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Abstract—In professional rowing competitions, sensor data is
transmitted from an on-board sensor unit on the boat to an exter-
nal computer system. This system calculates the current position
of each boat in real-time. However, incomplete localizations occur
as a result of radio transmission outages. This paper introduces
an algorithm to overcome transmission outages by predicting the
rowing movement.
The prediction algorithm is based on accelerometer and GPS
data that is provided by the on-board unit before an outage
occurs. It uses Subsequence Dynamic Time Warping (subDTW)
to detect the rowing strokes in the acceleration signal. Knowing
the previous strokes, the system predicts the upcoming strokes,
as the rowing motion follows a periodic pattern. Thereby, the
GPS measured velocity can be extrapolated and the position is
predicted. A further outcome of the subDTW stroke detection is
an accurate determination of the rowing stroke rate.
In our experiment, we evaluate the rowing stroke detection and
stroke rate determination based on subDTW as well as the
prediction algorithm for simulated outages of professional race
data. It shows a subDTW stroke signal detection of 100% after
the start phase of the race. The prediction in case of a sensor
outage of 5 seconds leads to a correlation between the predicted
velocity and the actual velocity of 0.96 and a resulting position
error (RMSE) of 0.3 m.

I. INTRODUCTION

A. Motivation

Accurate localization of rowing boats in international com-
petitions is a key element for television broadcasting. The
television audience often has a hard time following the compe-
tition development, because the camera perspective commonly
does not allow straightforward deduction of race standings.
Therefore, the broadcasting industry has a high demand for
real-time localization systems.
In principle, localization is enabled by Global Positioning
System (GPS) and Inertial Measurement Unit (IMU) on-board
sensor data, which is transmitted to a land-based control
station. This station calculates the current position of each boat.
However, transmission outages occur that result in incomplete
localization of the boats. This paper introduces an algorithm
to bridge transmission outages by accurately predicting boat
positions in the outage time gaps.
The algorithm uses a Subsequence Dynamic Time Warping
(subDTW) based stroke detection. Based on a predefined
template of a rowing stroke, the algorithm segments the ac-
celeration signal of the on-board sensor unit. The acceleration
signal is synchronized with the velocity signal of the GPS
and the start and end times of the detected strokes can be

applied directly to the velocity signal. The prediction algorithm
extrapolates the velocity during transmission outages taking
advantage of the periodic rowing motion.

B. Related work

An extensive analysis of the rowing motion is given by
Kleshnev [1]. The cyclic character of the motion is explained
by analyzing the acceleration signal and segmenting it into
single stroke phases. King et al. [2] describe the general use of
inertial sensors in rowing and identify poor rowing techniques
with their Body Sensor Network.
The focus of this work is on the processing of the acceleration
and the GPS data. By implementing the subDTW based stroke
detection algorithm two contributions were made: a stroke rate
detection using IMU acceleration data and the actual prediction
algorithm to overcome outages.
Different approaches for the stroke rate detection were intro-
duced in previous work. Tessendorf et al. [3] used two IMUs.
A first one was attached to the boat and a second one was
attached to the oar in order to the detect its orientation at all
times. Counting the horizontal oar angle pose, rowing strokes
could be recognized. A commercial alternative was presented
by the StrokeCoach of Nielsen-Kellermann [4]. It calculated
the stroke rate based on the movement of the seat.
To our knowledge, the subDTW based stroke rate calculation,
as proposed in this work, has not been mentioned in related
literature before. However, Dynamic Time Warping (DTW)
and Subsequence Dynamic Time Wapring is widely used in
the field of Pattern Recognition. DTW is a nonlinear mapping
algorithm that calculates the distance function between two
signals. Berndt et al. [5] described the general use of DTW.
By the extended version of subDTW, as proposed by Müller
in [6], patterns can continuously be detected in an ongoing
signal. Applications can be found in various fields as for
example in the subDTW based step detection of Barth et
al. [7]. Here, a gyroscope was attached to a shoe and the
DTW algorithm analyzed the walking motion by detecting the
steps. Horst [8] introduces the Fast Incremental Dynamic Time
Warping (FIDTW). The computation time optimized DTW
approach executed spatial and temporal matching of sensor
data in sports applications.
In comparison to Tessendorf et al. [3], the stroke detection
of this work relies on only one sensor unit that theoretically
can be installed at any stable location of the boat as the
acceleration of the boat as a rigid body is measured and
processed. The implemented subDTW algorithm analyzes the
acceleration signal instead of the gyroscope. Besides the stroke
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detection function, the implemented algorithm of this work
provides a prediction of the future movement of the rowing
boat.

