracy of 91.2 %± 6.3 % and four types of amylase responses with a mean accuracy of
61.2 %± 12.3 %.

Furthermore, the connections of the classes of different markers were explored statisti-
cally. Possible interesting correlations were found for ‘amylase non-habituation’ - ‘cortisol
non-responder’ (r = 0.28, p = 0.004), ‘amylase non-responder’ - ‘cortisol anticipatory stress’
(r = 0.27, p = 0.006), ‘il6 non-habituation’ - ‘cortisol non-responder’ (r = 0.25, p = 0.01), ‘il6
sensitization’ - ‘cortisol anticipatory stress’ (r = 0.26, p = 0.007) and ‘il6 sensitization’ - ‘amylase
non-responder’ (r = 0.25, p = 0.008).

Limitations, which occured in this work were especially caused by the small sample size (63
subjects with full cortisol data) and a high variance in the different classes.

For future work, the classification approach introduced in this thesis could be easily adapted
for the use in a recommender system, in order to make stress response pattern classification faster
and easier for new data.
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Chapter 1

Introduction

Stress is a hidden epidemic – the World Health Organization estimates that mental diseases,
including stress-related disorders, will be the second leading cause of disabilities by the year
2020 [Kal02]. The economic impact of stress is huge, with an estimated loss of about $42 billion
for absence and treatment of stress-related illness in the U.S. [Kal02]. Acute stress, such as
psychosocial stress, which is defined as stress experienced as a result from social interaction
with others, induces strong biological responses. Through the secretion of stress hormones
and widely spread autonomic innervation, these responses have the potential to reach nearly
every cell in the organism [Sap00]. Whereas adequate stress responses are crucial for a correct
physiological reaction, defective stress response patterns might be linked with the biological and
physiological markers of aging like DNA damage, over-expression of inflammatory genes, and
declines in cognitive functioning [Roh09]. There is evidence from previous studies that different
response patterns exist, and some have shown to be associated with inflammatory diseases [Sch03].
Inflammation also signals into the central nervous system, where it might be responsible for age-
related cognitive decline and mood disturbances [Wea02]. For further research, it is important to
classify these patterns in order to identify such defective responses automatically.

This is why Machine Learning (ML) becomes interesting for psychology, because recognizing
patterns and assigning them to different classes (also known as classification) is one of the main
use cases of ML. Whereas ML-based techniques have been widely used for years in other fields of
medicine and health care, the application for psychological problems like diagnostics, treatment,
and research is rather rare. Nevertheless, there is huge potential in this interdisciplinary challenge.
Most psychological publications are based on relatively simple statistical methods, compared to
the possibilities of ML.
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2 CHAPTER 1. INTRODUCTION

In this work, different classification algorithms were used to examine whether the classification
of stress response patterns based on biological variables is possible. The biological data was
recorded in a preceding study using the Trier Social Stress Test (further described in Section 4.1.1)
for reliable induction of psychosocial stress. Additionally, this work attempts to find connections
between the patterns of different biological markers through statistical analysis.

In the following chapter, the medical background of the acute stress response is outlined.
Chapter 3 gives an overview about previous works using machine learning for health psychology.
Additionally, related work in the field of stress response, which are based on similar datasets, are
discussed. The next chapter (no. 4) describes the methods used for stress pattern classification
and pattern correlation. This includes a description of preprocessing and feature selection as well
as the learning and evaluation processes. Furthermore, the statistical methods used in order to find
connections between the patterns are explained. All the results, which are shown in Chapter 5,
will be discussed in Chapter 6 along with the discussion of the methods used. A conclusion and
an outlook on how this work can be used in further research will be given in Chapter 7.



Chapter 2

Medical Background

According to Hans Selye, the pioneer of stress research, stress is defined as the “unspecific
reaction of an organism to all kinds of demands” [Udr88]. These demands vary from all kinds
of psychological stress, which are typically situations with low predictability, low controllability
and novelty [Kir94]. Some common examples are exams, job interviews or dentist treatments.
Nevertheless, stress reactions are not only a psychological phenomenon, but can also follow on
different kinds of physical exercise, like running or bicycle riding [Nat09].

In order to understand what is happening in the body when a subject is under acute or chronic
stress two important pathways have to be investigated: The Sympathetic Nervous System (SNS)

and the Hypothalamic–Pituitary–Adrenal Axis (HPA-Axis). Through these stress is sending signals
about the threatened state of the organism to the target tissues [Roh09].

The SNS is a part of the Autonomous Nervous System (ANS), which controls nearly all
physiological functions. An example is the cardio-circulatory system, which is controlled through
adaptations of the vessels or the heart rate. Furthermore, reflexes like the pupil reflex are controlled
by the ANS [Lan11d]. In general, the SNS stimulates effects which are important for the ‘fight-or-
flight’ response, while the antagonist, the parasympathetic nervous system, mainly inhibits these
effects.

Another mechanism, which is also regulated by the ANS, is the secretion and composition of
saliva. Therefore, the concentration of Salivary Alpha-Amylase (sAA), which is one of most im-
portant enzymes in the saliva, is an indirect indicator of Automatic Activation [Roh09]. Automatic

Activation is usually high during psychological stress [Roh09]. Alpha-amylase is the enzyme that
is responsible for the first digestion of carbohydrates during the chewing process [Lan11b].

The second mechanism is the HPA-Axis. It can be defined as an interactive neuroendocrine
unit comprising of the hypothalamus, the pituitary gland and the adrenal cortex [Orb13]. The

3



4 CHAPTER 2. MEDICAL BACKGROUND

HPA-Axis plays a key role in stress reaction and Homeostasis as well. As visualized in Figure 2.1,
the hypothalamus releases CRH, which is stimulating the production of ACTH in the anterior
pituary. An increase in ACTH results in the production and secretion of cortisol in the adrenal
cortex [Orb13]. Cortisol is a glucocortoid belonging to the class of steriod hormones. The purpose
of glucocortoids is to stimulate the conversion of proteins to glucose.

The HPA-Axis is an example of a negative feedback loop. Cortisol secretion limits itself
through feedback to the hypothalamus and the anterior pituitary [Orb13]. Increased cortisol
production has numerous effects like enhancement of vascular activity, reduced immune responses,
stimulated gluconeogenesis and inhibition of nonessential functions [Orb13]. The typical reaction
to acute stress is that the cortisol level increases compared to baseline, with a peak about 15
minutes after stress. Then the cortisol level slowly declines until it recovers to baseline after
about 2 hours. There are some hints that a dysregulation of the HPA-Axis is connected to various
physiological and psychological illnesses [Orb13].
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Figure 2.1: Schematic representation of the Hypothalamic–Pituitary–Adrenal Axis.
CRH: Corticotrophin Releasing Hormone, ACTH: Adrenocorticotrophic Hormone, left: modified
from [Orb13], right: [Ana15]
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Another activator of the HPA-Axis is the pro-inflammatory hormone Interleukin-6 (IL-6) [Mas93].
Interleukins are one of the five main groups of cytokines, proteins that regulate the growth and
differentiation of cells. Interleukins are messenger substances of the cells involved in the immune
reaction. An overview of important interleukins with their place of production and their effects
can be found in Table 2.1.

