
2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Convolutional Neural Networks for Position
Estimation in TDoA-based Locating Systems

Arne Niitsoo†
arne.niitsoo@iis.fraunhofer.de

Thorsten Edelhäußer†
thorsten.edelhaeusser@iis.fraunhofer.de

Christopher Mutschler†‡
christopher.mutschler@iis.fraunhofer.de

†Machine Learning and Information Fusion Group
Fraunhofer Institute for Integrated Circuits IIS

Nuremberg, Germany

‡Maching Learning and Data Analytics Lab
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Erlangen, Germany

Abstract—Object localization and tracking is essential for
many applications including logistics and industry. Many local
Time-of-Flight (ToF)-based locating systems use synchronized
antennas to receive radio signals emitted by mobile tags. They
detect the Time-of-Arrival (TOA) of the signal at each antenna
and trilaterate the position from the Time Difference-of-Arrival
(TDoA) between antennas. However, in multipath scenarios it is
difficult to extract the correct ToA. This causes wrong positions.

This paper proposes a signal processing method that uses
deep learning to estimate the absolute tag position directly
from the raw channel impulse response (CIR) data. We use
the CIR together with ground truth positional data to train
a convolutional neural network (CNN) that not only estimates
non-linearities in the signal propagation space but also analyzes
the signal for multipath effects. Our evaluation shows that our
position estimation works in multipath environments and also
outperforms classical signal processing in line-of-sight situations.

I. INTRODUCTION

The positional tracking of people, material, and tools in
industrial environments is considered as a key component to
digitalization. But vision-based tracking with its high posi-
tional accuracy is no viable solution as it does not guarantee
robust tracking. Occlusion prevents a continuous tracking.

Radio-based real-time locating systems (RTLSs) do not
suffer from occlusion that much. However, to make them
work in practice is also tedious. Besides costs for hardware,
software, and system installation it is often required to tune the
system for the target environment. This often requires a field
campaign to manually optimize the system parameters for the
desired application. Non-experts usually cannot install RTLSs.
This causes high costs, which prevents their application.

In growth markets and in environments that are typical for
industrial applications (production and machinery buildings,
logistics centers etc.) there is also a big challenge for radio-
based RTLSs in terms of robustness and reliability. Metallic
surfaces often cause signal reflections and attenuations, which
favor multipath signal propagation that leads to a wrong
position. A solution is to install the antennas at positions
such that multipath becomes rare. However, this is a highly
non-linear optimization problem that often still results in poor
configurations. A common approach is to install more antennas
than necessary. However, this causes high costs.

There is a multitude of approaches that either deal with
multipath propagation, i.e., unscented Kalman-filters [1], chan-
nel classification [2], subsample interpolation [3], or sub-space
approaches [4], or that even exploit the presence of multipath,
i.e., by generating scattering models with statistics [5], [6], by
simultaneous target and multipath positioning [7], by using
training signals to model a random variable [8] together with
a floor plan to enhance the tracking filter [9] or using large-
scale MIMO [10]. However, those approaches either do not
scale well or do not improve with an increase of available
training signals (as those can often be acquired easily).

The key idea is to use machine learning (ML) instead
of traditional signal processing to estimate positions. Deep
learning (DL) has shown to outperform classical approaches
in several applications and has also been used for localization
purposes [11]. DL extracts relevant features embedded in the
signals itself. This paper uses the channel impulse response
(CIR) from the antennas together with ground truth positional
data (derived by a robot equipped with an optical reference
system) to train a deep convolutional neural network (CNN).
The CNN models both the linear and multipath propagation
of the environment. Once it has been trained we can also fine-
tune the CNN for different (multipath) environments.

The paper is structured as follows. Sec. II reviews related
work before Sec. III briefly covers background on signal pro-
cessing in RF-localization systems and (convolutional) neural
networks. Next, Sec. IV shows how to apply CIRs to con-
volutional neural networks for position estimation in TDoA-
based systems, i.e., data (pre-)processing and normalization
schemes. Sec. V describes the experimental setup and the
datasets. Sec. VI evaluates our position estimator on different
real world datasets and shows that we outperform conventional
position estimators not only in massive multipath environments
but that it can also compete in line-of-sight (LOS) scenarios.

II. RELATED WORK

There is much work that uses the received signal strength
(RSS) [12]–[14], the time of arrival (ToA) [15]–[17], or their
combinations [18]. Some use ML-based schemes such as
neural networks with a single hidden layer [13], [16], [18],
variants of neural networks (i.e, deep belief networks [14],

978-1-5386-5635-8/18/$31.00 ©2018 IEEE

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

deep neural networks [19], fuzzy neural networks [20], artifi-
cial synaptic networks [15]), Gaussian regression [21], support
vector machines (SVM) [17], or combinations of them [12].
Iqbal et al. [22] monitor patients using CNNs to correlate RSS
measurement in a clinical environment. However, all these
methods only use RSS- or ToA-features, or combinations,
which are only rough features in a multipath environment.

