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Abstract—Measurement of stride-related, biomechanical
parameters is the common rationale for objective gait im-
pairment scoring. State-of-the-art double-integration ap-
proaches to extract these parameters from inertial sen-
sor data are, however, limited in their clinical applicability
due to the underlying assumptions. To overcome this, we
present a method to translate the abstract information pro-
vided by wearable sensors to context-related expert fea-
tures based on deep convolutional neural networks. Re-
garding mobile gait analysis, this enables integration-free
and data-driven extraction of a set of eight spatio-temporal
stride parameters. To this end, two modeling approaches
are compared: a combined network estimating all param-
eters of interest and an ensemble approach that spawns
less complex networks for each parameter individually. The
ensemble approach is outperforming the combined model-
ing in the current application. On a clinically relevant and
publicly available benchmark dataset, we estimate stride
length, width and medio-lateral change in foot angle up to
—0.15 £ 6.09 cm, —0.09 + 4.22 cm and 0.13 & 3.78° re-
spectively. Stride, swing and stance time as well as heel
and toe contact times are estimated up to +0.07, £0.05,
+0.07, £0.07 and £0.12 s respectively. This is compara-
ble to and in parts outperforming or defining state of the
art. Our results further indicate that the proposed change
in the methodology could substitute assumption-driven
double-integration methods and enable mobile assessment
of spatio-temporal stride parameters in clinically critical sit-
uations as, e.g., in the case of spastic gait impairments.

Index Terms—Convolutional neural networks (CNNSs),
deep learning, mobile gait analysis, regression, spatio-
temporal gait parameters.

|. INTRODUCTION

VARIETY of neurological and musculoskeletal diseases
affects human gait quality and manifest in specific stride

Manuscript received July 4, 2016; revised October 20, 2016 and
November 28, 2016; accepted November 30, 2016. Date of publica-
tion December 8, 2016; date of current version January 31, 2017. This
work was supported by the FAU Emerging Fields Initiative (EFIMoves).
(Corresponding author: J. Hannink.)

J. Hannink, T. Kautz, C. F. Pasluosta, and B. M. Eskofier are with
the Digital Sports Group, Pattern Recognition Lab, Department of
Computer Science, University of Erlangen-Nurnberg (FAU), Erlangen,
Germany (e-mail: julius.hannink@fau.de; thomas.kautz@fau.de; cris-
tian.pasluosta @fau.de; bjoern.eskofier@fau.de).

K.-G. GaBmann is with the Geriatrics Center Erlangen, Wald-
krankenhaus St. Marien, Erlangen, Germany (e-mail: karl.gassmann@
waldkrankenhaus.de).

J. Klucken is with the Department of Molecular Neurology, University
Hospital Erlangen, University of Erlangen-Nurnberg (FAU), Erlangen,
Germany (e-mail: jochen.klucken @ uk-erlangen.de).

Digital Object Identifier 10.1109/JBHI.2016.2636456

characteristics. Parkinson’s disease (PD), for example, is asso-
ciated with a reduced stride length, shuffling steps or impaired
gait initiation. As reduced gait quality can lead to severe reduc-
tions in patient mobility and quality of life [1], it is important to
quantify, detect, and treat gait impairments as early as possible.

Objective quantification of gait impairment is based on stride-
specific characteristics such as stride length or stride time. These
parameters are commonly extracted with the help of several elec-
tronic measurement systems, including computerized pressure
mats ([2], [3]), optical motion-capture systems [4] or mobile,
sensor-based solutions ([S]-[11]). While the first two require a
laboratory environment and are limited in availability, the latter
is mobile and inexpensive. This renders mobile, sensor-based so-
lutions the primary choice for unobtrusive gait analysis systems.

