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Abstract— The increasing quality and availability of low-cost
EEG systems offer new possibilities for non-medical purposes.
Existing openly available algorithms to assess the user’s mental
state in real-time have been mainly performed with medical-
grade equipment. In this paper, an approach to assess the user’s
Focus or Relax states in real-time using a consumer-grade,
wearable EEG headband is evaluated. One naive measure
and four entropy-based measures, computed using relative
frequency band powers in the EEG signal, were introduced.
Classifiers for relax and focus state detection, based on the
estimation of probability distributions, were developed and
evaluated in a user study. Results showed that the Tsallis
entropy-based measure performed best for the Focus score,
whereas the Renyi measure performed best for the Relax score.
Sensitivities of 82.0 % and 80.4 % with specificities of 82.8 %
and 80.8 % were achieved for the Focus and Relax scores,
respectively. The results demonstrated the possibilities of using
a wearable EEG system for real-time mental state recognition.

I. INTRODUCTION

Traditionally, the electroencephalogram (EEG) is a stan-
dard, noninvasive method in neuroscience and cognitive
science for monitoring and analyzing the state of the
brain, with applications for sleep and memory research,
epilepsy monitoring, or attention deficit hyperactivity dis-
order (ADHD) [1]. Due to the increasing availability of
EEG recording systems as low cost wearable devices, a
new range of applications for non-therapeutic purposes have
been developed. For instance, even though tethered EEG
headbands have been used in gaming for over a decade,
recent work uses wireless EEG devices for brain computer
interfaces (BCIs) or biofeedback applications [2][3]. More-
over, these kind of tools could also be applied to implicitly
control advanced context-aware applications, such as lighting
systems or virtual reality environments that respond to the
user’s state of mind and learn over time which settings help
the user to relax or focus.

As examples of context-aware applications, several re-
search groups have applied EEG to increase road safety by
assessing and quantifying drivers fatigue. For instance, Jap
et al. used ratios of EEG spectral components to estimate
drowsiness [4]. Additionally, other research groups proposed
driver fatigue detection and quantification algorithms using
entropy-based measures [5]. Steps beyond the assessment of
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drowsiness and fatigue are the recognition of different mental
states based on EEG data [6], as well as the analysis of
cognitive performance [7] or attention [8].

However, many of those experiments used visually evoked
potentials that require a distinct visual stimulus in order
to segment it from the regular EEG signal. Furthermore,
they were conducted under controlled laboratory conditions
and with clinical, obtrusive EEG systems. Because the un-
derstanding of complex cognitive procedures requires the
context to be as realistic as possible [9], the existing solutions
are not suitable for daily life use. Therefore, there is a need
for a solution that is able to assess the user’s mental state in
real-time and in a regular, daily life environment.

Commercially available wearable EEG headsets like Neu-
roSky (NeuroSky Inc., San Jose, CA, USA) or Emotiv
(Emotiv Inc., San Francisco, CA, USA) provide energy-
based indicators for mental states, such as stress, excitement,
and relaxation [10][11]. However, it is unclear how those
indicators are computed, as the algorithms are not openly
accessible. Furthermore, there is a lack of published studies
evaluating these indicators and their proprietary algorithms.

For that reason, this work introduces and evaluates dif-
ferent approaches for mental state recognition by computing
scores that quantify in real-time how focused or relaxed a
person is using a simple EEG headband. The resulting scores
can be used by context-aware systems that aim to increase
productivity, calmness and wellbeing.

II. METHODS

A. Data Acquisition

1) Sensor Hardware: EEG data were acquired using a
Muse Headband (InteraXon Inc., Toronto, Canada)1. It is a
commercially available and portable EEG system with four
active electrodes (denoted as channels 1-4) and a common
mode reference electrode, which also acts as driven right leg
(see Fig. 1). The EEG consists of a variety of frequencies
that are associated with different mental states and are
traditionally divided into five frequency bands [12]. Table I
shows the division used by the Muse headband with its
corresponding frequency ranges and the associated mental
states. The headband initially oversamples the EEG signal
at a sampling rate of 12 kHz and subsequently downsamples
it to 220 Hz. Further on-board processing computes relative
frequency band powers as percentages of linear-scale band
powers in each frequency band with an output rate of 10 Hz
(see Table I).

1http://www.choosemuse.com

http://www.choosemuse.com


Name Freq. range Mental state

θ (Theta) 4-8 Hz Drowsiness, hypnagogia [13]
α (Alpha) 7.5-13 Hz Quiet, resting, eyes closed [1]
β (Beta) 13-30 Hz Attention focused to specific

task [14]
γ (Gamma) 30-44 Hz High level mental processing,

binding of senses [14]

TABLE I: EEG frequency bands provided by Muse head-
band [15].

Fig. 1: Muse electrodes on 10-20 electrode positioning
system with channel (green) and reference electrodes (red).

The acquired data were streamed to a computer running
an instance of the MuseIO application included in the SDK.
It handled the communication with the Muse headband via
User Datagram Protocol (UDP) and passed EEG data to a
Python client for further data processing.