II. METHODS

A. Data collection

The necessary sensor hardware was integrated in an
on-board module that was mounted to the bow of the
boat. It included a 3D-acceleration sensor (Analog Devices
ADXL330, range: ± 3 g, resolution: 10 bit) with a 50 Hz
sampling rate and a low-cost GPS unit (u-blox 6, set to
’automotive’ profile) with 5 Hz sampling rate that provided
the GPS determined velocity and position. The data collection
was performed at the U23 World Championship in Linz. The
focus was on the boat class eight coxed (data class 1, eight
rowers per boat plus coxswain, one oar) and single scull (data
class 2, one rower per boat, two oars). For both classes data
was acquired: race data of heats, repechages and (semi-) finals
for data class 1 and final races for data class 2. For each race
type two boats were analyzed, one of a men and one of a
women race. An overview of the data classes is provided in
table I. One data set represents one race.
The training data was exclusively taken from data class
1 (eight data sets) and considered all race types and both
genders. The evaluation was based on four data sets: the final
races of class 1 and class 2 (each with one men, one women
race).
The acceleration signals of both classes were analyzed
manually and all strokes were labeled for the stroke detection
evaluation. The evaluation of the position prediction algorithm
was based on a real time kinematic GPS system (RTK). The
RTK system processed the on-board GPS data in combination
with a land-based GPS antenna (Trimble LV59 GNSS Antenna
and uBlox EvalKit). It accurately determined the ground
truth position data with an inaccuracy of less than 10cm [9],
[10]. For an accurate evaluation, all GPS data, not only the
reference position, was adapted and improved by the RTK
system. However, the prediction application itself does not
rely on highly-accurate position data and works with standard
GPS without the use of RTK.

B. IMU based stroke detection and stroke rate calculation

1) Template creation: The training data was used to create
the template of a rowing stroke. 71 strokes were manually
extracted of eight available data sets of data class 1. The
strokes were randomly selected under consideration of the
beginning, middle and end phase of the races. The start and end
of a stroke was defined by the lowest point of the acceleration
signal of each stroke. This correlates to the catch phase in the
rowing motion (figure 1, overview of rowing stroke phases
in [3]). The selected strokes were normalized to the same
length, averaged and scaled to the maximum catch phase
amplitude of all strokes. The resulting average stroke was used
as template for the subDTW stroke detection.

2) subDTW stroke detection algorithm: Based on the
subDTW algorithm as proposed in [7], [6], a stroke detection
was implemented. Considering the acceleration of a rowing
boat during a race, all strokes show similarity and can be seg-
mented by the subDTW algorithm using the created template.

TABLE I. OVERVIEW OF USED RACE DATA SETS

data class 1 data class 2
race types eight coxed (men/women) single scull (men/women)
data 8 data sets 2 data sets
collection ∼234 strokes each ∼237 strokes each

It provides the start and end time of the detected stroke pattern,
as well as an internally calculated quality factor dtwquality. To
adapt the algorithm to the specific rowing problem, a threshold
dtwthreshold of the quality factor had to be set to not allow
poor detections in the algorithm output. Further, a minimum
duration dtwmin of a detection was set to avoid too short
strokes. Due to pretest results the threshold in this work was
set to dtwthreshold = 150. This setting was necessary to avoid
false positive detections of parts of the acceleration profile
that show similarity to actual strokes. The minimum duration
of a rowing stroke was estimated to dtwmin = 1 s. Figure 1
shows the typical rowing acceleration signal and three strokes
detected with the described algorithm.