Choosing this modality though introduces a conflict between
the abstract variables of measurement and the readout param-
eters requested by the users and is as such entangled with the
physical constraints in wearable sensing: For instrumented med-
ical healthcare applications, one might be able to measure ac-
celerations and angular rates at a patient’s foot by using state-
of-the-art inertial sensors. However, the treating physician is
not interested in interpreting acceleration signatures for a given
stride but rather wants to monitor variables directly related with
the situation as for example stride length or heel-strike (HS) an-
gle. The efficient translation of abstract data into context-related
knowledge thus is the underlying challenge in all applications
of wearable sensors and mobile healthcare technologies.

In the extraction of stride parameters, this challenge is ad-
dressed from several perspectives. The majority of methods are
based on physical and geometric reasoning to extract spatial
gait parameters by using double integration of inertial sensor
signals ([6]-[9], [12]). The main limitation regarding this type
of approach is the dependence on a zero-velocity phase within
each stride that is needed to reinitialize the integration process.
In clinical practice, however, this assumption is easily violated
[13]. Other approaches aim at driving biomechanical models of
the lower extremity with sensor data [10], [11] or apply machine
learning in order to extract the parameters of interest [13].

The underlying problem of efficient data to knowledge trans-
lation is recently being addressed very successfully in the field
of image understanding. Here, data from images is identified
to belong to a certain object class [14], translated to captions
that describe the image content [15] or used to identify persons
based on face recognition [16]. All these applications represent
ground-breaking advances in their respective field in terms of

2168-2194 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



86 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 1, JANUARY 2017

Parameter estimation

|

Fig. 1. Conceptual flowchart for applying the proposed system to mo-
bile gait analysis: an in-comming gait sequence is segmented and gait
events are identified within each segment. In the second step, individual
strides are defined from HS to HS and fed to the biomechanical feature
extraction routines. These either compute the timings directly related
with the identified gait events or estimate spatio-temporal parameters
with a CNN.

recognition rates. The common underlying methodology that al-
lows these achievements is a branch of machine learning called
deep learning.

Due to its success in other domains, deep learning is starting to
appear in the context of wearable sensing and computing to ex-
tract meaningful information from sensor data ([13], [17]-[20]).
This particular branch of machine learning is said to have large
potential in mobile sensing and computing regarding inference
accuracy, robustness or class scaling, which are partly miss-
ing from state-of-the-art [21]. Applications of deep learning in
wearable sensing and computing are, however, largely focusing
on activity recognition ([17]-[20]). To the authors’ best knowl-
edge, this and their prior work [13] are the first applications
regarding other topics in the field.

In this paper, we present a framework based on deep CNNs
and aim at translating the abstract information provided by wear-
able sensors into context-related expert features requested by the
users. The system is trained on a regression task between the
sensor data and a set of reference output parameters. Thereby, it
extends the authors’ prior work [13] that only addresses a single
output parameter. A prerequisite for this is a knowledge base,
i.e. a collection of wearable sensor data captured in a controlled
environment and annotated with the help of a reference system
that can directly measure the expert features of interest.

We apply the proposed framework in the context of mobile
gait analysis as illustrated in Fig. 1. In doing so, we focus
specifically on the extraction of biomechanical stride parameters

Fig. 2. Placement of the inertial sensor and axes definition.

with CNN regression while potential benefits from deep learning
approaches to other parts of the pipeline (e.g. segmentation)
might be addressed in future work. A total of eight exemplary
and stride-specific characteristics are extracted that are clinically
relevant as they define gait quality. To this end, two different
modeling approaches are compared: a combined model that
uses one network architecture to estimate all expert features of
interest and an ensemble approach where one neural network is
spawned for each output parameter individually. Both models
are trained and evaluated on a publicly available and clinically
relevant benchmark dataset.

In summary, our main contributions are: (1) A generalisable
method for data-driven and integration-free extraction of spatio-
temporal gait characteristics, and (2) Technical validation of the
proposed method on a clinically relevant and publicly available
dataset.