A much richer feature to estimate the location of an object
is the channel impulse response (CIR). Yu et al. [23] extract
energy and delay features from the UWB impulse response
and use these features to train a neural network. Li et al. [24]
extract features from [25] to identify LoS (NLoS) situations
using an SVM. Cui et al. [26] use a neural network to
approximate the relationship between the SNR and statistical
information such as skewness and kurtosis in the CIR. Savic
et al. [27] propose a kernel-PCA combined with Gaussian
process regression that projects the channel parameters onto a
nonlinear space from which then a subset is used for ranging.
Ergut et al. [28] use a set of anchors to generate multipath
profiles, i.e., a number of time differences between peaks
within a single CIR, which are used together with ground truth
data to train a neural network with a single hidden layer. Jin
et al. [29] approximate the CIR from subcarrier amplitudes of
OFDM signals and propose a fingerprinting based on Gaussian
regression. Also known as channel state information (CSI) this
has extensively been studied lately [30]. However, all of the
above approaches extract hand-crafted features from the CIR.
Those only represent a subset of the available information,
which only results in a rough estimation.

In contrast to a manual feature extraction deep learning
(DL) aims at finding and extracting the relevant features from
the sensor data directly. This requires more data. Wang et
al. [31]–[34] propose several ideas to process the CSI from
WiFi OFDM-signals using deep CNNs. They feed the CSI
directly into a CNN to train a position [31], train with phase
information [32], directly estimate the angle of arrival with
a CNN using phase fingerprinting [33], and combine these
ideas [34]. However, their difference lies in the nature of
the underlying signals and the system setup. TDoA-based
localization requires a synchronized network of access points,
i.e., anchors. Different from ToA the subcarrier amplitudes de-
scribe the signal propagation profile and hence the relationship
between access point and mobile devices at specific positions.

Tiemann et al. [35] use DL to estimate orientation-
dependent error induction characteristics from the CIR. How-
ever, they do not consider CIRs from synchronized antennas
and do not estimate the position. Vieira et al. [36] use
convolutional neural networks to fingerprint massive MIMO
channels. However, the signals and the system setup in mas-
sive MIMO channel fingerprinting are significantly different.
Comiter et al. [37] propose a beam estimation for using deep
neural networks that derives the angle of arrival by phase
differences. Using different antenna arrays a structured pair
of neural networks is used to estimate the antenna beam.
However, they also do not use several CIRs to estimate the
position within a ToA-setup. Xiao et al. [38] propose denoising

autoencoders to model the noise of reference locations. In
the localization phase the measurement point is denoised by
the autoencoder and a k-Nearest-Neighbor (KNN) classifier
estimates the location. However, both the setup and the signals
significantly differ from our approach.

III. BACKGROUND

A. Position Estimation and Channel Impulse Response (CIR)

RTLSs that use time difference of arrival (TDoA) estimation
need synchronized receivers and estimate not only the position
of the mobile tag but also its time-of-transmission (ToT). Both
result from a hyperbolic trilateration of the TDoA-values.

We derive the time of arrival (ToA) at each antenna through
an analysis of the channel impulse response (CIR), see Fig. 1.
The blue signal shows the CIR under line-of-sight conditions.
We can extract the ToA by estimating the peak in the signal
(at this point the correlation between the measured signal and
the waveform is at its maximum), which is 30ns from the
window start in Fig. 1. But although the signal is clear we can
only extract the real ToA with a bias that is introduced by the
bandwidth-limited analog signal. Clever interpolation between
sampling points and inclination point ToA-estimation [1] help
to reduce this bias to a minimum.

However, not only a limited sampling frequency adds a bias.
Consider the red CIR in Fig. 1. Due to multipath propagation
the signal travels along many routes until it reaches the
antenna. This makes the ToA estimation ambiguous. There
are a number of ToA estimators that make use of thresholds,
maximum energy, and crossings to determine the correct
ToA [26]. However, in multipath situations the real ToA is still
often unknown and cannot be estimated from the CIR alone
without further information. Apparently, such ToA errors cause
incorrect TDoAs, which lead to a large bias in the position.

B. (Convolutional) Neural Networks

Artificial neural networks consist of many interconnected
simple units, i.e., neurons. Classic feed-forward networks have
layers of fully connected neurons, see the two last layers in
Fig. 2. The layers that we cannot see from the outside, i.e., any
layers in between the input and the output layer, are hidden
layers. With data at the input layer the neurons propagate acti-
vations and provide information at the output layer. Artificial
neural networks are generalized function approximators and

0 10 20 30 40 50 60
Time [ns]

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 a
m

pl
itu

de

ToA
LoS
NLoS

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

 a
m

pl
itu

de

ToA

Fig. 1. Channel impulse response (CIR).

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Output

fully connected layers
convolutional and pooling layers

input image

7

7

2
2

3
3

Fig. 2. Principle architecture of a convolutional neural network.

their depth (number of hidden layers) defines the complexity
of the functions they can approximate.

Each connection to a neuron has an assigned weight param-
eter w that controls the influence of the preceding neuron. A
connection of the i-th neuron of layer k with the j-th neuron of
layer k+1 is defined by a weight wk

ij . To calculate the neuron
activation throughout the network we iteratively calculate the
output h(j) of any single neuron j per layer k>0

hk
j (x) = g(bkj +

n∑
i=0

wk
ijx

(k−1)
i),

where bkj is a bias parameter, wk
ij is the weight of the neuron

connection, x(k−1)
i is the activation of the previous neuron, and

g(·) is a (non-linear) activation function, such as a sigmoid
function or the rectifier linear unit (ReLU). In practice the
weights are shared in a matrix and the network is calculated
using matrix multiplications along the layers.

