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Abstract—Accurate position tracking is a crucial task in many
applications ranging from car navigation over robot control to
sports analysis. In order to improve the accuracy of position
tracking, we introduce a novel method for constraining Kalman
filters by incorporating prior knowledge in an augmented motion
model. In contrast to previously reported methods, our approach
does not require cumbersome tuning of additional filter param-
eters and causes less computational overhead. We demonstrate
our method in the context of sports analysis in athletics. Using
34 data sets recorded during 400 m and 800 m runs, we compare
our approach to unconstrained and pseudo-measurement filters.
The presented augmented motion model in conjunction with an
Extended Kalman Filter (EKF) reduced the root mean square
error of the filtered output by 60 % compared to unconstrained
filtering and by 50 % compared to a pseudo-measurement EKF.

I. INTRODUCTION

The acquisition of accurate position data is the foundation
for a plethora of possible applications. Position data of persons
or objects can be used for asset tracking, surveillance of pro-
duction lines or car and robot navigation. Also in sports mon-
itoring and analysis, position measurement plays an important
role. From the position data of athletes, various performance
indicators such as momentary and average speeds, covered
distances, split and finish times can be obtained in real-time.
This information can help to optimize the training success and
to avoid injuries.

Different systems for position tracking in sports exist,
including Global Positioning Systems (GPS) and Local Po-
sitioning Systems (LPS). All of these systems suffer from
measurement noise, thus making filtering of the raw mea-
surements necessary. The employed filter needs to meet the
following requirements to be used in sports applications. First,
filtering has to be conducted in real-time to allow live feedback
and broadcasting. Second, the filter should be able to account
for constraints, since the position that is to be filtered, often
cannot take arbitrary values in reality. For example, a runner
in a track and field competition is only allowed to move
within the bounds of the defined track, according to the rules.
Similar constraints can be found in many other sports (e.g.
track cycling, speed skating or in horse and dog races) but also

978-0-9964527-4-8©2016 ISIF

in car or robot navigation where movements are constrained
by the geometry of streets and paths.

The widely used Kalman Filter (KF) provides a powerful
means for real-time filtering by combining model information
about the analyzed process and measurements in a recursive
processing procedure. Several extensions of the KF required
for the use in non-linear cases exist, including the Extended
Kalman Filter (EKF) [1], Unscented Kalman Filter (UKF)
[2] and Square-Root Unscented Kalman Filter (SRUKF) [3].
These filters do not naturally handle constraints, but several
methods for incorporation of constraints in KFs have been pre-
sented in the literature. These constraints can be divided into
hard constraints and soft constraints. While hard constraints
have to be satisfied exactly, soft constraints only need to be
satisfied approximately.

If an object is moving along a known path (e.g. an athlete on
a running track or a car on a street), one possibility for improv-
ing tracking accuracy of this object would be to constrain the
orientation of the object’s movement to the orientation of the
path. If a hard equality constraint is applied, both orientations
must be exactly the same. Thus, one athlete overtaking another
or a lane change of a car could not be represented, since this
would require a deviation of the movement orientation from
the path orientation. In reality, the trajectories of the tracked
objects can vary within the width of the path. Therefore,
restrictions due to defined paths can be interpreted as soft
constraints. This allows a more flexible tracking than using
hard constraints. In fact, Simon [4] argues, that most practical
systems should be modeled with soft constraints instead of
hard constraints. Three main approaches for the incorporation
of soft constraints in KFs exist [4]: introduction of pseudo-
measurements, projection of the state estimates towards the
constraints and regularization.

The incorporation of soft constraints in an EKF by means
of pseudo-measurements was described by Alouani and Blair
[5] and by Tahk and Speyer [6]. Moreover, Lahrech and
Noyer [7] described how map information can be used as
pseudo-measurements for car navigation. The idea of intro-
ducing pseudo-measurements was adapted for the UKF by



Teixeira et al. [8]. The introduction of pseudo-measurements
requires the additional estimation of the corresponding pseudo-
measurement covariance matrix. Moreover, adding pseudo-
measurements increases the dimension of the observation
vector, thus leading to an increase in computational complex-
ity. Another disadvantage of this approach lies in the fact,
that it mixes model information with observed data. This
renders common outlier detection methods for Kalman filters
ineffective, since they depend on the comparison between
predicted and actual measurements.