2) Study Design: Eleven subjects aged 28.1 ± 4.6 years
(M ± SD) participated in the data collection which was con-
ducted in an office space. All subjects gave written consent
about their participation in the study. During the procedure,
the subjects wore the MUSE headband as proposed by the
manufacturer.

Task Duration Category

Intro 3 min Neutral
Mental Arithmetic 3 min Focus
Pause (w/ nature scene) 3 min Relax
Dictation 3 min Focus
Pause (w/ nature scene) 3 min Relax
Where’s Waldo 3 min Focus
Pause (w/ nature scene) 3 min Relax
Outro 3 min Neutral

TABLE II: Study protocol for EEG data acquisition.

The study procedure (as listed in Table II) consisted of
multiple tasks. Each of them were associated with one of
three possible categories, corresponding to different mental
states: Neutral, Focus, Relax. The Neutral phases were used
as reference measurements with no specific instructions
given, except not to close their eyes. During the Focus phases

the subjects were asked to perform different tasks that were
all supposed to generate high levels of mental processing
and binding different senses [16]. During the Relax phases,
subjects were asked to relax themselves. Additionally, they
chose between different nature scenes to be displayed on a
laptop computer, such as beach, forest or mountain, which
had been proven to have a positive effect on achieving a
relaxed mental state [17].

B. Data Processing

In the first step, live data received from the MuseIO appli-
cation were preprocessed. Subsequently, different approaches
of of computing Focus and Relax scores were performed:
One naive as well as four entropy-based approaches.

1) Preprocessing: Only relative band power samples of
channels 1 and 4 (see Figure 1) were considered and dropped
if the signal quality indicator (one integer value per channel,
provided by the headband) was not sufficient. Histograms
were created for each frequency band and each channel,
respectively. They were updated with each valid sample
being added using the P2Algorithm [18], which allows a
dynamic calculation of percentiles and histograms without
having to store all observations. Samples falling between
the 10th and the 90th percentiles of the histogram were
normalized between 0 and 1, whereas other values were
considered as outliers and therefore rejected. Subsequent
computations were performed on the mean value of the last
10 samples (further denoted as processed samples).

2) Naive score computation: The naive approach for the
computation of Focus and Relax scores was purely based on
the relative alpha and gamma band powers of the recorded
EEG data. Therefore, the Naive Relax and Naive Focus
scores were derived from the alpha and gamma band by
averaging the processed samples, respectively. A 20-point-
moving-average low-pass filter was applied to the output
values to filter out short-time mental state fluctuations.

3) Entropy-based score computation: In general, entropy
serves as a measure for randomness or uncertainty of an
information source and is very effective in detecting non-
stationary events like peaks and bursts [19]. Hence, in this
probabilistic concept the EEG signal was considered as the
result of a random process. Processed samples for each chan-
nel were interpreted as random variables xi, i ∈ {θ, α, β, γ}
emitted by an information source, satisfying the conditions
pi ≥ 0 and

∑
i pi = 1.

An EEG signal with relatively equal band power
distribution has a high degree of randomness and thus
exhibits a high entropy. In comparison, an EEG signal with
high relative band power in one specific frequency band
indicates a decrease of randomness and results in lower
entropy [5]. Leveraging this, Relax scores were computed
using processed samples from alpha and theta frequency
bands, whereas gamma and beta band samples were used
for the Focus score, respectively. In this work, four different
entropy measures were used which have been applied to
EEG signals by previous work [5]:



• Shannon entropy HSh:

HSh = −
∑
i

pi · log2(pi). (1)

• Rényi entropy HRe of order α (α ≥ 0 and α 6= 1), a
generalization of the Shannon entropy:

HRe =
1

1− α · log2

(∑
i

pαi

)
. (2)

• Tsallis entropy HTs, a non-logarithmic parameterized
entropy measure:

HTs =
1

α− 1
·
∑
i

(pi − pαi ) . (3)

• Kullback-Leibler divergence DKL, a measure of the
difference between two probability density functions p
and q [20]:

DKL(p||q) =
∑
i

p(i) · log p(i)
q(i)

, (4)

For HRe and HTs entropies of order α = 3 were used
because they have shown to work well on EEG signals
with short-range rhythms [5]. For DKL, p and q refer to
the processed samples of alpha and theta bands for the
Relax score and to the processed samples of gamma and
beta bands for the Focus score, respectively. The computed
entropy measures were normalized between 0 and 1 (denoted
as Hnorm) and subtracted from 1 as an increase in being
focused or relaxed yields to an decrease of entropy and vice
versa. Finally, a 20-point-moving-average low-pass filter was
applied to filter out short-time mental state fluctuations.