Finding an optimal set of network parameters poses a non-
convex optimization problem that is hard to solve mathe-
matically. But gradient-based optimization, such as stochastic
gradient descent (SGD) works well in practice. Given a labeled
data set (where both the input and the output labels are known),
we can use the data as input, calculate the neuron activations
layer by layer and read the output of the network. On the
output we apply a loss-function, e.g. mean-square error, that
defines how good a network approximated the label of the
data. Next, we back-propagate the prediction error through
the network, i.e., we calculate the influence of each neuron
(activation) on the total error and use the gradients at each
neuron as an indicator to reduce its influence on the error.
Finally, we update the weight parameters using a (small)
learning rate such that the loss decreases in future predictions.

After successful termination of the learning process, i.e.,
after some fixed number of iterations or by a threshold on the
calculated loss, we determine the classification performance by
applying test data to the neural network. If the performance
values meet the desired criteria, the process of training a neural
network is completed and it is ready to classify new data.

Convolutional neural networks define a special architecture
of neural networks. They use pooling layers and normal-
izations layers interchangeably between consecutive convolu-
tional layers, see Fig. 2.

The convolutional layers apply a convolution operation to
the input (often the input is an image) to extract the features
that are embedded in the training set. Each convolutional
layer is also followed by a (non-linear) activation function. A
convolution is a filter operator that is (conceptually) slid over
the input and that preserves the spatial relationship between

the input data points. Usually, we apply several convolutional
filters. For instance, a 7×7 convolution filter next to 3 more
run directly on the input image in Fig. 2.

The pooling layer down-samples the data. Popular pooling
operations are max- and average-pooling. The intuition behind
them is that once the convolution layer has learned the features
from the underlying data the pooling kernels (in Fig. 2 with
size of 3) run over the feature maps and keep the activations
according to the pooling policy. This keeps the information
while it reduces the spatial dimension and computation time.

Usually the first layers of a CNN look at low level features
such as edges and curves. As we stack more convolutional
layers on top the features become more sophisticated and
extract more advanced features. The fully connected layers
at the end are used for classification.

IV. DATA PREPARATION

A. Data Preprocessing

Machine learning methods take training data to build up a
model that can later be used to predict the value of a previously
unseen data point. However, in TDoA-based systems the
transmitter is not time-synchronized, i.e., the time-of-transmit
tToT is unknown. Hence, we also do not know at which time
tiCIR a channel impulse response at an antenna i actually
starts. Often, a simple triggering method, e.g. a threshold
method, is used to set the start of the impulse response.
However, this poses two challenges. First, a single CIR only
contains relative timing information (including its ToA, e.g.
the peak in Fig. 3 for line-of-sight) in relation to the window
start time tCIR. Second, tCIR has no common timing across
the receiving antenna channels i, due to varying analog signal
processing delays, different lengths of antenna cables, and
timing jitter of internal clocks. All of them are also affected
by temperature changes. Hence, a set of CIRs originating from
the same mobile tag position also differs over time.

However, a simple calibration of timing offsets that nor-
malizes tiCIR helps to compensate for that. For this purpose,
we derive a relative calibration offset ∆ti per antenna unit i
(with one antenna arbitrarily but statically being set to 0) using
reference transmitters at known locations (see the green time

!"#"

!#$$%

!#$$&

!#$$'

!()*' !"#+'

!,%

Δ !&

Δ !%

!"#+&

!"#+%

!()*&

!()*%

Fig. 3. CIR, calibration padding.

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

offset in Fig. 3).1 This converts the ToA-based estimation into
a TDoA-based estimation, as we only use the differences to a
single antenna from now. We use these values to pre-process
tiCIR such that all the CIRs together are free of timing-offsets
and hence stable over time. However, although this also adds
a bias to the position (as there is a bias for the ToA estimation
of the reference transmitters) it works fine in practice.

Now consider the CIR to be a time-discrete series of
values that have been sampled with a specific sample rate f ,
see the green lines in the middle of Fig. 3. In radio-based
locating systems the sampling rate is chosen to match the
limitations of signal processing that inherit from the available
bandwidth of the system. This also limits the accuracy of
the resulting positions by design. For instance, the system
we use for our experiments uses a sampling frequency of
f = 101.875MHz, which approximately results in a distance
of c/f = c/101.875MHz ≈ 2.94m (with c the speed of light)
between two sampling points. However, an over-determined
system and clever interpolation between samples results in a
lateral position error that is much smaller.

As the resolution of the timing offsets ∆ti is often more
fine-grained than integral multiples of 1/f (see the green lines
that represent the sampling points among the CIR windows in
the middle of Fig. 3), we have to re-adjust the discrete CIRs
into the same timing units. Hence, we (1) up-sample the signal
by a resampling factor n (see the red lines in Fig. 3), (2)
shift it sample-wise by the integral timing offsets ∆ti/f · n,
and (3) down-sample the signals by its resampling factor n
again. We resample the CIR by a factor of n = 100 (resulting
in a distance of 2.94cm between two samples) and use an
anti-aliasing FIR low-pass filter with kaiser window that also
compensates the delay introduced by the filter.

Now we have the CIRs calibrated and sampled at common
timing units. We further align the CIRs inside an N × M
matrix with N antennas and M > len(CIR) samples, that
each CIR has the correct relative timing to each other and
the median of all center of columns m is M/2. The median
will compensate a small number of wrong detections of CIR,
which can be caused by falsely detecting the CIR window
start position. Samples not occupied by CIR samples will be
padded by zeros. We further interpret the matrix N×M as an
image with its real and imaginary parts as different channels.