Table 2.1: Interleukins and their Effects. Modified from [Lan11a].

Interleukin Place of Production Main Effect(s)

IL-1 Macrophages Stimulation of T helper cells

IL-2 T cells Proliferation and maturing of T cells, stimulation of B cells

IL-3 T cells Stimulation of hematopoiesis (no inflammatory effects)

IL-4 T cells Growth and differentiation of B cells, growth of T cells

IL-5 T helper cells Differentiation of B cells

IL-6 Macrophages, T cells Maturing of B cells

IL-7 T cells Proliferation of T and B cells

IL-8 T cells Activation of granulocytes

IL-10 T helper cells Inhibition of T helper cells, differentiation of B cells

IL-6 is not the only cytokine effecting the HPA-Axis. IL-1 and IL-10 also have a stimulating
influence on the HPA-Axis [Dun07]. Acute psychosocial stress is inducing a short-time rise in
cytokines in healthy adult humans according to a study of Miller et al. [Mil05]. Additionally,
elevated baseline IL-6 levels had been connected to a risk of decline in cognitive function [Wea02].
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Chapter 3

Related Work

Machine Learning is one of the most important methods in todays research. It has become
ubiquitous and one often encounters results of Machine Learning processes in daily life without
even noticing. The improvement potential for fields like industry, medicine, commerce, etc. from
these methods is huge, but there are only few examples for the usage of Machine Learning in
psychology, especially health psychology.

The work of Galatzer-Levy et al. is focusing on Posttraumatic Stress Disorder (PTSD). They
used Support Vector Machines (SVMs) along with Markov Boundary feature selection to predict
non-remitting PTSD from information collected within 10 days after a traumatic event [GL14]. In
their work, they reached about 95% mean accuracy (AUC = 0.77). Another interesting outcome
of this work is that the prediction accuracy remains the same (AUC = 0.77) for a smaller subset of
features, compared to the prediction based on the whole dataset [GL14]. Based on these findings,
Galatzer-Levy et al. published another work using Machine Learning for PTSD prediction.
Their results show that a high PTSD prediction accuracy (AUC = 0.82) is possible when using
SVMs along with combined clinical, neuroendrocrine, psychophysiological and demographic
information [GL17].

Another publication by Galatzer-Levy et al. used latent class analysis to find patterns of PTSD

Comorbidity. They found three relevant classes, a class characterized by predominantly comorbid
mood and anxiety disorders, a class characterized by predominantly comorbid mood, anxiety, and
substance dependence and a relatively pure low-comorbidity PTSD class [GL13]. These should
be further investigated to improve diagnosis and treatment [GL13].

Another ML application (patent US7805396B2 by Wagner and Martin [A]), proposed a method
to classify normal and abnormal diurnal cortisol secretion patterns with only two saliva samples
per day. The computerized method they used is based on a fuzzy logic algorithm.

7



8 CHAPTER 3. RELATED WORK

Similar datasets as the one used in this thesis already brought up some new findings on how
physiology influences the acute stress response. For instance, the biological sex influences the
cortisol response, according to a study of Kirschbaum et al., the average cortisol level is two times
higher among men compared to women [Kir92a]. McInnis et al. further discovered that subjects
with adipositas show higher IL-6 responses and a less efficient HPA-Axis habituation [McI14].
Smoking leads to an increased overall cortisol level, compared to non-smokers with equal en-
vironmental stimuli [Kir92b]. Similary, glucose intake leads to a stronger cortisol reaction and
low glucose blood levels prevent the stress response through the HPA-Axis, while protein and fat
intakes show no influence [GB02]. Another interesting work of La Marka et al. has shown that
the ‘Cold Face Test’ has an influence on the stress response [Mar11]. For the ‘Cold Face Test’,
the vagus nerve, which is an essential part of the parasympathetic nervous system, is stimulated
with cold by applying a cold pack onto a subjects face. They found that a faster response to this
stimulus is associated with a lower stress response, expressed in the form of lower cortisol values
and an enhanced mood [Mar11]. Finally, there is evidence from the research of Wüst et al. that
common polymorphisms in the glucocorticoid receptor gene lead to significantly higher cortisol
stress responses [Wüs04]. The term polymorphism is used to describe certain mutations in the
genotype.

Besides the physiological influences, several psychological impacts on the stress response
were also discovered. The work of Kuras et al. showed that healthy adults with childhood adversity
have an increased alpha-amylase response [Kur17]. Another paper suggests that participants
with higher self-compassion show lower IL-6 responses when performing the TSST [Bre14].
Furthermore, there is evidence that post-stress rumination predicts HPA-Axis responses to re-
peated acute stress [Gia14]. Post-stress rumination after a first TSST was associated with greater
cortisol responses both on the intial and the consecutive test, indicating non-habituation to the
stressor [Gia14].

A recently published work of Fiksdal et al. implies that symptoms of anxiety are linked to
a attenuated cortisol stress response [Fik19]. In addition, they found exaggerated responses for
subjects with depression symptoms. All subjects in this study had no psychiatric diagnosis [Fik19].

Another work, which analyzed the correlation between the activity of the HPA-Axis and
the inflammation response, showed that a stronger HPA-Axis habituation is inversely related to
inflammatory sensitization [Tho17].

Additionally, there are some evidences that defective stress response patterns lead to chronic
diseases. The work of Weaver et al. suggests that a higher IL-6 level leads to a decline in cognitive
functions [Wea02]. Further studies showed that insufficient glucocorticoid signaling can be found
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in patients with stress-related neuropsychiatric disorders [Rai03]. Psychological stress might also
contribute to atherosclerosis for subjects with a lack of habituation in IL-6 responses [vK06].
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Chapter 4

Methods

At the beginning of this chapter, the dataset used in this thesis is explored. In the next section, the
classification process is described including preprocessing, feature extraction, evaluation methods,
and classification algorithms. The chapter is concluded by a section describing the statistical
approach of finding connections within the patterns of different stress-reactive variables.

4.1 Data Acquisition

The dataset used in this thesis was recorded and kindly provided by Rohleder et al. in the context
of a study regarding the relation of age-related diseases and psychosocial stress [Roh09].