II. METHODS
A. Data Collection and Setup

We use a benchmark dataset collected by Rampp et al.
[7] that is publicly available at https://www5.cs.fau.de/
activitynet/benchmark-datasets/digital-biobank/ and briefly de-
scribed here.

The inertial sensor platform Shimmer2R [22] consisting of
a 3D-accelerometer (range +6 g) and a 3D-gyroscope (range
4500 °/s) was used for data collection. It was attached later-
ally below each ankle joint (see Fig. 2). In order to avoid gait
changes due to different shoe characteristics [23], the same shoe
model (adidas Duramo 3) was used by all subjects. Data was
captured at 102.4 Hz at a resolution of 12 bit. Simultaneously,
validation data was acquired with the well-established pressure
mat GAITRite with a spatial resolution of +1.27 cm [3].

In total, 116 geriatric inpatients were assessed at the Geri-
atrics Centre Erlangen (Waldkrankenhaus St. Marien, Erlangen,
Germany). Written informed consent was obtained prior to the
gait assessment in accordance with the ethical committee of
the medical faculty at Friedrich-Alexander University Erlangen-
Niirnberg (Re.-No. 4208).

For our study, the annotation on the dataset was extended with
additional parameters compared to the annotation reported on by
Rampp et al. [7]. This was based on positions and timings of the
patients’ heel and toe as measured by the GAITRite reference
system. The spatial parameter set was enlarged to cover not
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TABLE |
EXTENDED SET OF ANNOTATION PARAMETERS ON THE DATASET
AND THEIR MEAN VALUES, STANDARD DEVIATIONS,
AS WELL AS MINIMAL/MAXIMAL VALUES

Output Parameter ~ Unit Mean =+ Std. [Min, Max]
Stride length cm 80.63 4+ 23.23 [20.01, 129.81]
Stride width cm  —1.44 +13.29 [-37.52,33.03]
Foot angle ° 0.07 £3.49 [—11.93,15.86]
Stride time S 1.23 +£0.19 [0.74, 2.06]
Swing time 8 0.37 £ 0.08 [0.01, 1.05]
Stance time S 0.85+0.16 [0.48, 1.65]
Heel contact time s 0.64 +£0.14 [0.16, 1.52]
Toe contact time S 0.69 +0.17 [0.25, 1.57]

only stride length, but also stride width and change in medio-
lateral foot angle. Additionally, heel and toe contact times were
added to the list of temporal parameters stride, stance and swing
time. Fig. 3 gives an overview on the definitions of temporal
and spatial parameters. Stride width was defined as shown in
Fig. 3(b) and positive values were measured towards the lateral
side of the shoe.

Patients performed an extensive geriatric assessment, de-
scribed by Rampp et al. [7] in detail. For the scope of this
paper, we focused on the free walking test over the GAITRite
mat at comfortable walking speed instrumented with the inertial
sensors. After excluding datasets from 8 patients due to med-
ical reasons (i.e. patients could not complete the measurement
protocol), 2 due to inertial sensor malfunction and additional
7 due to measurement errors with the GAITRite system, 99
patients were left for training and evaluation of the proposed
method. Compared with Rampp et al. [7], reference values
for heel and toe contact times could not be computed for two
patients.

Gait disorders or fall proneness were diagnosed in 54% of
the study population. The other top three diagnoses were heart
rhythm disorder (70%), arterial hypertension (69%), and coro-
nary artery disease (41%), which are also associated with gait
and balance disorders [24]. In summary, this dataset consti-
tutes a clinically relevant study population both in terms of
the number of patients and the presence of unpredictable gait
alterations.

Table I gives an overview on the extended set of reference pa-
rameters on the dataset and their mean value, standard deviation,
as well as their minimal/maximal values.

- stride width
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Definition of temporal (a) and spatial (b) gait parameters based on heel and toe positions and timings measured with the GAITRite reference.
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Fig. 4. Exemplary input signal for a stride defined from HS—HS after
preprocessing.