B. Normalization of Data

Usually, ML (and DL in particular) requires a normalization
of the dataset. In the training of an ML-model statistical
properties (e.g. as mean and a standard deviation) are only
computed from the training data, not from the validation or test
data. Even if statistical properties are not explicitly computed
the model converges in respect to the statistical properties of
the underlying training data set. Hence, we must standardize
the statistics for the validation and test data with the ones
computed from the training data.

1We assume that we can install reference transmitters at positions with low
multicast profiles. We then derive the offsets by reverse ToA-estimation.

In deep learning we often center the data and hence re-
move statistical dependencies between training and test data.
Normalization techniques are highly application- and data-
dependent. In image classification we subtract the mean image
of the training data from a test sample. We then see if the
model captures statistical dependencies of the underlying data.
Often we can think of it as a way to normalize the dataset such
that it has a zero mean and standard deviation of 1.

Initial trials showed poor results for conventional normaliza-
tion methods. The main reason is that the correlation signals
are highly affected by non-linear effects. Hence, we do not
subtract a mean correlation from the data but we normalize
each input on its own. We consider the signals from n antennas
units as a single set. We use a width of m=60 to describe a
correlation over time in its real and imaginary part, resulting
in an n×m×2 matrix. For each set we take the minimum and
subtract that from each value. We next divide by the maximum
value to effectively scale the values to [0; 1]. We apply this to
real and imaginary signals separately.

Afterwards we combine the real and imaginary signals
with their corresponding correlations values into a 2-channel
correlation image of shape 120 × 12 × 2 (that also considers
recalibration and padding) as shown in Fig. 3 (right).

V. EXPERIMENTAL SETUP

To validate our DL approach we recorded several training
data sets using different setups. We describe our measurement
infrastructure in Sec. V-A, our datasets in Sec. V-B, and our
deep learning setup and model configuration in Sec. V-C.

A. Measurement Infrastructure

The core of deep learning methods is a large dataset that is
used to train, validate and test the model. In addition to the CIR
data, for the training and the evaluation of our model we also
need precise ground truth reference positional data to label our
training and test data sets. We obtain such labels with a Nikon
iGPS system, i.e., an optical laser-based tracking system with
a mean average error both vertically and horizontally below
1mm and an update rate of 30Hz.

For our experiments we also need a radio-based locating
system that delivers a stream of channel impulse responses.
We generated CIR data with a custom radio-based locating
system that runs in the globally license-free ISM (industrial,
scientific, and medical) band of 2.4 GHz and that uses around
80 MHz bandwidth [39]. Miniaturized transmitters use the
available bandwidth to generate short broadband signal bursts
together with identification sequences on which we correlate
on the antenna units. Fig. 4 illustrates the signal processing
chain. The system distinguishes fixed reference transmitters
for calibration purposes from M moving transmitters. All
transmitters emit tracking burst signals, which are received
by N receiving antennas. Our installation uses 12 antennas
that receive signals from up to 144 different transmitters.
Mobile tags emit up to 2,000 tracking bursts per second (we
use transmitters with 200 positions per second). The locating
system allows to receive 50,000 of those signal bursts per

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Fig. 4. RedFIR’s signal processing chain.

second (per antenna). For each of the 12 receiver lines FPGAs
correlate the burst sequences to obtain the correlation, i.e.,
the channel impulse response. We ignore the ToA analysis
and work directly on the CIR streams. As the receivers are
synchronized all the CIRs have a common time base.

We generate the data in the Fraunhofer IIS L.I.N.K. (local-
ization, identification, navigation, communication) test center
that provides a unique test ground on 1,400m2, see Fig. 5.
We used the following platforms to collect our training data
in order to capture different properties of tracking.

Positioning System. We use a crane-like apparatus that
approaches any 3D position in the area with repeating accuracy
of <2mm at a maximum speed of 3m/s. Fig. 5 shows the
crane as it passes through a construction of absorber walls.
We use the positioning system to capture a homogeneously
distributed dataset that covers a larger area at a fixed height.
The positioning system provides 25 position per second which,
however, is not as accurate as the iGPS position. Hence, we
mounted not only the RF-tags but also the iGPS transmitters to
the positioning system. As the system runs slowly we simply
interpolate the reference positions (as the update rate of iGPS
is lower than that of RedFIR).

Mobile Robot. We use a Segway RMP-210 with a max-
imum speed of 30km/h and an acceleration of 2m/s2 to
capture highly dynamic tracking data. As a reference we
take the iGPS position and interpolate intermediate reference
positions by interpolation and odometry information.

Human. We also use a body-mounted apparatus that cap-
tures movements of persons. In general that allows to capture
higher speeds, but usually the speed is below 10 km/h. We
use several iGPS transmitters to determine the position of a
mobile RF-tag that is located near the person’s neck [40].

B. Datasets

Fig. 6 shows the measurement trajectories of our datasets.
The platforms follow the trajectory and we record 200 cor-

TABLE I
DESCRIPTION OF DATASETS.

Dataset # Samples Covered Area
(w×h)

Height Platform

Meander 200,390
(211,416)

13m × 20m 2.5m Pos.-Sys.

Zig-Zag 304,120
(349,025)

22m × 19m 0.29m Segway

Random
Walk

404,687
(691,680)

45m × 30m 0.96m - 2.1m Human

Displaced
Rectangles

92,724
(218,752)

5m × 14m 2.8m Pos.-Sys.

Fig. 5. Fraunhofer L.I.N.K. test center and positioning system.

relation signals per antenna and second. As the iGPS system
only delivers 30Hz ground truth positions we interpolate both
the ground truth positions and timestamps, see Sec. V-A.