4.1.1 Study Design

For the study 100 healthy subjects have been recruited [Roh09]. Table 4.1 shows the mean age,
height, and weight of the study population.

Table 4.1: Demographic Information

Age [years] 37.8 ± 18.4

Height [cm] 169.1 ± 11.1

Weight [kg] 73.3 ± 14.7

All subjects have been exposed to the Trier Social Stress Test (TSST) on two consecutive
days. The TSST has proven as a standard procedure for inducing stress in adult human partic-
ipants [Dic04] and has also been successfully used with elderly subjects [Roh02]. The TSST

11



12 CHAPTER 4. METHODS

consists of an anticipatory phase (about 10 minutes) and a test period (10 minutes), where the
subjects have to perform free speech and mental arithmetic tasks in front of an audience. The
audience normally consists of at least three persons. The free speech part is typically structured
like a job interview [Kir93]. Additionally, video and audio recordings of the subject are taken
in order to induce more stress and for later evaluation. A typical set-up of the TSST with an
audience of only two people is shown in Figure 4.1. Along with much information assessed with
questionnaires, which are further described in the following sections, blood and saliva samples
have been taken at specific times before and after the test. The timepoints can be found in Table
4.2.

Figure 4.1: Set-up of the Trier Social Stress Test [Fri15].

4.1.2 Demographic Information

The recorded demographic information consists of age, gender, ethnicity, race, education, income,
and many more. Furthermore, two questionnaires have been used, which are assessing the
subjective and the objective social economic status.

4.1.3 Psychological Variables

Different psychological variables have been assessed with questionnaires. The resulting scores
include information about depression, vital exhaustion, chronic stress, self-compassion, and
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many more. The underlying questionnaires are standard scales in psychological research, such
as the Maastricht Vital Exhaustion Scale [App87], the Trier Inventory for Chronic Stress (Short
Version) [Sch98] and the Perceived Stress Scale [Coh83].

4.1.4 Health Variables

Different details about the health status of the individual subjects were collected as well. In
addition to information about the fitness (BMI, body fat percentage), there is a detailed record of
medications as well as infectious and chronic diseases.

4.1.5 Biological Variables

Biological variables include information about cortisol, amylase, and IL-6 levels. These are the
relevant variables for this thesis.

Table 4.2: Biological Variables

Number of full datasets Sample type Time relative to TSST [min]

Cortisol 63 Saliva -45, -1, +1, +10, +30, +60, +120

Amylase 77 Saliva -45, -1, +1, +10, +30, +60, +120

IL-6 71 Blood -1, +30, +120

As depicted in Table 4.2, seven saliva samples per day and subject have been collected for
cortisol and amylase. In contrast, only three samples per day and subject were collected for IL-6,
since IL-6 levels are declining very slowly after stress exposure. Additionally, less blood samples
were acquired due to economic reasons and to keep the level of additional stress induced by blood
sampling as low as possible. The IL-6 concentration in the blood serum was determined with a
high-sensitive commercial ELISA technique (R&D Systems) [Roh09].
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4.2 Stress Pattern Classification

The first goal of this Bachelor’s Thesis was the classification of different stress responder types
based on the biological variables described in Table 4.2.

The typical reaction to acute stress on two consecutive days is habituation (Figure 4.2) [Kir94].
On the first day, a high increase in cortisol levels can be observed. The peak of the response is
approximately 15 minutes after the TSST, a return to baseline level is recognized about 2 hours
after the stress impulse. On the second day, cortisol levels are only slightly increased and return
to baseline quite fast.
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Figure 4.2: Healthy cortisol reaction (habituation) to acute stress on two consecutive days.
Mean and standard error for all subjects labeled with ‘habituation’.

Class labels for each of the three variables, which were created by an expert, served as ground
truth for supervised learning. The classes are derived from previous work of McEwen et al., which
suggested five different types of acute stress responses [McE98]. A short description of the classes
can be found in Table 4.3. In the responses of sAA only the classes 1-4 can be found, for IL-6 only
the classes 1-3 exist. The mean levels of all five cortisol classes on the two consecutive days of
the study can be found in Figure B.3.
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Table 4.3: Stress responder classes

Class Nr. Class Description

1 Habituation High response on the first day, low response on the second day

2 Non-Habituation High responses on both days

3 Sensitization Low or none response on day 1, high response on day 2

4 Non-Responder Low or none response on both days

5 Anticipatory Stress Highest response before the TSST on one of the two days
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Figure 4.3: Mean cortisol levels for each class. Standard errors for each individual classes are
shown in Figure B.3.

An overview of the learning process is outlined in Figure 4.4. After data acquisition, which
was not part of this work, the next step was feature extraction and selection. Subsequently, the
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resulting feature set was used to train a classifier that tries to discriminate the different classes.
The performance of the classifier was then evaluated in the end [Nie83].

Data
Aquisition 

Feature
Extraction Classification Evaluation

Figure 4.4: General Machine Learning Pipeline

4.2.1 Preprocessing and Feature Extraction

All of the following steps were performed equally for each of the three biological variables. For
preprocessing the variables were scaled, such that the highest measured value is 1 and the lowest
measured value is 0.

Additionally to the scaled raw data, the features listed in Table 4.4 were calculated. The
‘X’ markers indicate if the feature was computed for boths days individually and for both days
combined or only for one of these options.

Feature extraction in general, can lead to better generalization in the learning process, if the
generated features are less sensitive to variance within the classes. The features listed in Table 4.4
were used, since they should replicate the aspects an expert uses for labeling.

Table 4.4: Features extracted from the biological data

Feature Description Day1 Day2 Both

Min-Max Difference Difference bet. minimum and maximum X X X

Max-Max Difference Difference bet. maxima of the two days X

Time of Maximum Location of maximum on the time axis X X

Mean Mean value (see Eq. 4.1) X X X

Std. Deviation Standard deviation (see Eq. 4.2) X X X

Skewness Measure of the asymmetry X X X

Kurtosis Measure of the ’tailedness’ X X X
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Mean x̄:

x̄ =
1

n

n∑
i=1

xi (4.1)

Standard deviation σ:

σ =

√√√√√√
n∑

i=1

(xi − x̄)2

n− 1
(4.2)

For feature selection the Select-K-Best algorithm from the Python library scikit-learn was
used [Ped11]. The Analysis of Variance (ANOVA) F-value served as score function. Select-
K-Best is reducing the feature set by only selecting the k features with the highest score.

Feature selection is important to reduce the complexity of the classification problem, and can
lead to better classification results, because the classifier does not learn features, which do not
represent the classes well. Feature selection was performed separately from the pipeline showed
in Figure 4.6.