3) Fragmental stroke rate calculation: Based on the de-
tected rowing strokes in a specified period of time, the stroke
rate can be calculated. The stroke rate srate in strokes per
minute within the time tdetect can be calculated directly from
the amount of detected strokes samount by

srate = samount ·
60 s

tdetect[in s]
. (1)

However, to accurately determine the stroke rate online during
a race, the measurements would have to be executed at the
exact end of a detected stroke. Otherwise, the measurement
time tdetect contains parts of a stroke that are not considered
in the calculation. In figure 1 this example is illustrated. To
avoid this error, it is assumed that the partially visible strokes
(before and after the completely detected strokes) follow the
same pattern as the detected ones. Thus, the average length
of the current rowing stroke tstroke,av is calculated. The
proportion of the missed interval before and after the detected
strokes tmissed = tbefore + tafter to the average stroke length
tstroke,av indicates the amount of not yet calculated strokes.
Equation 1 has to be modified to

srate,mod = (samount +
tmissed

tstroke,av
) · 60 s

tdetect[in s]
. (2)

For the verification of the fragmental stroke rate detection
algorithm, the whole acceleration signal was segmented into
windows. In order to avoid setting the windows always at the
same position of a stroke the window size was varied randomly
between 5 and 15 seconds. For the evaluation the number of
detected strokes in the fragmented analysis was summed up
over all windows and compared to the number of detected
strokes in the whole signal.

C. Prediction of the rowing motion

Besides the accurate stroke rate calculation, a further ap-
plication was established in this work: an algorithm to predict
the rowing motion. The velocity signal is extrapolated and the
upcoming position can be calculated.

2



Fig. 1. Acceleration profile in rowing and subDTW stroke detection. The figure presents the typical acceleration signal during a race. The introduced subDTW
algorithm correctly recognized the stroke pattern (dashed lines). The stroke rate calculation algorithm considers the three detected strokes in this example, but
also the partially visible strokes before and after the detected ones.

Fig. 2. Upper part: Stroke detection based on the accelerometer signal. The vertical lines represent the start/end of the detected strokes. Lower part: The
detected strokes were transferred to the GPS measured velocity signal. The time between the end of the last step and the outage time step was calculated. The
grey line illustrates the predicted velocity after the algorithm was executed.

1) Velocity prediction: The velocity prediction is based
on the acceleration signal and GPS data before an outage
occurs. Both are constantly transmitted to the land-based
control station. In case of a transmission outage at toutage
the prediction algorithm starts running at the base station.
The acceleration data of the past seconds is analyzed with
the predefined template and the subDTW algorithm provides
the start and end time of the last s strokes (Fig. 2, upper part).
The time window that is analyzed depends on the number
of strokes that should be used. In pretests an number of
s = 3 strokes showed the best accuracy for the selected
measurement environment and was set as a constant value.
The thereby detected strokes are directly applied to the velocity
signal (Fig. 2, lower part). It can be assumed that the velocity

at a specific point of the stroke is similar to the velocity at
the same point of the previous or upcoming stroke. To obtain
the predicted velocity at the current time after the outage, the
average of the measured velocity over the last s strokes is
calculated. tlast,end is defined as the time of the end of the
last completely transmitted stroke. Based on the difference of
toutage and tlast,end, the current position tcurrent at the stroke,
respectively at the velocity pattern can be calculated by

tcurrent = toutage − tlast,end. (3)

Knowing the current state of the stroke execution and thereby
the point in the velocity pattern, the current velocity can be
obtained by observing the velocity curve progression (Fig. 3).
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Fig. 3. GPS measured velocity of one stroke. The velocity prediction
algorithm averages the velocity of the last strokes. The current position at
the velocity curve is given by the time difference tcurrent to the end of last
detected stroke.

The resulting velocity prediction is demonstrated by the grey
line in Fig. 2 (lower part).