A projection approach for incorporating soft constraints
was presented in a publication by Massicotte [9]. There, a
positivity constraint was softly imposed on the state estimate
by scaling of the state variables, i.e. by projection toward the
constraint surface. The scaling factor for correction needed
to be determined empirically. This makes the tuning of this
parameter cumbersome and prone to errors. Another projection
approach was used in [10]. There, the position of a race
car was estimated from GPS measurements by projecting the
estimated position towards the track surface in the direction of
its normal vector. This led to an improved position accuracy
along this axis, but the accuracy of the position on the track
surface decreased.

A regularization approach was presented by Simon and
Simon [11]. They introduced a penalty term into the Kalman
filter to include a priori information. A downside of this
scheme is its heuristic nature, which makes it difficult to find
the optimal settings for the application at hand. Moreover,
computational time for determining the constrained state esti-
mate is increased.

Despite the numerous publications about how to incorpo-
rate soft constraints in Kalman-based filters, the available
approaches all suffer from one or more of the following short-
comings. First, computational cost is considerably increased,
thus limiting the real-time capability of the signal filtering.
Second, additional parameters are required. If these parameters
have to be determined empirically, this reduces the practicality
of these methods and may also lead to suboptimal results.
Third, other improvements of Kalman-based filters, such as
outlier rejection or optimal smoothing are not compatible with
the methods presented in the literature.

The purpose of this paper is to introduce an alternative filter-
ing approach that overcomes these limitations. We argue that
the missing agreement between the state estimates and known
restrictions is often caused by inappropriate system modeling.
Therefore, we propose to include soft constraints directly in an
augmented motion model. The proposed approach can easily
be implemented and can be combined with different forms
of the Kalman filter. Moreover, the computational overhead,
in comparison to an unconstrained solution, is small and no
additional parameters are required. Our method is applicable
for object tracking whenever additional a priori information is
available. We demonstrate our method in a sports context.

II. METHODS
A. Fundamentals

All Kalman-based filters are recursive filters. For each
discrete time point k, a prediction step and an update step are
executed to obtain an estimate of the current state of the ana-
lyzed system. The prediction step consists of the calculation of
an a priori state estimate x4 1),. The prediction is performed
using measurements available up to k£ and the process model.
When a new measurement for time point k + 1 becomes
available, the a posteriori state estimate xy 1|34 is calculated
using the a priori state estimate, the new measurement and the
sensor model. This second part is the update step.

Probably the most widely used approach for Kalman-
filtering of non-linear systems is the Extended Kalman Filter.
In the EKF, non-linear models are approximated using point-
wise linearization. This leads to linearization errors, since
higher order terms are ignored. Linearization can be avoided
by using the UKF instead. In the UKF, the representation of
the uncertainty of the state estimate is transformed from a
covariance matrix to a set of sigma points. Any non-linear
process model can be directly applied to these sigma points
without linearization. This method is accurate to the third
order for Gaussian systems [12]. However, the UKF suffers
from numerical instability, i.e. the positive-definiteness of the
state covariance matrix is not guaranteed. To circumvent this
problem and to decrease computational cost, the SRUKF was
developed by van der Merwe and Wan. A detailed description
of the varieties of Kalman filters can be found in [1] and [3].

B. Kalman Filters with Augmented Motion Models

The basic principle of Kalman Filters is to improve the
accuracy of the analyzed data by combining the noisy mea-
surements with a model of the underlying process or motion.
Hence, the achievable quality of the filtered state estimates
depends on the quality of the measurements and on the
quality of the motion model. Usually, the quality of the
measurements is defined by the available hardware and can
not easily be improved. Therefore, the performance of the
filter critically depends on the choice of the motion model.
When the EKF, UKF or SRUKF are employed, the possible
choice of model includes both linear and non-linear variants.
Numerous different motion models are available [13] such as
the constant velocity model, the constant acceleration model
and the constant turn model. In general, these models are
simplifications and thus do not encompass all nuances of the
real motion of the object of interest.

Consider, for example, the motion of an athlete moving on
an oval running track as depicted in Fig. 1. For this case,
we chose a state model that comprises the target position in
2D, described by the coordinates p, and p,, the norm of the
translational speed v, the norm of the acceleration a, the 2D
orientation ¢ and the turning rate w with respect to the current
position. The state vector x is given by

r=[pspyvad w]T. (D
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Figure 1. Official running track (modified from [14]).