4.2.2 Classification and Evaluation

Cross-validation

An important method, for evaluating the classification perfomance is cross-validation. Cross-
validation was used multiple times in this thesis. For example, a 5-Fold cross-validation splits up
the dataset 5 times randomly, as visualized in Figure 4.5. For each split, a classifier is fitted to the
training set and evaluated on the test set. The data already used as a test set will not be used in
further test sets. Every subject is included in the test set exactly once. Stratified cross-validation
ensures that each fold has the same percentage of samples per class as the overall data. This is
important in order to have a training set that has the same properties as the overall data and to
prevent the issue of possible folds which might not include samples of all classes in the training
set.

Template Matching

The first classification approach used in this thesis was template matching. For this method,
templates are generated for each class. The templates should represent the classes well in order to
allow reliable classification.
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Figure 4.5: Visualization of cross-validation.

In the beginning, the raw biological data was normalized and split up in training and a test
set using Stratified-5-Fold cross-validation. The templates of each class were then generated by
calculating the mean values of the separate classes in the test set. Therefore, new templates for
each class were generated in every cross-validation fold. For the classification of one sample the
correlation between the sample and each of the class templates was computed. New samples were
then assigned to the class with the highest correlation coefficient. In the end, the accuracy was
computed by counting the number of correctly classified samples, divided through the number of
samples.

Listing 4.1: Template matching method
1 import numpy as np

2 from sklearn.model_selection import StratifiedKFold

3 from scipy.stats import pearsonr

4

5 # set up of the cross-validation

6 n_splits = 5

7 skf = StratifiedKFold(n_splits)

8 def template_matching(data, classes, classnames):

9 # get number of classes

10 n_cla = len(classnames)

11 # variable for calculating the accuracy
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12 mean_acc = 0

13

14 # cross-validation split

15 for train_index, test_index in skf.split(data, classes):

16 train, test, class_train, class_test = data[train_index], data

[test_index], classes[train_index], classes[test_index]

17 # generate the templates

18 templates = get_all_templates(train, class_train, n_cla)

19 # compute correlations

20 corr = np.empty((n_cla,len(test)))

21 for m in range(n_cla):

22 for n in range(len(test)):

23 corr[m,n] = pearsonr(test[n,:], templates.iloc[:,m])

[0]

24 # find highest correlation

25 pred = corr.argmax(axis=0)

26

27 acc = 0

28 for j in range(len(pred)):

29 # check for true labels

30 if pred[j] == class_test[j]:

31 acc += 1

32 acc /= len(pred)

33 mean_acc += acc

34 mean_acc /= n_splits

35 return mean_acc
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For the next approach, the pipeline shown in Figure 4.6 was developed, which is described in
detail in the following paragraphs.

Cross-validation split

Training set
80%

Test set
20%

Stratified-5-Fold

Parameter tuning CV
5-Fold

Training set
80%

Test set
20%

Oversampling
SMOTE 

Best-performing
classifier 

Figure 4.6: Flowchart of the classification pipeline. CV: Cross-validation

In the first step, the dataset was split up into a training and a test set, called cross-validation
split in Figure 4.6. A typical size, which was also chosen in this thesis, is 80% of all subjects
for the training set and the remaining 20% for the test set. The split was performed using a
Stratified-5-Fold cross-validation.

Oversampling

As shown in Figure 4.7, the classes in the dataset are highly unbalanced, which is not only
the case for the shown cortisol classes, but also for sAA and IL-6 classes. Unbalanced classes
have a bad influence on the performance of the classifier, because the classifier tends to learn only
the majority class. Therefore, oversampling was used to balance the classes. The oversampling
technique of choice in this work is SMOTE [Cha02], used from the imbalanced-learn Python
module [Lem17]. Oversampling is performed by selecting each sample from the minority class
and adding synthetic samples, which are generated by randomly interpolating between one sample
and one of the k-nearest neighbors [Cha02].
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Mathematically, this can be described as:

xnew = xi + λ(xzi − xi) (4.3)

where xnew is the generated, synthetic sample, xzi is one of the k-nearest neighbor of the sample
xi and λ is a random factor in the range [0, 1].

For this work k = 3 nearest neighbors were used for SMOTE. The advantage of SMOTE

compared to other oversampling techniques, like random oversampling, is that it creates a larger
and less specific decision region, which leads to better generalization of the resulting classi-
fier. [Ped11].

habituation

31.7%
non-habituation

14.3%

sensitization 12.7%

non-responder

30.2%
anticipatory stress

11.1%

(a) Cortisol

habituation

36.4%

non-habituation 23.4%

sensitization

23.4% non-responder
16.9%

(b) Amylase

habituation

31.0%
non-habituation

14.1%

sensitization

54.9%

(c) IL-6

Figure 4.7: Distribution of stress responder classes

As shown in Figure 4.6, the oversampled training data was split up again in the next step,
using standard 5-Fold cross-validation. This cross-validation fold is relevant for parameter tuning.
A grid search was applied for finding the optimal parameters for each classifier. Grid search is the
technique of systematically trying out all parameter combinations in a predefined parameter space.
Because the classes are balanced from the previously performed oversampling, there is no need
for stratified cross-validation.

In the next step, the best performing classifier was then applied on the test set from the first
cross-validation split, resulting in five test scores, one for each fold. Finally, the mean accuracy,
which is the most important measure for the classifying performance, was computed as the mean
over all test scores.

With this pipeline it is ensured that no test data ‘leaks’ into the training set, which would lead
to over-optimistic results caused by overfitting [Nas07]. A short extract from the classification
pipeline implemented in Python, using only SVM classification, is shown in Listing 4.2.
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Classifiers

For the classification task three different classifiers were used. All classifiers, which were
applied in this thesis, are provided by the scikit-learn Python library [Ped11].

The first classifier is the k-Nearest-Neighbors classifier. This classifier uses non-generalizing
learning. It does not construct a general internal model, but simply stores instances of training
data [Ped11].