Table I specifies our datasets. From the total number of
recorded training samples we only select mostly complete
sets (whenever we receive correlations from 11 of the 12
antennas). However, in a few cases correlations are corrupt,
or there are warnings due to a bad signal-to-noise ratio. We
then discard such measurements. However, due to the heavy
multipath in the displaced rectangles dataset (the rectangles
used the path from Fig. 5) the system is only able to correlate
on 92,724 out of 218,752 burst signals to decode the CIRs.
While we recorded 3D positions in any cases we fixed the
z-coordinate where possible as we only evaluate for the 2D
positional accuracy (as the sub-optimal geometry of the RF-
antennas adds a bias to our evaluation). However, we could
not fix the height of the transmitters on the random walk.

C. Deep Learning Setup

All our experiments run on a desktop machine equipped
with an Intel Xeon E5-1620 v4 CPU@3.5GHz (4 cores,
8 threads, 10MB cache), 16GB of main memory, and an
Nvidia GeForce GTX1080 GPU with 32GB memory. We
implemented all our algorithms in C++14 on Ubuntu 16.04
LTS and used the CAFFE deep learning framework.

In pre-tests we evaluated several different and well-known
deep learning architectures such as AlexNet, VGG-16, VGG-
19, and GoogLeNet [41]. It turned out that the GoogLeNet not
only offers the best trade-off between depth of the network and
number of parameters (and hence the training time) but also
benefits from its inception modules. An inception module is a
1× 1 convolution that reduces the dimensionality of a feature
map. These are used prior to computationally intense 5 × 5
and 3 × 3 convolutions. The GoogLeNet has 22 layer, uses 9
inception modules, and has 2 intermediate classifiers.

We made the following changes to the GoogLeNet archi-
tecture in order to facilitate the size of our correlation input:
• We replaced each of the 3 softmax classifiers by affine

regressors (Euclidean distance).

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

10 15 20
x [m]

5

10

15

20

25
y

[m
]

(a) Meander.

13 18 23 28 33
x [m]

5

10

15

20

25

y
[m

]

(b) Zig-Zag.

1 6 11 16 21 26 31 36 41
x [m]

0

10

20

30

y
[m

]

(c) Random Walk.

28 30 32 34
x [m]

5

10

15

20

y
[m

]

(d) Displaced Rectangles.

Fig. 6. Datasets we use for our experiments: Meander recorded with the positioning system; Zig-Zag recorded using the Segway RMP-210; Random Walk
recorded using a human that builds up a construction in the test center; Displaced Rectangles recorded with the positioning system, see also Fig. 5.

• We replaced the fully connected (FC) layer that has 1,000
output units (before the classifier) by an FC layer of 2 units
outputting a vector of positions (x, y).

• We modified the max-pooling layer after the 2nd inception
module to have a kernel size of 2 instead of 3, the avg-
pooling layer at the 1st and 2nd classifier to a kernel size
of 3 instead of 5, and the max-pooling layer before final
inception modules to a kernel size of 2 instead of 3.
For training we apply stochastic gradient descent (SGD)

with a starting learning rate of 5 · 10−4 and an inverse decay,
and applied a batch size of 50 for training and 10 for testing.

VI. RESULTS

To get a baseline positioning performance of the RF-system
we extract the ToAs under LoS conditions using the inclination
point method and run a Levenberg-Marquardt optimizer to
obtain positions. For each set of ToAs we run the optimization
12 times (with each ToA once being set to 0 for TDoA
estimation) and select the iteration with the lowest error term
(best fit of TDoAs to position). On the Zig-Zag dataset we
obtain an MAE of 0.804m, a CEP of 0.316m, and a CE95 of
1.49m if we skip extreme outliers that are out of range. (In
practice phase analysis and motion models improve accuracy.)

A. General Performance Evaluation

For a simple performance experiment, we divide the datasets
into training (80%) and testing (20%) set. We uniformly
sample among the data points. Later, we evaluate the model by
the whole set and employ the euclidean distance as a quality
measure for the accuracy of the model.

Table II shows the results for our datasets. We achieve
the best results w.r.t. all metrics on the Displaced Rectangles
(Fig. 6 (d)) and Meander (Fig. 6(a)) datasets. However, the
horizontal distance between the rectangles in Displaced Rect-
angle is only 0.2m. But anyway, together with the multipath
propagation (which enriches the information in the CIR) the
model manages to estimate the position exceptionally good.
The ZigZag (Fig. 6 (b)) gives us the hint that the speed of the
Segway system has an effect on the CIRs. The performance is
worst for the Random Walk 6(c) dataset because the height of
the mobile tag varies. The model did not see any information
of the z-axis and hence cannot generalize the measurement
on the xy-plane. With a CEP that is smaller than the MAE

TABLE II
RESULTS FOR GENERAL PERFORMANCE.

Dataset CEP CE95 MAE
Meander 15.6cm 36.4cm 17.4cm
Zig-Zag 24.1m 67.3m 29.1cm
Random Walk 30.3cm 86.8cm 36.2cm
Displaced Rectangles 10.2cm 24.3cm 11.6cm

and a high CE95 we can easily filter out the outliers in a
post-processing step. But on all our datasets (even on the
Zig-Zag with high velocity and the LoS datasets) our DL-
approach considerably outperforms the Levenberg-Marquardt
optimization on the extracted ToAs.