B. Preprocessing

Before the inertial sensor data is fed to the CNN, we per-
form a series of preprocessing steps. The segmentation step
mentioned in the overview Fig. 1 is already provided by the
dataset in our case. Preprocessing therefore includes extraction
of annotated strides from the continuous recordings, calibration
from raw sensor readings to physical units, coordinate system
transformations to align sensor axes on left and right feet, nor-
malization w.r.t. sensor ranges and padding to fixed length of
256 samples per stride to ensure fixed size input to the network.

The system is trained on data segments from HS—HS. This
choice of stride definition is beneficial since it does not assume
a zero-velocity phase that state-of-the-art double-integration ap-
proaches need to reinitialize the integration process. In clinical
practice, this assumption is easily violated as, e.g., in the case
of spastic gait impairments. However, initial ground contact can
still be detected for, e.g., spastic gait patterns and provides a
valid segmentation of the signal into strides. This is the type of
scenario that we intend to address with stride segments defined
from HS—HS.

In order to provide this kind of input data, we need to detect
HS and toe-off (TO) events in the stride segmentation provided
by the dataset and adjust the stride borders accordingly. De-
tection of HS and TO events within the sensor data is done
according to Rampp ef al. [7]. An exemplary input signal for
one stride defined from HS—HS is shown in Fig. 4.
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Furthermore, we can directly compute three expert features
from the list given in Table I based on the HS and TO events in
the datastream. Stride time is defined as the HS—HS distance
and given a TO event, we can subdivide each stride into its two
phases and compute stance and swing time (see Fig. 3(a) or
Rampp et al. [7]). This leaves a set of five output parameters to
be estimated by the deep CNNGs.

C. Network Architectures

The network architectures used here are based on three
elementary building blocks: convolutional, max-pooling, and
densely connected layers.

A convolutional connection between layers is defined by a
set of V; kernels 1p; ... 1. of length L; and biases b; ... by,
The index ¢ thereby represents a label for the layer at hand.
Given a multichanneled input vector x; with j =1...N;_y,
the activation/output of the convolutional connection is

computed as

ar =ReLU [ > ap, ;xa; + by (1)
J

with k£ = 1... N;. We used a rectifying linear unit (ReLU) as
the activation function for this type of connection as this nonlin-
earity is said to model biological neurons better compared with
tangent or sigmoid functions [25].

Convolutional layers are often followed by max-pooling lay-
ers to increase robustness of the extracted features [26]. This
type of connection downsamples the feature maps obtained
by the convolutional connection by taking the maximum in
temporal windows of length r. The downsampling factor is
thus 1/r.

The third type of connection used here is the densely con-
nected layer. This type of connection is defined by a set of
weight vectors W ... Wy, and biases b; ...by,. Given a
single-channel input vector x, the activation of the densely con-
nected layer is computed by matrix multiplication as

a; = ReLU (Z Wi i + bj) 2)

with 7 = 1...V;. In case the output of the previous layer is
a multichanneled vector, the single-channel input vector x is
constructed by concatenation of the individual channels, i.e.
flattening. Again, we use a ReL.U for activation.

Finally, a readout layer compresses the last dense layer to the
number of output variables for the task at hand. The readout
layer is identical to a densely connected layer with the identity
instead of the ReLU as an activation function. The number of
output variables is then encoded into the number of weight
vectors for this layer.

Based on these elementary blocks, two models are built:

® Model A: Estimating the complete set of output variables
with a combined model (see Fig. 5, left).

® Model B: Estimating each output variable individually
with an ensemble of networks (see Fig. 5, right).

Consequently, the individual network architectures in
model B can be less complex compared with model A in or-
der to achieve comparable model complexities.