Positioning systems usually provide only observations of the
position, hence the linear sensor model can be described in
matrix form by
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Since not all state parameters are measured, simplifying as-
sumptions about the unobserved state parameters are neces-
sary. Assuming a circular motion with constant radius and
constant acceleration norm leads to the following motion
model:

D k1 Pk + Ti(ve + apTx)cos(¢r + wiTk)
Dy k+1 Py + T (v + arpTi)sin(ér + wiTk)
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The motion model can be used to predict the state at
time k + 1 based on the state estimate from time k. T} is
the time span between k£ and k£ + 1. However, the model
assumptions for prediction only hold to a certain extent.
During the transition between the curved and straight parts
of the running track, the assumption of a constant radius is
violated, leading to mismodeling and errors in the filtered
output. These errors can be reduced by including a priori
knowledge about the motion of the target. It is known, that
the athlete can only move along the predefined running track,
therefore its movement is constrained. However, within the
limits of the track, variations of the movements are possible.
We propose to include this information by augmenting the
motion model. In unconstrained Kalman Filters the a priori
state estimate for time k + 1 (z44q;) is calculated with a
motion model that takes the a posteriori state estimate of time
k (zg)k) as input. We suggest to augment the motion model
with additional a priori knowledge of the tracked movement to
improve the quality of the a priori state prediction and thus the
filtered positions. This approach is visualized schematically in
Fig. 2.
For the example of the athlete on the running track, the
orientation and turning rate on the straight parts of the track are
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Figure 2. Kalman Filter with augmented motion model for incorporation of
prior knowledge

no longer predicted as in (3). Instead, the corresponding parts
of the model change to ¢r11 = Pirack (P, Py) and w1 =
Wtrack = 0.

Equivalently, for the curved parts of the track, the ori-
entation is also predicted according to the track orientation
Gtrack(Dz, Py) and the turning rate is modeled as wyi1 =
Ui/ Ttrack(Pa, Dy). Hence, the turning rate depends on the
current translational speed and the current radius of the track
Ttrack-

The orientation of the track depends on the current position.
It can be calculated as the orientation orthogonal to the curve
normal. In the example of the running track, the curve can be
analytically described as a semi-circle which gives

c ™
Cbtrack (pa:a Py) - arctan(iipy) + < (4)
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where (pes, Pey) is the position of the curve center.

In this example, the a priori information that is used to
augment the motion model changes according to the current
position of the runner on the track and the corresponding track
description. Elements of the state vector for which no a priori
knowledge is available are predicted using the standard motion
model described in (3). This allows a seamless change from
an augmented to a generic motion model and vice versa.

Not only orientation and turning rate information, but also
a priori knowledge about changing dynamics can be included
in an augmented motion model. This can be achieved by
changing from a constant acceleration to a constant velocity
model. For example, in a running competition it can be
assumed, that the speed of the runners is almost constant after
the starting phase. Therefore, the model can be changed from
a constant acceleration model to a constant velocity model.

Our approach is also applicable for more complex scenar-
ios for which a closed-form description of the track is not
available. In car navigation systems, the map representation
of roads is usually piecewise linear, i.e. roads are represented
as line segments [15]. To include such map information in
the position tracking using our proposed method, the line
segment that is closest to the filtered position needs to be
determined. The orientation of this line segment can then be



used to augment the motion model and to improve the quality
of the filtered positions.

The proposed method does not require a change in the
general structure of the Kalman filter, since only the motion
model needs to be changed (see Fig. 2). Therefore, other
Kalman filter modifications can be adapted to our method
directly.

III. EXPERIMENTS AND RESULTS
A. Data Collection

In order to test our approach under realistic conditions, we

collected 34 position data sets during 400 m and 800 m runs.
The runs were performed by 8 different runners. In total,
the runners covered a distance of approximately 18,000 m
for the recordings. The data were collected on two different
oval running tracks (400 m per round) whose geometries were
compliant to the regulations of the International Association
of Athletics Federations [14] (see Fig. 1).
The positions of the runners were measured in 2D using a
LPS [16]. The LPS employed the time-difference-of-arrival
(TDOA) principle to obtain the positions. The runners were
equipped with two different LPS transponders. One transpon-
der was designed to be small (approx. 6x4x0.5cm) and
lightweight in order to not disturb the runners. This transpon-
der type will be referred to as measurement transponder.
The other transponder was designed for optimal measurement
accuracy and featured two external antennas to improve the
measurement quality. This transponder type will be referred
to as reference transponder. Due to their increased size and
weight, the reference transponders were not suitable to be
used in competitions. However, the measurement transpon-
ders suffered from weakened signal transmission between
the transponder and the LPS base stations, which led to a
reduced signal-to-noise ratio, outliers in the measurements
and a variable sampling period with long outages of up to
13.7s. In total, 82258 position measurements were obtained.
Position measurements from both transponders were recorded
simultaneously during all runs.