B. Slicing Evaluation

Randomly sampling training and testing data naively does
not elaborate whether the model generalized over the training
data or overfitted the training data. To check for generalization
we construct two additional scenarios on the Meander dataset:

1) Short-Slice (SS): We use the correlations from the red
slices in Fig. 6(a) to test the model, while we use the rest to
train the model. The test slices are approximately 1m long.
This setup evaluates small-scale generalization [42].

2) Long-Slice (LS): We use the correlations from the green
lines in Fig. 6(a) to test the model while we use the rest for
training. This evaluates large-scale generalization.

Fig. 7 shows color-coded error plots for SS (left) and LS
(right). SS has an MAE of 26.5cm, a CEP of 23.6cm and
CE95 of 57.1cm, while LS has an MAE of 33.9cm, a CEP
of 26.5cm and a CE95 of 77.1cm.

10 15 20
x [m]

5

10

15

20

25

y
[m

]

10 15 20
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
 [m

]

Fig. 7. Evaluation of the SS and LS

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

Both test results are worse than the results that we achieve
using the naive sampling approach (which however, did not
check for generalization). But both results also show that our
model generalizes over the training data set. Hence, without
having seen the test data points in the training data set the
model produces viable position estimates that are even better
than the baseline optimization.

C. Architecture Evaluation

We modified popular architectures, i.e., AlexNet, Google-
LeNet, VGG-16 and VGG-19, according to Sec. V-C and
applied our correlation data to them. We further modified
the GoogleNet, see Tab. III. The -Re modification preserves
the CIRs further down the network (we modified the initial
convolutional and pooling layers). The Re-NoP preserves the
size of correlation image (by removing the pooling layer
between the first convolutional and normalization layer). We
also defined Small-Net as a cut-off from the GoogLeNet
architecture (we removed the inception layers between the root
and the first intermediate output).

Fig. 8 shows the CDFs of the network architecture trained
and tested according to the LS scheme. The graph also shows
the CDF of the Meander dataset according to Sec. VI-A with
gray dotted line with the GoogLeNet and its modification G-
Re-NoP as baseline for comparison. Table III specifies the
evaluated architecture parameters together with inference time
per 1000 samples, MAE and CEP. GoogLeNet and VGG-19
are on par especially on the CE95 level. Surprisingly, VGG-
16 outperforms VGG-19 with its modifications. AlexNet has
the worst overall performance compared to the other network
architectures (as it is comparably shallow but mostly fully
connected throughout the network).

The G-Re-Nop provides the best shaped CDF and MAE,
but its inference time is considerably higher than that of
others and also not feasible for practical applications of RLTS.
Comparing GoogLeNet and Small-Net, we can see that they
are on par w.r.t. MAE and CEP. However, Small-Net has nearly
4 times less parameters and a 6 times faster inference time.
The modified Small-Net-Re has a slightly better CDF than the
Small-Net, but with the cost of a larger number of parameters
(approx. 2 million vs. 11 million) which also results in higher
inference times.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Abs. Error [m]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ili

ty
 [0

...
1]

CE95

GooLeNet
G-Re
G-Re-NoP
AlexNet
Small-Net
Small-Net-Re
VGG-16
VGG-19
Meander
G-Re-NoP

Fig. 8. Cumulative Probability over the Meander dataset.

TABLE III
RESULTS AND PARAMETERS OF DIFFERENT ARCHITECTURES.

Network # Params Avg. FP (ms) MAE (cm) CEP
GoogLeNet 6,894,976 66.30 0.36m 0.31m
G-Re 7,422,336 130.68 0.33m 0.28m
G-Re-NoP 8,778,112 411.68 0.29m 0.26m
AlexNet 34,535,104 24.46 0.79m 0.71m
Small-Net 2,113,664 10.83 0.36m 0.32m
Small-Net-Re 11,938,944 37.70 0.34m 0.30m
VGG-16 39,883,904 158.24 0.36m 0.32m
VGG-19 45,192,320 197.18 0.38m 0.33m

D. Multipath Scenario

In reality there are a number of situations where the signal
is attenuated or deteriorated. Real world environments often
include obstacles that facilitate multipath propagation. To
see if our approach also manages to mitigate the effect of
multipath we recorded the Displaced Rectangles dataset.

The rectangles in Fig. 6 (d) illustrate the trajectory. We use
two of the three (red/left, green/right) rectangles for training
and the middle one (yellow) for testing. Fig. 5 shows how
we placed absorber walls on the right side of the dataset. The
perpendicular part on the rectangles’ right side heavily suffers
under multipath propagation. We ended up with a dataset of
90K CIR inputs and divided them such that the training set
consisted of 60K and testing set 30K correlations.

Fig. 9 left shows color-coded result of state-of-the-art
(SoTA) extended Kalman filter using a constant acceleration
motion model that uses ToAs and phase information as input.
Fig. 9 right shows the results of our method. We use the yel-
low/middle trajectory for testing and a median filter for post-
processing. We see that classic ToA-estimation and Kalman
post-processing heavily suffers from NLoS situations. While
ToA together with the transition matrices of the filter perform
very well on the left side (MAE 14.8cm, CEP 14.1cm, CE95
27.0cm in gray rectangle left) the highly non-linear effects on
the right side cannot be resolved (MAE 2,11m, CEP 1.45m,
CE95 5.29m in gray rectangle right). Our approach is slightly
worse in the LoS area with an MAE of 15.4cm, a CEP of
14.6cm and a CE95 of 28.3cm in the left rectangle. But most
impressive is the NLoS performance: with a CEP of 22.9cm
(MAE: 29.2cm, CE95: 68.3cm) our approach computes ac-
curate positions even under heavy multipath (overall MAE:
17.3cm, CEP: 13.7cm, CE95: 45.0cm). This shows that our
approach successfully resolves multipath propagation.