Regarding the application of data to knowledge translation
in the context of mobile gait analysis, we decide for a net-
work architecture built from three convolutional layers with
max-pooling followed by three densely connected layers and a
readout layer for model A. In the convolutional layers, we train
Ny =32, Ny = 64 and N3 = 128 kernels of size 30, 15 and
7 samples respectively, as well as the corresponding number
of bias terms. Max-pooling is done in nonoverlapping, tempo-
ral windows of size r = 2 samples. Given the sampling fre-
quency, the kernel size corresponds to approximately 0.29 s on
all three layers. The three densely connected layers are trained
with Ny = 2048, N5 = 1024 and Ng = 512 weight vectors and
bias terms respectively. The readout layer has Noypu = 5 nodes
for model A.

For model B, the individual network architectures are built
from two convolutional layers with Ny = 16 and Ny = 32 fil-
ters of size 30 and 15 samples respectively and one densely
connected layer with N3 = 1024 nodes. The max-pooling lay-
ers are identical to model A with a downsampling factor of %
However, the readout layer has only Nyypu = 1 node as each
individual architecture is responsible for one of the output pa-
rameters. Fig. 5 gives an overview on the network architectures
used in both models.

The theoretical motivation for this choice is to address the
most crucial question in network design of global versus in-
dividual modeling with two representative cases. In model A,
we only distinguish between different kinds of output param-
eters at the last level of the network. The features extracted in
this architecture therefore have to be general enough to cap-
ture information about all of the output parameters. In model B,
however, each output parameter has its own feature extraction
path that can be optimized to the parameter at hand.

D. Training

Training of neural networks is viewed as an optimization
problem regarding an error function (implicitly) depending on
the network parameters. This error defines a discrepancy mea-
sure between predicted output and a ground truth reference on
the training dataset or subsets thereof. Weights and biases on
all layers are then changed using backpropagation and with the
aim to minimize the error. In practice, however, only random
subsets of the training dataset (mini-batches), are shown to the
optimizer in one iteration of the training loop to speed up the
learning phase (stochastic learning) [27].

Because of the different numeric ranges and physical units
in the output parameters (see Table I), the network is trained
to estimate normalized and dimensionless output variables ;.
Therefore, each reference y; r is scaled to the range [0, 1] by us-
ing the minimum/maximum value attained on the entire training
set Slrain:

Yi ref — MMINS, . Yi ref
maXSlruin y'isl'ef - mlnstmin yi,ref

3)

Yiref =
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The two network architectures for data to knowledge translation in the context of mobile gait analysis: Model A consists of three convolutional

layers with max-pooling followed by three densely connected layers. Model B, however, spawns smaller networks consisting of two convolutional
layers with max-pooling and one densely connected layer for each of the output variables. Additionally, dimensionalities of important layers are

indicated.

Predictions on the test set are later rescaled to their physical
dimensions using the scaling parameters from the training set.

Given predictions ¢; on a mini-batch of size Ny, for each
output variable ¢ = 1. .. Noypu, we define the error as the sum
of the individual root-mean-square errors on the mini-batch:

E= Zrmsq(

For optimization, we use Adam [28], a state-of-the-art
optimization method for stochastic learning. On benchmark
datasets, it shows faster convergence than other stochastic opti-
mization routines and we use default settings of & = 1le ™3, 3, =
0.9, B2 = 0.999 and € = 1e~® (for details see [28]). All weights
are initialized by sampling a truncated normal distribution with
standard deviation 0.01 and biases are initially set to 0.01. We
train for a fixed number of 4000 iterations with a mini-batch
size of Npaen = 100 strides.

To prevent overfitting, dropout is used on the densely con-
nected layers. This technique effectively samples a large num-
ber of thinned architectures on the hidden layers by randomly
dropping nodes during training. With this, overfitting could be
significantly reduced in many use cases and was superior to
weight-regularization methods [29]. We use fixed dropout prob-
abilities of p*) = 0.75, p(®) = 0.5 and p'®) = 0.0 for model A.
For the individual architectures in model B, a dropout proba-
bility of p®) = 0.5 is used. Every connection thus has a 50%

gi - gi,ref) . (4)

chance of being inactive. During testing, however, the full ar-
chitectures are used and no connections are dropped.