III. EVALUATION

Every data sample was labeled with the associated task
during which it was recorded (Neutral, Focus, Relax). Classi-
fication was performed by estimating the probability distribu-
tions of each score and measure. Therefore, histograms were
updated in real-time for each measure and score, respectively,
using the P2-Algorithm. Subsequently, a binary classification
for both scores was applied using a quantile-based threshold.
As this method only relied on live data of the subject itself
and hence did not require a previously trained classification
model, a separation into training and test sets was not
necessary and thus, no cross-validation had to be performed.

Receiver Operating Characteristic (ROC) curves were
generated for every measure by computing sensitivity and
specificity for quantiles in the interval [0.05, 0.95] with a
step size of 0.05. Optimal quantiles for each measure were
obtained by selecting the quantile value on the ROC curve
with the smallest L2 norm to the optimal classifier (1.0 True
Positive Rate and 0.0 False Positive Rate).

IV. RESULTS

Focus and Relax scores recorded for one subject while
performing the study protocol are visualized in Figure 2.
The ROC curves for the different measures of Focus and
Relax scores are shown with their corresponding AUC values

Measure Focus score Relax score
Q Sen Spec Q Sen Spec

Naive 0.55 67.7 % 67.5 % 0.50 75.4 % 74.4 %
Shannon 0.55 69.8 % 71.3 % 0.50 70.7 % 70.9 %
Renyi 0.65 79.8 % 82.8 % 0.55 79.3 % 80.8 %
Tsallis 0.65 82.0 % 78.9 % 0.55 80.4 % 79.6 %
KL 0.50 55.3 % 60.0 % 0.50 59.1 % 55.4 %

TABLE III: Performance evaluation for each measure.
Q = Quantile, Sen = Sensitivity, Spec = Specificity. The
highest values are highlighted.

Fig. 2: Course of Focus (top) and Relax (bottom) score
measures for a typical subject during the study.

in Figure 3. Results yield that the Tsallis-based measure
performed best for the Focus score, whereas the Renyi-based
measure performed best for the Relax score. The optimal
quantiles of each measure with their respective sensitivity
and specificity are listed in Table III. It shows that the
Tsallis measure offers the highest sensitivity, whereas the
Renyi measure achieved the highest specificity. Results also
indicate that 0.65 is the best performing quantile for the
Focus score, compared to 0.55 for the Relax score.

V. DISCUSSION

For the entropy-based measures, input from two adjacent
EEG frequency bands (α and θ for Relax, γ and β for
Focus) were used, whereas the Naive measure only used data
from α and γ bands, respectively. Because the association of
certain tasks or mental states with EEG frequency bands are
only considered as guidelines and thus might not completely
coincide for every person [12], using information from
two adjacent frequency bands might increase the classifi-
cation performance. Accordingly, entropy-based approaches
for EEG analysis had proven to achieve better results than
solely using frequency band power or band power ratios [1].
Therefore, results of this work showed that both Tsallis
and Renyi measures outperform the Naive approach and
work reliably even for low cost consumer EEG devices.
Accordingly, previous work had shown that they are more
effective in characterizing the complexity of the brain [19]



Fig. 3: ROC curves for Focus (left) and Relax (right) score
measures and their corresponding Area Under The Curve
(AUC) values. The best performing quantiles are denoted.

than Shannon entropy, because HRe and HTs can be adapted
to emphasize either background activity or bursts in EEG
frequency bands using the entropic index α.

The Neutral phase at the beginning of every recording
was required to provide an initial histogram estimation
for the measures. This allowed mental state classification
to be performed without using any training data acquired
beforehand. Results of the study built on the assumption of
equal prior probabilities for both Focus and Relax phases
as the durations were the same. When applying this method
to other scenarios exhibiting a non-equal class distribution,
the histogram would be skewed and the study design should
therefore be adapted to for a better histogram estimation.

Because subjects were confronted with concrete, sense-
binding Focus tasks, they reported that they felt more focused
than they felt relaxed during the Relax phases, where only
a nature video was presented to them. Therefore, the AUC
values indicate that the proposed measures perform better
for the Focus score than for the Relax score. Furthermore,
Figure 2 yields that measures achieved higher amplitudes
and more distinct peaks during Focus tasks then they did for
Relax tasks, also leading to higher quantile thresholds for the
Focus score (as denoted in Table III).

VI. CONCLUSION & OUTLOOK

This work presented different measures for real-time focus
and relax recognition using a wearable EEG system and
proved the possibility of applying this system for brain-
computer-interfaces or to control context-aware applications.

A data-driven approach was used by estimating the prob-
ability distribution for each person and updating it in real-
time. Classification was then performed using quantiles of
the estimated histogram as threshold. A Naive approach was
compared to different entropy-based approaches, showing
that the measures using Renyi and Tsallis entropy performed
better than the Naive measure. By finding a trade-off between
sensitivity and specificity, the best quantile-based thresholds
were determined for the Focus and Relax scores.

Therefore, results show that a mental state recognition can
be performed in real-time and without building a classifica-
tion model using previously recorded training data. However,
future work still has deal with the improvement of the

classification performance, for instance by combining results
of two different score measures.
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