The classification is done by simply applying a majority vote of the k nearest neighbors of
the sample, where k is an integer value. For basic kNN classification, ‘nearest’ is specified as the
smallest euclidean distance. In Figure 4.8 an example for 5 NN Classification is shown for two
features and two classes. The blue and green dots represent training instances of the two classes,
whereas the red dot represents a new test sample. The five nearest neighbors of the test sample are
denoted by a red outline. Four of them are blue and one is green, therefore the new sample would
be assigned to the ‘blue’ class. In order to find the optimal k for the given dataset a grid search
needs to be performed. In this thesis, the parameter space for the grid search was k ∈ [1, 20].

feature a

fe
at

ur
e 

b class 1 training samples
class 2 training samples
test sample
5 nearest neighbors of test sample

Figure 4.8: Visualization of kNN classification

Another type of classifier that was applied were Support Vector Machines. A SVM constructs
a hyper-plane in the multi-dimensional feature space which separates the samples of the different
classes. The best separation is achieved by the hyper-plane that has the largest distance to the
nearest training data points of any class. This distance is called functional margin. In general, a
higher margin results in a lower generalization error of the classifier. A visual representation of
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this can be found in Figure 4.9, where the functional margin is the distance between the dotted
lines. In this simple example, the feature space is only two-dimensional, therefore the hyper-plane
is a one-dimensional line. With larger feature spaces, the number of dimensions increases.

Because of the multi-class character of the data, the ‘one-against-one’ approach was used.
‘One-against-one’ is describing the method of training one binary SVM for each pair of classes to
seperate the data [Chi02]. Two different kernel functions were evaluated in the grid search, Linear
(〈x, x′〉, where 〈〉 denotes the scalar product) and Radial Basis Function (RBF) (exp(−γ||x −
x′||2)). Another parameter for SVM classification, which needs to be optimized in a grid search,
is C. Large C values cause a smaller margin hyper plane, if that plane classifies more training
points correctly. Therefore, large C’s lead to worse generalization. C was varied between the
values [100, 101, 102, 103, 104]. For RBF, the additional parameter γ was set to 0.01 or 0.001. This
results in 15 different parameter combinations that were applied in grid search.

feature a
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b class 1 training samples
class 2 training samples
decision plane

Figure 4.9: Visualization of SVM classification

The third classifier applied on the data is the Random Forest classifier. A Random Forest
classifier constructs a number of Decision Trees on sub-samples of the dataset. Decision Trees

are built by learning simple decision rules inferred from the data. The decision rules for each
steps are selected as the variables that best split the given set of items. There are different metrics
that define ‘best split’, such as Gini impurity, Information gain or Variance reduction. For the
decision trees used in this thesis Gini impurity was used, which is a measure of how often a
element could be incorrectly classified [D’A11]. An example for a simple decision tree can be
found in Figure 4.10, a whole decision tree for cortisol classification is shown in Figure B.3.
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There are many parameters for Random Forest classification which can be optimized, for
example:

• number of trees in the forest

• maximum number of features considered for splitting each node

• maximum number of levels in each decision tree (depth)

• minimum number of data points placed in a node before the node is split

In order to keep computational complexity as low as possible, randomized search was used for
parameter optimization. In contrast to grid search, randomized search is using a random parameter
set in a predefined number of iterations, instead of systematically trying out every parameter
combination. An overview of the parameter space is shown in Table 4.5, detailed description
of these parameters can be found in the scikit-learn documentation of the RandomForest
class [Ped11].

true false

feature a < value

feature b < value

class 2 class 1

class 3

Figure 4.10: Visualization of a Decision Tree



4.2. STRESS PATTERN CLASSIFICATION 25

Table 4.5: Parameters for Random Forest grid search.

Parameter Possible values
n estimators 200 to 2000, steps of 10
max features [‘auto’, ‘sqrt’]
max depth 10 to 100, steps of 10
min samples split [2, 5, 10]
min samples leaf [1, 2, 4]
bootstrap [True, False]

Listing 4.2: Extract from classification pipeline
1 from sklearn.model_selection import StratifiedKFold, GridSearchCV

2 from imblearn.oversampling import SMOTE

3 # Set-up of SMOTE

4 smo = SMOTE(k_neighbors = 3)

5 # Stratified 5 Fold cross-validation split

6 n_splits = 5

7 skf = StratifiedKFold(n_splits)

8 for train_index, test_index in skf.split(data,classes):

9 train, test, class_train, class_test = data[train_index], data[

test_index], classes[train_index], classes[test_index]

10 # Oversampling

11 train, class_train = smo.fit_resample(train, class_train)

12 # Grid search using 5 Fold cross-validation

13 gridsvm = GridSearchCV(svm,param_gridsvm, cv = n_splits, iid =

True, return_train_score = False)

14 gridsvm.fit(train, class_train)

15 # Evaluation of best-performing classifier on the test data

16 scores_svm[i] = gridsvm.best_estimator_.score(test,class_test)
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4.3 Stress Pattern Correlation

4.3.1 Preprocessing

For this task, only subjects with expert labels for all three biological markers (cortisol, amylase,
and IL-6) could be considered, which resulted in a dataset consisting of 71 subjects. This data
was then reorganized such that every column only holds the information of one class, so that
a ‘1’ denotes that the subject belongs to the respective class, ‘0’ otherwise (as also depicted in
Table 4.6). The ground truth labels were used for this task.

Table 4.6: Example of preprocessing for pattern correlation. Left: before preprocessing;
Right: after preprocessing.

Subject ID Cortisol class

1 habituation

2 non-habituation

3 sensitization

4 habituation

5 non-responder

6 non-habituation
...

...

Subject ID Hab. Non-hab. Sen. Non-resp.

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 1 0 0 0

5 0 0 0 1

6 0 1 0 0
...

...
...

...
...

4.3.2 Statistics

In order to find correlations between the patterns of the three biological variables, the Pearson
correlation coefficient was calculated column-wise. Therefore, one correlation coefficient was
computed for every class combination of the five cortisol, four amylase, and three IL-6 classes.
The Pearson correlation coefficient rxy is defined as:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√√√√n
n∑

i=1

(xi − x̄)2

√√√√n
n∑

i=1

(yi − ȳ)2

(4.4)
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where n is sample size, xi and yi are the individual sample points and x̄ and ȳ are the sample
means.

Along with the Pearson correlation, the 2-tailed probability value (p-value) was calculated.
The 2-tailed p-value can be calculated by:

p = 2 ·min{P (X ≤ x | H), P (X ≥ x | H)} (4.5)

where X is the random variable, H is the statistical hypothesis and P () is the probability.
The combination of a non-zero Pearson correlation coefficient and a p-value smaller than the

significance level reveals statistically significant combinations. The significance level α was set to
1 % (α = 0.01), meaning there is a 99 % (1− α = 0.99) chance that the correlations found are
not caused by coincidence.

Additionally, the number of class combinations of two variables was counted for all three
permutations. This was then normalized to get percentual values.
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Chapter 5

Results

All results, which have been collected in this thesis, are presented in this chapter. The first section
deals with the results obtained for the stress pattern classification. In the next section, findings
from the analysis of the pattern correlations are presented.