28 30 32 34
x [m]

5

10

15

20

28 30 32 34
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
 [m

]

Fig. 9. Results with multipath scenario

2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

VII. CONCLUSION

This paper presents a position estimation based on deep
learning methods that directly works on the channel impulse
responses of TDoA-based locating systems. We provided
details of our signal and data preprocessing and show the
efficiency of our approach in different real world setups. While
our approach keeps up with conventional signal processing ap-
proaches under line-of-sight conditions it outperforms previous
approaches under heavy multipath propagation.

REFERENCES

[1] T. Nowak and A. Eidloth, “Dynamic multipath mitigation applying
unscented kalman filters in local positioning systems,” Intl. J. Microwave
and Wireless Technologies, vol. 3, pp. 365–372, 2011.

[2] J. He, Y. Geng, F. Liu, and C. Xu, “Cc-kf: Enhanced toa performance
in multipath and nlos indoor extreme environment,” IEEE Sensors J.,
vol. 14, no. 11, pp. 3766–3774, 2014.

[3] R. Exel and T. Bigler, “Toa ranging using subsample peak estimation
and equalizer-based multipath reduction,” in Proc. IEEE Wireless Com-
munications and Netw. Conf., (Istanbul, Turkey), pp. 2964–2969, 2014.

[4] M. Driusso, F. Babich, F. Knutti, M. Sabathy, and C. Marshall, “Esti-
mation and tracking of lte signals time of arrival in a mobile multipath
environment,” in Proc. 9th Intl. Symp. Image and Signal Processing and
Analysis, (Zagreb, Croatia), pp. 276–281, 2015.

[5] S. Al-Jazzar, J. Caffery, and H. R. You, “A scattering model based
approach to nlos mitigation in toa location systems,” in Proc. 55th IEEE
Conf. Vehicular Technology, (Birmingham, AL), pp. 861–865, 2002.

[6] S. Al-Jazzar and J. Caffery, “Ml and bayesian toa location estimators
for nlos environments,” in Proc. 56th IEEE Conf. Vehicular Technology,
(Vancouver, BC), pp. 1178–1181, 2002.

[7] L. Li and J. L. Krolik, “Simultaneous target and multipath positioning,”
IEEE J. Selected Topics in Sign. Proc., vol. 8, no. 1, pp. 153–165, 2014.

[8] J. He, Y. Geng, and K. Pahlavan, “Toward accurate human tracking:
Modeling time-of-arrival for wireless wearable sensors in multipath
environment,” IEEE Sensors J., vol. 14, no. 11, pp. 3996–4006, 2014.

[9] P. Meissner, E. Leitinger, and K. Witrisal, “Uwb for robust indoor
tracking: Weighting of multipath components for efficient estimation,”
IEEE Wireless Communications Letters, vol. 3, no. 5, pp. 501–504, 2014.

[10] N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and
M. Coulon, “Direct localization for massive mimo,” IEEE Trans. Signal
Processing, vol. 65, no. 10, pp. 2475–2487, 2017.

[11] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in 2015 Intl. Conf.
Computer Vision, (Santiago de Chile, Chile), pp. 2938–2946, 2015.

[12] D. Mascharka and E. Manley, “Lips: Learning based indoor positioning
system using mobile phone-based sensors,” in Proc. 13th IEEE An.
Consumer Communic. Netw. Conf., (Las Vegas, NV), pp. 968–971, 2016.

[13] A. Martinez Sala, R. Quir’os, and E. L’opez, “Using neural networks
and active rfid for indoor location services,” in Proc. Europ. Workshop
Smart Objects: Sys., Tech. and App., (Ciudad, Spain), pp. 1–9, 2010.

[14] J. Luo and H. Gao, “Deep belief networks for fingerprinting indoor
localization using ultrawideband technology,” Int. J. Distrib. Sens. Netw.,
vol. 2016, no. 18, pp. 18:18–18:18, 2016.

[15] S. Y. M. Vaghefi and R. M. Vaghefi, “A novel multilayer network model
for toa-based localization in wireless sensor networks,” in Proc. Intl. Jnt.
Conf. Neural Networks, (San Jose, CA), pp. 3079–3084, 2011.

[16] P. Singh and S. Agrawal, “Tdoa based node localization in wsn using
neural networks,” in Proc. Intl. Conf. Communication Systems and
Network Technologies, (Gwalior, India), pp. 400–404, 2013.

[17] A. Lewandowski, V. Kster, C. Wietfeld, and S. Michaelis, “Support
vector machines for non-linear radio fingerprint recognition in real-life
industrial environments,” in Proc. ION Intl. Technical Meeting, (San
Diego, CA), pp. 628–634, 2011.

[18] C.-S. Chen, “Artificial neural network for location estimation in wireless
communication systems,” Sensors, vol. 12, pp. 2798–2817, 2012.

[19] G. Flix, M. Siller, and E. N. lvarez, “A fingerprinting indoor localization
algorithm based deep learning,” in Proc. 8th Intl. Conf. Ubiquitous and
Future Networks, (Vienna, Austria), pp. 1006–1011, 2016.