The networks are implemented and trained using Google’s
TensorFlow library [30].

E. Evaluation Scheme

Evaluation of the two modeling approaches is based on a
10-fold cross-validation scheme. The stride-specific sensor data
from 99 patients on the dataset are sorted into training and test
partitions depending on the patient identifier to ensure distinct
splits of the dataset. For each of the two models, we iterate
over the complete dataset in this fashion and estimate the out-
put variables on the test set in each fold. The estimates from
individual folds are then pooled to arrive at average statistics
for each output variable and model. As an evaluation statistic,
we use average accuracy =+ precision which correspond to the
mean and standard deviation of the signed error distribution.
The two models are compared based on this statistic and a Lev-
ene test of equal variances between the respective distributions
to check whether precisions differ significantly. Because the er-
ror distributions for the parameter heel contact time are slightly
non-Gaussian (checked by visual inspection of g—¢g plots), a
Levene test is preferred over e.g. a Bartlett test that is less robust
against non-normality.

In order to assess the learning speed and performance of
models A and B, we compute the training error for each of
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training iterations for model A, all submodels that constitute model B and
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the models over the training iterations for an exemplary and
patient-wise 90/10% train/test split of the dataset.

Ill. RESULTS
A. Training

Fig. 6 shows the error evaluated on the entire training set
over the iterations for an exemplary 90/10% train/test split of
the dataset. The error is evaluated for model A and for each of
the submodels that constitute model B. In all cases, the fixed
number of 4000 iterations is sufficient to reach a stable regime
of the error on the entire training dataset and hence we stop the
training. Furthermore, the adaptation of the two models to the
training data is comparable w.r.t. the selected error function as
F4 .5 = 0.02 in model B corresponds to a total/summed error
of £ =~ 0.1 in model A (see Fig. 6).

B. Stride Parameter Estimation on Unseen Data

Table II lists average accuracy and precision on the un-
seen test data achieved by the two models w.r.t. the pooled
estimates from each cross-validation fold. The ensemble ap-
proach B that spawns one CNN for each output variable
reaches significantly better precision regarding stride length
and width, while the corresponding mean accuracies also ex-
ceed those achieved by model A. On the remaining three
parameters foot angle, heel and toe contact time, both mod-
els perform similarly. Therefore, we consider the ensemble
approach B to be superior in the context of mobile gait
analysis.

Detailed results for all output parameters on the dataset and
the superior model B can be found in Fig. 7 and Table III. Fig. 7
includes Bland—Altman plots for each of the output variables as
estimated by model B as well as the achieved mean accuracy
and precision. Table III lists the error statistics for each output
parameter as well as state-of-the-art results.

[V. DISCUSSION

We present a method for data to knowledge translation in
the context of sensor-based gait analysis to extract a total of
eight spatio-temporal stride characteristics. Within the pro-
posed framework, we compare two different approaches in
the case of vectorial knowledge: A) A combined modelling
approach estimating the complete set of output parameters
and B) An ensemble approach where individual, less com-
plex models are spawned for each output parameter. The re-
sulting model complexities are thereby designed to be of sim-
ilar magnitude. With the superior ensemble approach B, the
spatial parameters stride length, stride width and foot angle
are estimated with mean accuracy and precision of —0.15 £+
6.09 cm, —0.09 +4.22 cm and 0.13 + 3.78° respectively. The
temporal stride characteristics stride, swing and stance time
are predicted with average precision of +0.07, £0.05 and
+0.07 s respectively. Additionally, the heel and toe contact
times are determined up to +0.07 and +0.12 s respectively.
Thereby, we provide technical validation on a clinically rele-
vant dataset containing 1185 individual strides from 99 geriatric
patients.