5.1 Stress Pattern Classification

Template Matching

With the template matching approach the achieved classification accuracies were 57.6 % for
cortisol, 54.9 % for amylase and 30.9 % for IL-6.

Feature Selection

Feature selection showed that all additional features, that are listed in Table 4.4, performed
worse than raw samples. When applying the K-Best feature selection for k ∈ [1, 14], the remain-
ing features have always purely consisted of the raw samples. As shown for cortisol in Table 5.1,
samples achieved higher scores than the additional features computed on the raw samples. Similar
results were obtained for the two other variables sAA and IL-6. Neither choosing more features
than the samples, nor choosing less could improve the classification performance. Therefore,
the following classification results are all based on the 14 (6 for IL-6) samples of the biological
markers.

29
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Table 5.1: Feature selection results for cortisol

Feature Score (ANOVA f-value) Feature Score (ANOVA f-value)

Sample 1 14.5 Min-Max Day 1 4.3

Sample 2 6.5 Min-Max Day 2 3.6

Sample 3 8.8 Max-Max 4.4

Sample 4 11.8 locMax Day 1 3.6

Sample 5 6.5 locMax Day 2 4.2

Sample 6 8.0 Mean Day 1 2.3

Sample 7 5.5 Mean Day 2 2.5

Sample 8 11.3 Mean All 1.2

Sample 9 4.8 Std. Dev. Day 1 2.5

Sample 10 4.9 Std. Dev. Day 2 1.1

Sample 11 5.5 Std. Dev. All 2.3

Sample 12 4.4 Skewness Day 1 1.1

Sample 13 4.5 Skewness Day 2 0.7

Sample 14 9.6 Skewness All 0.9

Kurtosis Day 1 1.1

Kurtosis Day 2 0.8

Kurtosis All 0.9

Classification

Table 5.2 lists the classification performance of the three classifiers implemented in this the-
sis. It can be observed that Support Vector Machines performed best throughout all biological
variables. Because the highest accuracy scores were observed with SVMs, the parameter optimiza-

Table 5.2: Accuracies of different classifiers in % (Mean ± Standard Deviation). The best
performing classifier is highlighted in italic.

Classifier SVM k-NN Random Forest
Cortisol 78.1 ± 11.2 64.6± 12.2 66.2± 11.0
Amylase 61.2 ± 12.3 45.4± 10.1 44.8± 9.9
IL-6 91.2 ± 6.3 84.3± 9.2 77.4± 8.9
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Table 5.3: Parameter optimization for cortisol response SVM classification. Example from a
random cross-validation split. The best parameter combination is denoted in italic.

Kernel C γ Mean test score (%)
1 - 48.9
10 - 61.4

Linear 100 - 86.4
1000 - 96.8
10000 - 95.8
1 0.01 48.9

0.001 48.9
10 0.01 48.9

0.001 48.9
RBF 100 0.01 48.9

0.001 48.9
1000 0.01 50.0

0.001 48.9
10000 0.01 72.9

0.001 50.0

tion is only visualized for this type of classifier. The example in Table 5.3 shows that Linear SVMs

with C = 100, C = 1000 and C = 10000 all have high test scores. This observation holds for
every cross-validation fold. Therefore, one of these three parameter combinations was observed
as best-performing in all cases. In Figure 5.1 the percentual distribution of the C parameter is
shown for each variable, averaged over 10 iterations.

C = 100

28.0%
C = 1000 40.0%

C = 10000

32.0%

(a) Cortisol

C = 100
10.0%

C = 1000
68.0%

C = 10000

22.0%

(b) Amylase

C = 1000

36.0%

C = 10000

64.0%

(c) IL-6

Figure 5.1: SVM classification parameter distribution.

Figure 5.2 (a) shows the confusion matrix for all five cortisol classes. The mean accuracy for
5 classes is 78.1 %± 11.2 %. It is visible that the ‘habituation’ and ‘anticipatory stress’ classes
achieved the highest accuracies with 92 and 88 %, whereas the groups ‘non-habituation’ and
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‘sensitization’ have an accuracy of 74 % and 77 %, respectively. For ‘sensitization’ the accuracy
is at 43%, which means that the algorithm classified the test samples more often wrongly than
correctly. Almost all of the wrongly labeled ‘sensitization’ samples (about 84 %) were assigned
to the ‘non-responder’ group. If the classes ‘sensitization’ and ‘non-responder’ are combined into
a joint ‘non-responder’ class, as displayed in Figure 5.2 (b), a mean accuracy of 92.2 %± 9.7 %

is achieved. Why this is reasonable is explained in the next chapter (6.1).
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Figure 5.2: Confusion matrix for cortisol classification in %.

The overall mean accuracy for amylase classification was 61.2 %± 12.3 %. As depicted in
Figure 5.3, the mean accuracies for the amylase classification was 75 % for ‘habituation’, 55 % for
‘sensitization’, 60 % for ‘non-responder’, and 43 % for ‘non-habituation’. The ‘non-habituation’
class shows a lot of scattering. Samples of this class were often misclassified (66 %) and samples
of other classes were incorrectly assigned to this class multiple times. For example, this was the
case for 30 % of the subjects from the ‘non-responder’ class.
For IL-6 classification the confusion matrix (visualized in Figure 5.4) shows the accuracy for
the individual classes with 99 % for ‘habituation’, 71 % for ‘non-habituation’, and 89 % for
‘sensitization’. The mean accuracy for IL-6 responder type labeling is at 91.2 %± 6.3 %.
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5.2 Stress Pattern Correlation

Results for finding connections within the patterns of different stress-reactive variables are shown
with their correlation coefficients and p-values in Figures B.1 and B.2. For a significance level of
α = 0.01, results revealed the following five significant cominations:

• ‘amylase non-habituation’ – ‘cortisol non-responder’ (r = 0.28, p = 0.004)

• ‘amylase non-responder’ – ‘cortisol anticipatory stress’ (r = 0.27, p = 0.006)

• ‘il6 non-habituation’ – ‘cortisol non-responder’ (r = 0.25, p = 0.01)

• ‘il6 sensitization’ – ‘cortisol anticipatory stress’ (r = 0.26, p = 0.007)

• ‘il6 sensitization’ – ‘amylase non-responder’ (r = 0.25, p = 0.008)

The remaining combinations with p ≤ 0.01 have negative correlations. The combinations were all
found where both classes are within one biological variable, for example ‘cortisol non-responder’
– ‘cortisol habituation’ (r = −0.34, p < 0.001). These are not relevant because every subject only
has exactly one class for each variable. Hence, the combinations within one variable will always
show strong negative correlations.