B. Filter Comparison

1) Compared Filters: The trajectories obtained with the
reference transponders were low-pass filtered with a cutoff
frequency of 0.5 Hz to remove high-frequency noise. The low-
pass-filtered filtered trajectories from the reference transpon-
ders served as the ground truth for the evaluation.

In our experiments, we applied six different Kalman-based
filters to the data from the measurement transponders to obtain
filtered positions for each runner. For comparison, the SRUKF
and EKF in their basic forms (i.e. without constraints), and
with the proposed augmented motion model described in
section 3 were used. Since the most widely used method
in the literature for the incorporation of soft constraints is
the use of pseudo-measurements, the EKF and SRUKF with
pseudo-measurements were also included in the comparison.
Thus, the compared filters were the unconstrained EKF (U-
EKF), the unconstrained SRUKF (U-SRUKF), the EKF with

pseudo measurements (P-EKF), the SRUKF with pseudo mea-
surements (P-SRUKF), the EKF with the augmented motion
model (M-EKF) and the SRUKF with the augmented motion
model (M-SRUKEF). Each of these filters was applied to the
position data from the measurement transponders.

The same soft constraints were used in the pseudo-
measurement filters and the augmented motion model filters.
These constraints included the assumptions that the orientation
and turning rate of the runners could be approximated from
the track geometry and that the acceleration of the athletes was
zero after the starting phase. In combination with tested filtered
variants we also applied a real-time capable outlier detection
method, which was based on the Mahalanobis distance be-
tween the predicted measurement and the actual measurement
[17].

2) Parameter Estimation: In order to obtain meaningful
filter results, the optimal parameters for each of the tested
Kalman-based filters were determined. The recorded data
sets from the measurement transponders were heterogeneous
regarding measurement quality and sampling rate. To account
for these variations, four different data sets were used for
estimation of the filter parameters: the data sets with the
highest and lowest average sampling rate and the data sets
with the highest and lowest root mean square error (RMSE)
of the measurements. These data sets were only used for the
estimation of the filter parameters. They were excluded from
the evaluation of the filters.

The measurement noise covariance matrix was determined
for each filter as described in [18]. To avoid distortion of
the measurement noise estimate, outliers were identified with
a Grubbs test [19] and were not included in the estimation
of the measurement noise. The optimal parameters for the
process noise covariance matrix, the measurement noise for the
pseudo measurements and the Mahalanobis distance threshold
for detecting outliers in real-time were determined for each
filter with a genetic algorithm for global optimization [17].
Note that all measurements including outliers were used for
the evaluation of the different filters with the remaining 30
data sets.

3) Evaluation: The output of the different filters was evalu-
ated regarding the accuracy of the filtered positions, robustness
towards measurement errors, robustness towards measurement
outages and calculation time.

For the evaluation of the accuracy, the root mean square
error (RMSE) between the filtered data from the measurement
transponders and the ground truth from the reference transpon-
ders was calculated. RMSE values were obtained separately
for each tested data set and each tested filter. For each of the
filters, the mean and standard deviation of the RMSE values
over the 30 tested data sets were obtained.

To gain further insight into the influencing factors of the
filtered output, the relation between the RMSE of the mea-
surements and the RMSE of the filtered output was analyzed.
To this end, a linear regression model was fitted for each filter
output. The model was based on the results from all test sets.
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Figure 3. RMSE of the filtered positions from the different filters. The bars
corresponds to the mean RMSE over all test sets, the standard deviation is
indicated by the vertical lines.

Moreover, the position error was set in relation to the sam-
pling period of the measurement system. For this purpose, a
linear regression model was calculated, based on the deviation
of each filtered position from the reference and the time since
the last measured input was received.

In addition, the calculation time was determined for each
filter. Since the absolute calculation times depend on the
used hardware, we determined relative calculation times. All
calculation times were determined in relation to the time that
was required for the unconstrained EKF, which served as the
baseline.

C. Results

The mean and standard deviation of the RMSE of the
filtered positions are depicted in Fig. 3. The filter output of the
U-EKF had the highest average RMSE (3.01 m). The lowest
errors were obtained with the M-EKF and M-SRUKF (both
1.21 m). The models relating the quality of the measured input
to the filtered output are shown in Fig. 4. The models relating
the sampling rate of the input to the quality of the filtered
output result are visualized in Fig. 5.