2) Position calculation: After obtaining the velocity of
the current time step tcurrent the position xcurrent can be
estimated by integrating the velocity values since the last
known GPS position vGPS,last over the sampling time dt.
Assuming a 1-D-motion of the boat the driven trajectory is
calculated by

xcurrent = xGPS,last +
vcurrent∑

v=vGPS,last+1

v(t) · dt (4)

The evaluation was based on eight intervals (two intervals per
evaluation data set) where transmission outages were simu-
lated. It can be assumed that outages at certain positions of the
stroke can easier be predicted than others. To avoid systematic
evaluation errors, the lengths of the intervals varied between
10 and 20 seconds. Furthermore, outages were simulated
constantly within the interval and not only at the beginning.
Thus, at each sample point a new prediction was started. With
a sampling time of 0.02 s (50 Hz), an average interval length
of 15 seconds and four data sets, 6000 prediction tasks were
evaluated.
The predicted velocity was evaluated by the correlation factor
to the actual GPS measured velocity. The resulting position
was compared to the RTK reference system. For both analyses
outage/prediction times tpred from 0.2 s to 20 s were executed.

III. RESULTS

A. subDTW based stroke detection

The comparison with manually labeled acceleration signals
showed a detection rate of 100% in the main part of the race for
both data classes. Problems occurred in the first five seconds
when the movement recently started. A maximum of three
strokes after the start could not be detected. There was no
false positive detection, neither in the beginning nor in the
main part of the race.

B. Stroke rate calculation

The number of detected strokes by the fragmented analysis
of the segmented signal and the total number of strokes over
the whole signal is provided in table II for the four evaluated

TABLE II. RESULT OF STROKE RATE DETECTION ALGORITHM
COMPARED TO THE TOTAL NUMBER OF STROKES

race total number fragmental summed up calculation accuracy
class 1 (I) 233 234.2 0.995
class 1 (II) 234 235.1 0.995
class 2 (I) 225 227.3 0.990
class 2 (II) 250 251.1 0.996

data sets. Compared to the detection over the whole race, the
introduced algorithm shows an accuracy of more than 99%,
averaged over three evaluation runs per data set. Assuming
an average race time of 400 seconds and a window size of
5 to 15 seconds, there is an average of 40 windows per
race and thereby 40 executions of the algorithm. Thus, the
maximum summed up error of 2.3 strokes leads to an error
of approximately 0.05 strokes per windows or 0.3 strokes per
minute as stroke rate output. A typical stroke rate of rowing
competitions is around 40 strokes per minute.

C. Velocity and position prediction

The predicted velocity after tpred was compared to the
actual GPS measured velocity. The correlation factor of
the predicted and actual velocity is presented in figure 4
(black lines). The position output after integrating the
predicted velocity was evaluated by the position output of the
RTK reference system. The result is illustrated in figure 4
(grey lines). Both data classes were evaluated separately.
Data class 1 is presented by continuous lines, data class 2
by dashed line. In addition, all results are provided in table III.

IV. DISCUSSION AND FUTURE WORK

The problem statement of this work was to find a stable
method to predict the rowing motion based on the current
and previous GPS data and acceleration signal. Therefore, a
Subsequence Dynamic Time Warping algorithm was applied
to the rowing motion in order to detect the rowing strokes
by analyzing the acceleration signal. The first outcome of
this algorithm was the actual method of predicting the rowing
motion. The second outcome was the accurate determination
of the stroke rate during races.
The subDTW stroke detection in the acceleration signal
showed a high success rate after the first strokes of the race.
The first 2 to 3 strokes of a race could hardly be detect because
the acceleration profile showed a different behavior in the
initial phase, starting from a state of rest. Later on, the algo-
rithm could segment the acceleration signal in respect to the
provided template of a stroke. However, a more sophisticated
evaluation method has to be established to avoid the labeling
of the acceleration signal. A video based validation could be
used instead.
Furthermore, the evaluation with two data classes showed that
the template for the stroke detection that was created of data
class 1 also works for data class 2. The data classes represent
different rowing classes. This leads to the conclusion that one
template, averaged over all rowing classes, could be sufficient
to detect the strokes in all professional rowing classes.
The detected strokes were used to calculate the stroke rate
and to predict the rowing movement. The evaluation of the
introduced fragmental stroke calculation showed the accuracy
of the method in the analyzed data sets with an error of less
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Fig. 4. Result of the velocity and position prediction of class 1 (solid lines) and class 2 (dashed lines). The black lines illustrate the correlation of the predicted
and actual velocity. The RMSE of the predicted position offset to the reference position is presented in grey.