[20] R. Kuo, W. Tseng, F. Tien, and W. Liao, “Application of an artificial
immune system-based fuzzy neural network to a rfid-based positioning
system,” J. Comp. Indust. Eng., vol. 63, no. 4, pp. 943–956, 2012.

[21] V. Savic and E. G. Larsson, “Fingerprinting-based positioning in dis-
tributed massive mimo systems,” in Proc. 82nd IEEE Conf. Vehicular
Tech., (Boston, MA), pp. 1–5, 2015.

[22] Z. Iqbal, D. Luo, P. Henry, S. Kazemifar, T. Rozario, Y. Yan, K. West-
over, W. Lu, D. Nguyen, T. Long, J. Wang, H. Choy, and S. Jiang,
“Accurate real time localization tracking in a clinical environment using
bluetooth low energy and deep learning,” arXiv/1711.08149, 2017.

[23] L. Yu, M. Laaraiedh, S. Avrillon, and B. Uguen, “Fingerprinting
localization based on neural networks and ultra-wideband signals,” in
Proc. IEEE Intl. Symp. Signal Processing and Information Technology,
(Bilbao, Spain), pp. 184–189, 2011.

[24] W. Li, T. Zhang, and Q. Zhang, “Experimental researches on an uwb
nlos identification method based on machine learning,” in Proc. 15th
IEEE Intl. Conf. Comm. Tech., (Guilin, China), pp. 473–477, 2013.

[25] S. Marano, W. M. Gifford, H. Wymeersch, and M. Z. Win, “Nlos
identification and mitigation for localization based on uwb experimental
data,” IEEE J. Selected Areas in Communications, vol. 28, no. 7,
pp. 1026–1035, 2010.

[26] X. Cui, H. Zhang, and T. Gulliver, “Threshold selection for ultra-
wideband toa estimation based on neural networks,” J. Networks, vol. 7,
no. 9, pp. 1311–1318, 2012.

[27] V. Savic, E. G. Larsson, J. Ferrer-Coll, and P. Stenumgaard, “Kernel
methods for accurate uwb-based ranging with reduced complexity,”
IEEE Trans. Wireless Communic., vol. 15, no. 3, pp. 1783–1793, 2016.

[28] S. Ergüt, R. Rao, O. Dural, and Z. Sahinoglu, “Localization via tdoa
in a uwb sensor network using neural networks,” in Proc. Intl. Conf.
Communications, (Beijing, China), pp. 2398– 2403, 2008.

[29] Y. Jin, W. Soh, and W. Wong, “Indoor localization with channel impulse
response based fingerprint and nonparametric regression,” IEEE Trans.
Wireless Communications, vol. 9, no. 3, pp. 1120–1127, 2010.

[30] N. Ghourchian, M. Allegue-Martinez, and D. Precup, “Real-time indoor
localization in smart homes using semi-supervised learning,” in Proc.
31st. AAAI Conf. Art. Intel., (San Francisco, CA), pp. 4670–4677, 2017.

[31] X. Wang, L. Gao, S. Mao, and S. Pandey, “Csi-based fingerprinting for
indoor localization: A deep learning approach,” IEEE Trans. Vehicular
Technology, vol. 66, no. 1, pp. 763–776, 2017.

[32] X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor
localization with a deep learning approach,” IEEE Internet of Things J.,
vol. 3, no. 6, pp. 1113–1123, 2016.

[33] X. Wang, X. Wang, and S. Mao, “Cifi: Deep convolutional neural
networks for indoor localization with 5 ghz wi-fi,” in Proc. IEEE Intl.
Conf. Communications, (Paris, France), pp. 1–6, 2017.

[34] X. Wang, L. Gao, and S. Mao, “Biloc: Bi-modal deep learning for indoor
localization with commodity 5ghz wifi,” IEEE Access, vol. 5, pp. 4209–
4220, 2017.

[35] J. Tiemann, J. Pillmann, and C. Wietfeld, “Ultra-wideband antenna-
induced error prediction using deep learning on channel response data,”
in Proc. 85th Vehic. Techn. Conf., (Sydney, Australia), pp. 1–5, 2017.

[36] J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep
convolutional neural networks for massive MIMO fingerprint-based
positioning,” (Montreal, Canada), pp. 1–6, 2017.

[37] M. Z. Comiter, M. B. Crouse, and K. H. T., “A structured deep
neural network for data driven localization in high frequency wireless
networks,” vol. 9, pp. 21–39, 05 2017.

[38] C. Xiao, D. Yang, Z. Chen, and G. Tan, “3-d ble indoor localization
based on denoising autoencoder,” IEEE Access, vol. 5, pp. 12751–12760,
2017.

[39] C. Mutschler, H. Ziekow, and Z. Jerzak, “The debs 2013 grand chal-
lenge,” in Proc. 7th ACM Intl. Conf. Distributed Event-based Systems,
pp. 289–294, 2013.

[40] T. Feigl, C. Mutschler, and M. Philippsen, “Human Compensation
Strategies for Orientation Drifts,” in Proc. 25th IEEE Intl. Conf. Virtual
Reality and 3D User Interfaces, (Reutlingen, Germany), 2018.

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convo-
lutions,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
(Boston, MA), pp. 1–9, 2014.

[42] C. Löffler, S. Riechel, J. Fischer, and C. Mutschler, “Evaluation criteria
for inside-out indoor positioning systems based on machine learning,” in
Proc. 9th Intl. Conf. Indoor Positioning and Indoor Navigation, (Nantes,
France), 2018.