The estimation of stride length is outperforming the double-
integration result by Rampp et al. [7] by 2.3 cm (27%, statisti-
cally significant) in precision. Compared with the deep learning
approach presented by Hannink et al. [13] that estimates this
parameter up to —0.27 +5.43 cm based on HS—HS strides,
our results are slightly worse. This might be due to reduced
network complexity in the model presented here (Hannink e? al.
[13] use twice as much kernels and biases on each of the two
convolutional layers) or the fact that the underlying datasets
are not completely identical (101 vs. 99 patients here due to
technical reasons). Regarding results on other datasets, Ferrari
et al. [8] report a measurement error of —0.16 £ 7.02 cm for
the parameter stride length based on double integration and a
dataset of 1314 strides captured from 10 elderly PD patients.
Trojaniello et al. even reach an average accuracy and precision
of 0.1 £ 1.9 cm and thereby almost resolve their reference pre-
cision of 1.3 cm [9]. However, this result is evaluated only on
a small dataset of 532 strides from 10 elderly PD patients and
points out the limits of this comparison: The results achieved
have to be seen as a function of the variability across subjects
captured in the evaluation dataset. A different evaluation dataset
does not necessarily ensure a fair comparison of methods and it
shows the need for a unified evaluation of stride length estima-
tion methods presented here and in the literature ([7]-[9], [13])
on the same, large cohort study as, e.g., the publicly available
dataset described by Rampp et al. [7].

Regarding stride width, there is little related work. Horak and
Mancini [31] even consider it “difficult to obtain with body-worn
sensors”’. Nevertheless, Rebula er al. [12] report an intraclass
correlation coefficient (ICC) of 0.88 between a motion-capture
reference and a sensor-based estimation of stride width. Our
result corresponds to an ICC of 0.95 and is thus outperform-
ing state-of-the-art double-integration methods w.r.t. stride
width.
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TABLE Il
COMPARISON OF MODEL A AND B REGARDING AVERAGE ACCURACY AND PRECISION REACHED ON UNSEEN TEST DATA

Stride length Stride width Foot angle Heel contact time ~ Toe contact time
Model A —0.34 £8.10 cm 0.41 £7.79 cm —0.05 £3.59° —0.00£0.08s —0.00£0.12s
Model B —0.15+6.09cm —0.09 +4.22 cm 0.13 £3.78° 0.00 £0.07 s 0.00£0.12s
Levene test sign. sign. n.s. n.s. n.s.

To compare precisions, a Levene test was performed on the respective error distributions at the 0.01 significance level.

Mariani et al. [6] determine the foot or turning angle up
to 0.12 £ 3.59° on data from 10 elderly subjects and a study
protocol that included a 180° turn as opposed to our straight
walking data. In this respect, our results are comparable.

For the parameters stride, stance, and swing time, our results
are identical to Rampp et al. [7] due to identical methods. Esti-
mation of heel and toe contact times has not been reported in the
literature to the best of the authors’ knowledge. Sabatini [32]
proposes the detection of heel-off and toe-on/foot-flat events
by thresholding the angular velocity in the sagittal plane. How-
ever, this approach is rather heuristic and the precision regarding
these events was not evaluated. Thus, our result constitutes the
state-of-the-art regarding sensor-based estimation of heel and
toe contact times.

Based on these contact times and HS/TO events that are de-
tectable with state-of-the-art methods, this work enables the
detection of heel-off and toe-on events (see Fig. 3) that do not
manifest that clearly in the sensor signals. Thereby, each gait cy-
cle can be further subdivided into loading response, mid-stance
phase, terminal stance and preswing as defined by Perry et al.
[33] and their dependence on disease state or speed could be
evaluated in future work. The latter would extend the work by
Hebenstreit et al. [34] that was based on motion capture data to
a mobile setting.