Similar connections can be found again in the prevalence of class combinations:

• 40 % of cortisol non-responders were also in the ‘amylase non-habituation class’ (Fig-
ure 5.5 (a))

• 50 % of the subjects which show anticipatory stress in cortisol are amylase non-responders
(Figure 5.5 (a))

• 88 % of the cortisol anticipatory stress group are also in the IL-6 ‘sensitization’ class
(Figure 5.5 (b))

• 83 % of amylase non-responders show IL-6 sensitization (Figure 5.5 (c))
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(a) Cortisol and amylase. Normalized on cortisol. (b) Cortisol and IL-6. Normalized on cortisol.

(c) Amylase and IL-6. Normalized on amylase.

Figure 5.5: Prevalence of class combinations (%).
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Chapter 6

Discussion

6.1 Stress Pattern Recognition

Results showed that the classification based on the template matching approach proved to be
less precise than expected with accuracies for cortisol and amylase of under 60 %. For IL-6 the
accuracy is even worse with about 30 %. For three classes, this result is not better than random
guessing. A possible explanation why template matching performs relatively bad is the high
variation within the classes. Therefore, misclassification due to a wrong template having the
highest correlation with the test samples seems to happen relatively often. A more refined template
generation approach – instead of only computing the mean values over all training samples as
class templates – might lead to better results. Furthermore, using weighted samples for template
matching could further increase classification accuracy.

The feature selection revealed that all additionally computed features were not useful for the
aspired classification. This suggests that the calculated features do not separate the classes well.
Additionally, some of the features are dependent. For example the Minimum-Maximum difference
is an approximation of the standard deviation. The conclusion that the additionally computed
features do not represent the aspects an experts uses for labeling could be drawn.

As described in Section 5.1, the best classification results were achieved when only considering
raw samples. When feature selection was performed on the raw samples, the reduction of samples
lead to a decrease in classification performance. Therefore, a higher density of sampling points
might improve further improve classification performance. However, this would cause additional
costs for analysis of saliva probes and might disrupt the whole study procedure, leading to altered
stress responses.

37
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In related work, subjects with high cortisol baseline often have to be excluded since subjects
with high baseline are sometimes not able to show a stress reaction [Kud04]. In this thesis these
high baseline samples did not need to be excluded because no considerable changes in accuracy
were observed. On the one hand this compensated by the ‘anticipatory stress’ class which includes
many of the high baseline subjects, and on the other hand leads to the possible conclusion that the
classification process is robust enough to classify these correctly.

As Figure 5.2 reveals the mean accuracy considerably increased (78 % vs. 92 %) when
combining two cortisol response classes into a joint class. Of course reducing the number of
classes generally makes the classification task easier. Nevertheless, another reason is that data
from subjects belonging to those two classes (‘sensitization’ and ‘non-responder’, respectively)
appear to look very similar. During the first day, subjects of both classes showed a weak or
no cortisol response, which is correct for both classes according to their definition (Table 4.3).
However, on the second day many subjects from the ‘sensitization’ group, which should have a
considerably higher response, showed a rather weak response (Figure 6.1). In consultation with
the expert, it became clear that the definition for differentiating both classes was not clear enough
for reliable labeling. Hence, it is plausible to merge to two classes.

Figure 6.1: Comparison of all raw samples from day 2 of the cortisol classes ‘sensitization’
and ‘non-responder’. Cortisol normalized on highest measured value.
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Non-reliable labeling, for example due to unclear class definitions, leads to uncertainty in
the ground truth data. In order to avoid this, a sharper definition of the classes is suggested.
Additionally, multiple experts that independently label the same dataset would be helpful, since
results obtained from machine learning can never be more accurate than the ground truth data.

For the amylase response classification, the confusion matrix (Figure 5.3) shows that the
‘non-habituation’ class was wrongly classified several times. Also, subjects from other classes
were often wrongly assigned to this class. For example, 37 % of the subjects from the amylase
non-responders were misclassified to ‘non-habituation’. The are various possible reasons for
this. For instance, unclear class definitions can, analogous to cortisol classification, lead to
misclassifications. Besides errors caused by imprecise ground truth data, there are huge variations
in the stress response values within the same class. This is proven by the high intra-class standard
error (Figures 4.2 and B.3).

Additionally, the number of subjects per class is relatively small. For example, there are
only seven subjects from the cortisol ’anticipatory stress’ class (Figure ??). For a more robust
classifier more data would need to be recorded, because learning tasks are highly depending on
large databases. Oversampling was used instead of undersampling, so that the amount of data is
not further reduced.

In contrast, IL-6 pattern classification showed a high accuracy for all classes. This suggests that
the patterns were more precisely defined by the expert and therefore, a clearer class differentiation
was possible. Furthermore, results also show that three samples per day and subject are enough
for automatic classification. From the three different patterns, non-habituation performed worst,
which is the minority class with only about 14 % of the samples (10 of 71 subjects). Therefore, it
is possible that the classifier tends to learn the majority classes better.

Another problem, which occurred in this work was that the results varied if the classification
process is was repeated multiple times on the same dataset. The mean accuracy differed within
a range of ± 2 %. Furthermore, the standard deviation is relatively high with about 10 % for
cortisol classfication and even over 12 % for amylase. This can be caused by ’outliers’ in the test
or the training set, which will often be classified wrong. For instance, if one subject shows typical
signs of two or more classes, it could either cause the classifier to learn signs which are not typical
for this class in the training process, or it could be misclassified because the rules learned from
other samples do not apply for this ’outlier’. Detecting those outliers would improve classification
performance. However, this is only feasible with a bigger dataset. Another possible reason for
these variations, could be the small size of the dataset. Therefore, the cross-validation splits vary
a lot between each repetition.
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The parameter optimization showed that increasing the C parameter also increased accuracy.
However, as described in Section 4.2 SVMs with a higher C parameter tend to generalize less.
Therefore, it is possible that the classifier is only trained well for this dataset, and that classification
on another dataset will not be very accurate. However, it was attempted to avoid such overfitting
with cross-validation. Additionally, samples of different classes can be found very close to each
other in the parameter space. Hence, a smaller margin hyperplane(corresponding to a higher C
value) managed to separate the different classes better.

Figure B.3 reveals some interesting insights how decision trees performed the ‘best splits’
in order to separate classes as well as possible. In the first node, the decision tree is capable of
separating the set into two (‘sensitization’ and ‘non-responder’) and the remaining three classes
quite well. This first decision is only based on sample number 3, which corresponds to the sample
15 minutes after the TSST on day 1. Cortisol reaches the peak values at this point for the normally
expected ‘habituation’ response. In the next decision tree layer, 12 of 16 ’anticipatory stress’
samples are classified based on a high first sample, which, based on the class description, would
be considered as “intuitive decision”. This leads to the conclusion that the decision tree classifier
performs a quite “human-like” classification of stress response patterns.