Compared to the unconstrained EKF, the calculation time
for the EKF with the proposed augmented motion model
increased by 19 % and by 108 % for the P-EKF. Compared
to the unconstrained SRUKEF, the increase of calculation time
was 58 % for the M-SRUKEF and 127 % for the P-SRUKF. The
comparison of calculation times is visualized in Fig. 6.

IV. DISCUSSION

The comparison between the different filtering approaches
shows that the SRUKF with the proposed augmented motion
model exhibited the best performance in terms of the RMSE
of the filtered output (Fig. 3). The EKF in combination with
the augmented motion model yielded almost the same results.
This conformity can be attributed to the fact, that in our test
data the change in movement dynamics was relatively slow. In
these cases, the linearization errors of the EKF are negligible
and the use of an unscented filter is not necessary [20].

Including pseudo-measurements improved the results com-
pared to the unconstrained filters. The RMSE was further
reduced in the cases where the augmented motion model
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Figure 4. Relation between RMSE of measured input and RMSE of filtered
output. Dashed lines correspond to the regression models of the EKFs, solid
lines correspond to the regression models of the SRUKFs.
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Figure 5. Relation between sampling period of the measurements and error
of the filtered positions. Dashed lines correspond to the regression models of
the EKFs, the solid lines correspond to the regression models of the SRUKFs.

was used. The differences in the RMSE of the measurements
were mainly caused by differing occurrences of outliers.
Therefore, in our case, robustness towards outliers means that
the influence of the input RMSE on the output RMSE should
be small. The small slopes of the fitted models (Fig. 4) of
the M-SRUKF and M-EKF indicate, that these filters are
robust towards outliers. In contrast, the pseudo-measurement
filters were much more susceptible to low measurement quality
caused by outliers. This can be explained by the influence
of the pseudo-measurements on the state covariance. Julier
and LaViola [21] argue, that the unconstrained estimate has
minimum variance and hence, the application of a constraint
should lead to an increase of the state covariance. However, the
application of the pseudo-measurements leads to a decrease
of the covariance. Since the outlier detection was based on
the Mahalanobis distance which in turn is a function of the
state covariance, an implausible covariance matrix led to a
deteriorated outlier detection. The high susceptibility of the
unconstrained filters can be explained by the fact that both
outliers and inaccurate state predictions due to an insufficient
motion model led to a high Mahalanobis distance and thus the
two effects could not be distinguished.

The advantage of using constraints for position tracking
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Figure 6. Relative calculation times for the compared filters. The calculation
time for the unconstrained EKF is defined as 100 %.

is emphasized by the results shown in Fig. 5. Even when
measurement outages occurred, the quality of the filtered
output in our tests deteriorated only slightly if constraints were
applied.

The evaluation of the calculation times of the different

filters shows that the use of the proposed augmented motion
model led to only small changes in the calculation time when
compared to the unconstrained filters. In contrast, including
pseudo-measurements led to a considerable overhead. The
pseudo-measurements increase the dimensionality of the mea-
surement vector, thus increasing the computational cost of the
update step. The exact quantitative results for the calculation
times depend on the implementation and application. There-
fore, our evaluation of the calculation times should be treated
only as a qualitative assessment. Regarding computational
cost, it should also be considered, that the use of pseudo-
measurements requires more filter parameters (the pseudo-
measurement noise) to be estimated, which increases the
computational cost of the filter design. In contrast, the filters
with the proposed augmented motion models do not require
additional parameters compared to the unconstrained model as
described in (3).
A drawback of the constrained filters is the loss of generality,
i.e. the constraints need to be adapted and remodelled for
each specific application. The use of the proposed augmented
motion model also requires the adaption of the Jacobian of
the motion model in the M-EKF. If used in conjunction with
a SRUKEF or UKF the augmented model needs to be evaluated
separately for each of the sigma points, which increases the
computational cost compared to an unconstrained filter.

V. CONCLUSION

In this paper, we introduced the concept of augmented
motion models to incorporate soft constraints in Kalman
filters. Our method does not require additional parameters or a
change in the general structures of the filter, which facilitates
implementation. We showed that our method outperformed un-
constrained filters and pseudo-measurement filters in a realistic
scenario. Of the analyzed methods, our approach yields the
best results regarding overall accuracy of the filtered data, ro-
bustness towards outliers and robustness towards measurement
outages. At the same time, it requires only small computational

overhead in comparison to an unconstrained solution. The
application of the proposed method is not limited to sports
but can also augment the tracking in various other scenarios
where it allows optimal use of a priori knowledge.
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