The entire processing pipeline presented in this work is based
on stride segments defined from HS to HS and is therefore in-
dependent of the zero-velocity assumption. In everyday clinical
practice and the presence of impaired gait, this assumption is
easily violated and limits applicability of state-of-the-art double-
integration approaches [13]. However, there are no theoreti-
cal considerations that prohibit the application of the proposed
method to populations experiencing severe gait disturbances as
in the case of spasticity. Thereby, the proposed system is a suit-
able substitute for the assumption-governed double-integration
techniques and could enable mobile gait analysis in these clini-
cally critical cases.

The main limitation of the proposed method is that the result-
ing data to knowledge translation is as good as the knowledge
base. This is because the knowledge base is used to learn the
nonlinear relationship between the input sensor data and the
output parameters and this mapping implicitly depends on the
samples collected in the knowledge base. We thus strongly stress
the importance of sharing benchmark datasets within the com-
munity and create larger, community-maintained knowledge
bases.

The implementation of the framework is generalizable and
flexible. Information from other wearable sensing modalities
(e.g. barometric pressure) can be introduced by adding addi-
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Fig. 7. Bland—Altman plots for each of the output variables estimated

by model B on unseen test data. Additionally, the mean accuracy (solid
line) and +1.960 bounds (dashed lines) are shown.

tional channels to the input signal. Application to other data
to knowledge translation problems in this field can be done by
exchanging the knowledge base. TensorFlow [30] generically
supports model quantization and lower level arithmetics that
are needed for inference with deep CNNs on mobile devices.
Although this is not a necessity in mobile gait analysis, where
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TABLE Il
AVERAGE ESTIMATES AS ACHIEVED BY MODEL B ON UNSEEN TEST DATA AND THE REFERENCE SYSTEM GAITRITE. THE ERROR OF MEASUREMENT IS
REPORTED AS MEAN ACCURACY AND PRECISION. ADDITIONALLY, RESULTS FROM STATE-OF-THE-ART DOUBLE-INTEGRATION APPROACHES ARE LISTED.

Average estimates

Mean acc. + prec.

Output Parameter ~ Unit Model B GAITRite Model B State-of-the-art

Stride length cm 80.78 £+ 21.82 80.63 + 23.23 —0.15 £+ 6.09 —0.26 + 8.37!7!
—0.16 & 7.0218)*

0.10 + 1.90%*

Stride width cm —1.34+12.49 —1.44 £13.29 —0.09 +4.22 —(seetext)

Foot angle ° —0.06 +2.90 0.07 +3.49 0.13 +3.78 0.12 4 3.5916)

Heel contact time S 0.64 +£0.12 0.64 +0.14 0.00+ 0.07 -

Toe contact time S 0.68 +0.14 0.69 + 0.17 0.00 £+ 0.12 -

Stride time S 1.23 +£0.19 1.23 +£0.19 —0.00 + 0.07 0.00 4 0.077

Swing time s 0.37 +0.07 0.37 + 0.08 0.00 & 0.05 —0.00 £ 0.05"7!

Stance time S 0.86 + 0.16 0.85+0.16 —0.00 £ 0.07 0.00 + 0.077!

Model B: n = 99 geriatric patients and 1185 individual strides; *different evaluation dataset.

the emphasis lies on the mobility of the sensing technology, it
might be needed in future work.

Future work includes the application of the proposed frame-
work to other data to knowledge translation problems and
thereby the establishment of a generally applicable system.
In this respect, especially the end of training needs to be ad-
dressed in a data-adaptive manner. As this work did not in-
clude a rigorous exploration of the parameter space (number and
dimensionality of kernels, etc.), this part is left for future work.
In the context of mobile gait analysis, individualization or do-
main adaptations aspects as well as sequential modeling ap-
proaches that account for across-stride context will be investi-
gated. Additionally, the aforementioned benchmark evaluation
of several biomechanical parameter estimation methods for a
fair comparison of methods will be covered in future work.
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