However, there are some issues in the medical context, which need to be considered. For in-
stance, the IL-6 concentration in the serum is quite unspecific. IL-6 is only an indirect indicator of
stress, and primarily in indicator of inflammation [McI14]. Therefore, non-neglectable percentage
of the measured IL-6 concentration can also originate from other inflammation related processes.
Furthermore, the cortisol and amylase samples collected from saliva highly depend on the used
analysis device and method, and that a change in the analysis pipeline would lead to baseline
shifts or changes in amplitude scaling. Therefore, that the classifier trained in this work would
need to be retrained using additional data in order to increase generalizability of the underlying
classification model.

For future work, and for application in a real-world scenario, it is proposed to remove the
outer cross-validation step. After oversampling the minority classes with SMOTE, the learning
algorithm can be trained on the whole dataset for the best results. Because Linear SVMs performed
best in all scenarios, the optimization process can be limited to the parameter C. The results
presented in this work suggest to vary C in the range [102, 103, 104].

Another limitation of the approach used in this thesis is that the classification will probably not
generalize well on other datasets using different time points relative to the stressor for collecting
saliva and blood samples or a different number of samples. In order to still allow classification,
samples from the new dataset would need to be mapped to the required form, for instance
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by interpolating sample values. Another possibility would be retraining the classifier using
information from the new dataset.



42 CHAPTER 6. DISCUSSION

6.2 Stress Pattern Correlation

Some of the results gained from the analysis of pattern correlation could lead to new findings from
a psychophysiological point of view. They suggest a connection between the three classes ‘cortisol
anticipatory stress’, ‘amylase non-responder’ and ‘IL-6 sensitization’. A possible interpretation
is that the combination of a malfunctioning SNS stress reaction together with a high HPA-Axis

response before stress exposure results in a higher inflammatory response. This could extend
the results from previous work that a stronger HPA-Axis habituation is inversely related to
inflammatory sensitization [Tho17].

The correlation between ‘amylase non-habituation’ and ‘cortisol non-responder’ subjects
could indicate that a non-adaptive SNS reaction inhibits the cortisol response, or that, in contrast,
the missing HPA-Axis response might lead to non-habituation in the SNS.

Furthermore, the correlation of ‘cortisol non-responder’ and ‘IL-6 non-habituation’ subjects
could reveal that a missing HPA-Axis response leads to worse adaption of inflammatory processes
to repeated stress.

The statistical methods applied in this work were relatively simple. Therefore, further statistical
analysis could bring up even more inter-pattern linkages.

Additionally, the problem of the rather small study population holds for to this task as well.
Hence, results should be only seen as first hints how the stress-reactive parameters might be
related. The connections have to be further investigated in a larger study to verify these first
findings and potentially draw more definitive conclusions. In order to achieve this goal, the
automatic classification approach developed in this thesis could contribute.
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Conclusion and Outlook

The two research goals of this thesis were the classification and prediction of different stress
responder types, and the analysis of correlations between these patterns. For the first task, a method
capable of classifying four different cortisol responder types with high accuracy (92.2 %± 9.7 %)
was introduced. Additionally, three different IL-6 classes can be discriminated with high accuracy
of 91.2 % ± 6.3%. Unfortunately, the achieved accuracy for amylase is a bit lower with about
60 %. In conclusion, the cortisol and IL-6 classification could be easily adapted to a recommender
system for faster and easier labeling of new data.

Based on further data, which is currently being collected by Rohleder et al., the classifier can
be evaluated on a completely new dataset. This can prove, whether the classifier overfits to the
dataset used in this thesis or generalizes well.

An interesting approach for further analysis of the data would be the prediction of the stress
responder types based on other variables. Especially the prediction based on psychological
measures (Section 4.1.3), might have a great potential, because there a various influences on the
stress reaction as already described previous work.

Another interesting topic for future work could be the exploration of relations of cortisol
response patterns to acute stress with the diurnal variations of cortisol.

The results obtained for the second research question revealed a few new findings of how the
three stress-reactive parameters explored in this thesis could be connected. Although some of
these correlations have already been found in related studies, it is proposed to further investigate
these, in order to understand the interactions better.
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Appendix A

Patent

Computerized identification of normal and abnormal diurnal
cortisol secretion patterns and levels of testosterone from hu-
man saliva samples

Publication Number US7805396B2

Date of Publication May 30, 2003

Inventors Peter Wagner, Lene Martin

Assignee Diagno-International BV. Schiphol(NL)

Abstract Normal and abnormal diurnal cortisol secretion patterns are identified
from human saliva samples by an in vitro method. First and second
saliva samples are taken from one human individual at first and second
predetermined times during the same day. A first cortisol concentration
is determined in the first saliva sample, and a second cortisol concentra-
tion is determined in the second saliva sample. An abnormal secretion
pattern is then compared to a normal secretion pattern with the help of a
fuzzy logic algorithm. A function of the hypothalamic-pituitary-adrenal
(HPA) axis is then determined for the human individual. Optionally, a
testosterone level is determined from one of the samples and is used
in combination with the cortisol concentrations to provide a redefined
determination.
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Appendix B

Additional Figures
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Figure B.1: Correlation coefficients for all class combinations.
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Figure B.2: p-Values for all class combinations.
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Figure B.3: Decision Tree for cortisol classification. 0-7 refers to the normalized cortisol values
of the first day, 8-13 represent the values on the second day.
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Glossary

ACTH Adrenocorticotrophic Hormone

ANOVA Analysis of Variance

ANS Autonomous Nervous System

Automatic Activation The involuntary processing of stimuli in preparation for associated re-
sponses. This activation tends to occur more rapidly than that resulting from an inten-
tion. [Nug13]

Comorbidity Describes a further illness or syndrom, which can be distinguished by diagnosis

Cortisol A hormone from the adrenal cortex, the principal glucocorticoid [Lan11c]

CRH Corticotrophin Releasing Hormone

CV Cross-validation

Homeostasis Maintenance of a dynamically stable state within a system by means of internal
regulatory processes that counteract external disturbances of the equilibrium [Bro93]

HPA-Axis Hypothalamic–Pituitary–Adrenal Axis

IL-6 Interleukin-6

kNN k-Nearest-Neighbors

ML Machine Learning

PTSD Posttraumatic Stress Disorder
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RBF Radial Basis Function

sAA Salivary Alpha-Amylase

SMOTE Synthetic Minority Over-sampling Technique [Cha02]

SNS Sympathetic Nervous System

SVM Support Vector Machine

TSST Trier Social Stress Test
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