TABLE III. RESULT OF THE VELOCITY AND POSITION PREDICTION, ILLUSTRATED IN FIGURE 4

tpred [s] 0.2 0.4 0.6 0.8 1 2 3 4 5 10 15 20
correlation factor (data class 1) 0.89 0.95 0.97 0.97 0.98 0.97 0.97 0.96 0.95 0.90 0.84 0.77
correlation factor (data class 2) 0.82 0.93 0.96 0.97 0.97 0.98 0.98 0.97 0.97 0.93 0.87 0.78
correlation factor (average) 0.86 0.94 0.97 0.97 0.97 0.98 0.98 0.97 0.96 0.92 0.86 0.78

position RMSE (data class 1) [m] 0.18 0.27 0.32 0.34 0.32 0.28 0.25 0.40 0.31 0.63 1.02 1.39
position RMSE (data class 2) [m] 0.12 0.16 0.18 0.19 0.19 0.14 0.23 0.22 0.28 0.52 0.77 1.08

position RMSE (average) [m] 0.14 0.22 0.25 0.27 0.26 0.21 0.24 0.31 0.30 0.58 0.90 1.24

than 1% compared to the analysis of the strokes rate over
the whole race. Clearly, the assumption of partially available
strokes before and after the detected ones only applies in
cases of continuous motions, hence, during a race situation.
A different method which only considers the actual detected
strokes has to be developed for a more general stroke rate
determination.
The evaluation of the prediction algorithm proved the ability
of overcome transmission outages. The correlation between
predicted and actual velocity was 78% for predictions up to
20 seconds and 96% for short time predictions up to 5 seconds.
Slightly worse correlation factors for predictions of only 0.2
seconds might result from small deviations from the actual
velocity that nevertheless strongly influence the correlation
factor for short measurement times. The absolute position error
resulted in 1.24 m for predictions up to 20 seconds and 0.30 m
for 5 seconds predictions. As well as in the stroke detection
algorithm no deterioration was determined by using the class
1 template for the class 2 prediction. The prediction results
appear similar for both data classes.
The prediction system could be used for further applications in
professional measurements. The final order of the boats could
be estimated and the winner could be announced in time when
passing the final line instead of analyzing the finish camera
picture first.
The computation time of the implemented subDTW algorithm
could be improved by using the Fast Incremental Dynamic
Time Warping (FIDTW) of Horst [8]. However, the accuracy
of the algorithm is not supposed to get any better as all labeled

strokes were detected in the approach of this paper.

V. SUMMARY

The motivation of this work was given by the time mea-
surement at rowing competitions and the occurring problems of
potential data transmission outages. A Subsequence Dynamic
Time Warping algorithm was implemented to detect the rowing
strokes in the sensor signal. Based on this algorithm, two
methods were established and evaluated: the fragmental stroke
rate calculation during races and the algorithm to predict the
movement in case of data outages.
The subDTW based stroke detection algorithm detected the
strokes based on a predefined template. This template con-
tained the typical acceleration profile of a rowing stroke. Using
this stroke detection, the fragmental stroke rate calculation
algorithm provided an accurate method for the online deter-
mination of the stroke rate during races. Furthermore, the
detected strokes were used in the prediction algorithm. The
start and end times of the detected strokes were applied to
the GPS measured velocity signal. Processing the knowledge
of the periodic stroke pattern in the velocity signal, the signal
could be extrapolated. A position prediction was calculated by
integrating the velocity data.
The evaluation of the system proved the function of detecting
the stroke pattern in the acceleration signal. Compared to other
systems, only one sensor unit was necessary. The algorithm
worked robustly in all tested championship situations. The
fragmental stroke rate calculation worked with an accuracy of
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more than 99%, compared to the calculation over the whole
race. The prediction algorithm was evaluated with a position
error of 30 cm for prediction times up to 5 seconds.
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